Skip to main content

Abiotic Stresses in Major Pulses: Current Status and Strategies

  • Chapter
  • First Online:
Approaches to Plant Stress and their Management

Abstract

Environmental stresses such as erratic and insufficient rainfall, extreme temperatures, salinity, alkalinity and aluminium toxicity limit the yield and productivity of many cultivated crops including pulses. Pulses are leguminous plants whose grains are used exclusively for food and are generally grown in harsh environments. Therefore, pulses encounter a number of abiotic stresses during various stages of their life cycle. Each type of stress hampers the growth of the plant by disturbing the normal physiology and morphology. The exact mechanisms governing the cause and effect of abiotic stresses in pulses are very complex and difficult to understand. Due to changing environmental conditions, very often referred to as ‘climate change’, pulses have become more prone to oxidative damage by overproduction of toxic reactive oxygen species (ROS) such as superoxide radicals, hydrogen peroxide and hydroxyl radicals. These radicals disturb the cellular homeostasis of the cell resulting in significant yield losses. In North India, high temperatures (>30 °C) coupled with drought stress during flowering stage produce distinct effect on the grain yield of chickpea and lentil, whereas in pigeon pea, low temperatures (<10 °C) cause severe flower drop resulting in yield losses. However, recent empirical evidence suggests that genotypic variations have been observed for almost all the abiotic stresses in pulses and several genotypes tolerant to heat, drought and waterlogging have been identified. Marker traits conferring tolerance to such stress(es) have also been identified which can be used in breeding programmes for improving tolerance. This chapter describes the production status, the impact of abiotic stresses and the opportunities for genetic improvement of tolerance to abiotic stresses in major pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard RW (1999) Principles of plant breeding, 2nd edn. Wiley, New York

    Google Scholar 

  • Aro E-M, Virgin I, Anersson B (1993) Photoinhibition of photosystem II: inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Arora RK, Mauria SS (1989) Vigna mungo (L.) Hepper. Record from Proseabase. In: van der Maesen LJG, Somaatmadja S (eds) PROSEA (plant resources of South-East Asia) foundation. PROSEA Project, Bogor

    Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annual Review in Plant Physiology and Plant Molecular Biology 50:601–639

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplast and their function. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in chloroplasts. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–288

    Google Scholar 

  • Bansal R, Srivasta JP (2012) Antioxidant defense system in pigeonpea roots under waterlogging stress. Acta Physiol Plant 34(2):515–522

    Article  CAS  Google Scholar 

  • Beyer W, Imlay J, Fridovich I (1991) Superoxide dismutases. Prog Nucleic Acid Res Mol Biol 40:221–253

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inz’e D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Campbell TA, Foy CD, Mc Murty E, Elgin JE Jr (1988) Selection alfalfa for tolerance to toxic levels of Al. Can J Plant Sci 68:743–753

    Article  CAS  Google Scholar 

  • Chauhan YS, Silim SN, KumarRao JVDK, Johansen C (1997) A pot technique to screen pigeonpea cultivars for resistance to waterlogging. J Agron Crop Sci 178:179–183

    Article  Google Scholar 

  • Choudhary AK (2007) Selection criteria for low temperature tolerance in long-duration pigeonpea. In: Abstract published in the national symposium on “legumes for ecological sustainability: emerging challenges and opportunity, Indian Institute of Pulses Research, Kanpur, p 266, 3–5 Nov 2007

    Google Scholar 

  • Choudhary AK, Vijayakumar AG (2012) Glossary of plant breeding: a perspective. LAP LAMBERT Academic/AV Akademikerverlag GmbH & Co. KG Heinrich-Böcking, Saarbrücken

    Google Scholar 

  • Choudhary AK, Sultana R, Pratap A, Nadarajan N, Jha UC (2011a) Breeding for abiotic stresses in pigeonpea. J Food Legume 24:165–174

    Google Scholar 

  • Choudhary AK, Singh D, Iquebal MA (2011b) Selection of pigeonpea genotypes for tolerance to aluminium toxicity. Plant Breed 130(4):492–495

    Article  CAS  Google Scholar 

  • Choudhary AK, Raje RS, Subhojit D, Sultana R, Timmanna O (2013) Conventional and molecular approaches towards genetic improvement in pigeonpea for insects resistance. Am J Plant Sci 4:372–385

    Article  Google Scholar 

  • Croser JS, Ahmad F, Clarke HJ, Siddique KHM (2003) Utilization of wild Cicer in chickpea improvement-progress, constraint and prospects. Aust J Agric Res 54:429–444

    Article  Google Scholar 

  • CRN India (2011) http://www.crnindia.com/commodity/urad.html. Accessed on 21 Apr 2013

  • Dua RP, Sharma PC (1996) Physiological basis of salinity tolerance in pigeonpea (Cajanus cajan) and method of testing materials under highly variable soil conditions. Indian J Agric Sci 66:405–412

    Google Scholar 

  • Fageria NK (1985) Influence of aluminum in nutrient solutions on chemical composition in two rice cultivars at different growth stages. Plant Soil 85:423–429

    Article  CAS  Google Scholar 

  • FAOSTAT (2013) http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed 21 Apr 2013

  • Flowers TJ, Gaur PM, Gowda CLL, Krishnamurthy L, Srinivasan S, Siddique KHM, Turner N, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold-response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplast, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Descourvierse P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  • Garg N, Kaur H (2013) Impact of cadmium-zinc interactions on metal uptake translocation and yield in pigeonpea genotypes colonized by arbuscular mycorrhizal fungi. J Plant Nutr 36:67–90

    Article  CAS  Google Scholar 

  • Gill T, Kumar S, Ahuja PS, Sreenivasulu Y (2010) Over-expression of Potentilla superoxide dismutase improves salt stress tolerance during germination and growth in Arabidopsis thaliana. J Plant Genet Transgen 1:1–10

    Google Scholar 

  • Hagar H, Ueda N, Shah SV (1996a) Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. American Journal of Physiology 271:209–215

    Google Scholar 

  • IARI News (2012) 28:1–2

    Google Scholar 

  • IIPR Annual Report (2008–2009) Indian Institute of Pulses Research, Kanpur

    Google Scholar 

  • IIPR Annual Report (2011–2012) Indian Institute of Pulses Research, Kanpur

    Google Scholar 

  • Imlay JA, Linn S (1986) DNA damage and oxygen radical toxicity. Science 240:1302–1309

    Article  Google Scholar 

  • Keating BA, Fisher MJ (1985) Comparative tolerance of tropical grain legumes to salinity. Aust J Agric Res 36:373–383

    Article  CAS  Google Scholar 

  • Krishnamurthy L, Upadhyaya HD, Saxena KB, Vadez V (2012) Variation for temporary waterlogging response within the mini core pigeonpea germplasm. J Agric Sci 150:357–364

    Article  CAS  Google Scholar 

  • Kumar S, Ali M (2006) GE interaction and its breeding implications in pulses. Botanica 56:31–36

    Google Scholar 

  • Kumar J, Choudhary AK, Solanki R, Pratap A (2011) Towards marker- assisted selection in pulses – a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Matsunaga R, Ito O, Tobita S, Rao TP, Johansen C (1994) Response of short-duration pigeonpea to nitrogen application after short-term waterlogging on a vertisol. Field Crops Res 38:167–174

    Article  Google Scholar 

  • McKersie BD, Leshem YY (1994) Stress and stress coping in cultivated plants. Kluwer Academic, Dordrecht, pp 79–100

    Book  Google Scholar 

  • Mehlhorn H, Tabner B, Wellburn A (1990) Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiol Plant 79:377–383

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  CAS  Google Scholar 

  • Nautiyal N, Sinha P (2012) Lead induced antioxidant defence system in pigeon pea and its impact on yield and quantity of seeds. Acta Physiol Plant 34(3):977–983

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Oleinick NL, Chiu S, Ramakrishman N, Xue L (1986) The formation, identification, and significance of DNA-protein cross-links in mammalian cells. Br J Cancer 55:135–140

    Google Scholar 

  • Pal AK, Acharya K, Vats SK, Kumar S, Ahuja PS (2013) Over-expression of PaSOD in transgenic potato enhances photosynthetic performance under drought. Biol Plant 57(2):359–364

    Article  CAS  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–24

    Article  CAS  Google Scholar 

  • Price AH, Antherton N, Hedry GAF (1989) Plants under drought-stress generates activated oxygen. Free Radic Res Commun 8:61–66

    Article  PubMed  CAS  Google Scholar 

  • Priyanka B, Sekhar K, Reddy VD, Rao KV (2010) Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. Plant Biotechnol J 8:76–87

    Article  PubMed  CAS  Google Scholar 

  • Promila K, Kumar S (1982) Effect of salinity on flowering and yield characters in pigeonpea. Indian J Plant Physiol 25:252–257

    Google Scholar 

  • Rao DLN, Giller KE, Yeo AR, Flowers TJ (2002) The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea. Ann Bot 89:563–570

    Article  PubMed  CAS  Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35(4):1039–1050

    Article  CAS  Google Scholar 

  • Reddy SJ, Virmani SM (1981) Pigeonpea and its climatic environment. In: Nene YL (ed) Proceeding of the international workshop on pigeonpea held in Patancheru, India, vol 1. ICRISAT, Patancheru, pp 259–270, 15–19 Dec 1980

    Google Scholar 

  • Roorkiwal M, Sharma PC (2012) Sequence similarity based identification of abiotic stress responsive genes in chickpea. Bioinformation 8(2):92–97

    Article  PubMed  Google Scholar 

  • Rubinstein B, Luster DG (1993) Plasma membrane redox activity: components and role in plant processes. Annu Rev Plant Physiol Plant Mol Biol 44:131–155

    Article  CAS  Google Scholar 

  • Ryan J (1997) A global perspective on pigeon pea and chickpea sustainable production systems: present status and future potential. In: Asthana A, Ali M (eds) Recent advances in pulses research. Indian Society for Pulses Research and Development, Kanpur, pp 1–31

    Google Scholar 

  • Salehi M (2012) The study of drought tolerance of lentil (lens culinaris Medik) in seedling growth stage. Int J Agron Plant Prod 3(1):38–41

    Google Scholar 

  • Samineni S, Siddique KHM, Gaur PM, Colmer TD (2011) Salt sensitivity of the vegetative and reproductive stages in chickpea: podding is a particular sensitive stage. Environ Exp Bot 71:260–268

    Article  CAS  Google Scholar 

  • Sandhu JS, Gupta SK, Singh S, Dua RP (2007) Genetic variability for cold tolerance in pigeonpea. E-J SAT Agric Res 5:1–3

    Google Scholar 

  • Sarode SB, Singh MN, Singh UP (2007) Genetics of waterlogging tolerance in pigeonpea (Cajanus cajan L. Millsp.). Indian J Genet Plant Breed 67:264–265

    Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutase. Plant Physiol 101:7–12

    PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Wum G, Zhang JH, Lu ZH, Hu YC (2007) Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids Surf B Biointerfaces 59:113–119

    Article  Google Scholar 

  • Shrestha R, Siddique KHM, Turner NC, Turner DW, Berger J (2005) Growth and seed yield of lentil (Lens culinaris Medikus) genotypes of West Asian and South Asian origin and crossbreds between two under the rainfed conditions in Nepal. Aust J Agric Res 56:971–981

    Article  Google Scholar 

  • Sinclair BJ, Vernon P, Klok CJ, Chown SL (2003) Insects at low temperatures: an ecological perspective. Trends Ecol Evol 18:257–262

    Article  Google Scholar 

  • Singh D, Choudhary AK (2010) Inheritance pattern of aluminum tolerance in pea (Pisum sativum L). Plant Breed 129:688–692

    Article  CAS  Google Scholar 

  • Singh D, Raje RS (2011) Genetics of aluminium tolerance in chickpea (Cicer arietinum). Plant Breed 130:563–568

    Article  CAS  Google Scholar 

  • Singh D, Rai AK, Panyang O (2009) Hematoxylin staining as a potential screening technique for aluminum tolerance in pea (Pisum sativum L.). Curr Sci 96:1029–1030

    CAS  Google Scholar 

  • Singh D, Raje RS, Choudhary AK (2011) Genetic control of aluminium tolerance in pigeonpea (Cajanus cajan L.). Crop Pasture Sci 62:761–764

    Article  CAS  Google Scholar 

  • Singh D, Dixit HK, Rajendra S (2013) A new phenotyping technique for screening for drought tolerance in lentil (Lens culinaris Medik.). Plant Breed 132(2):185–190

    Article  Google Scholar 

  • Srivastava N, Vadez V, Upadhyaya HD, Saxena KB (2006) Screening for intra and interspecific variability for salinity tolerance in pigeonpea (Cajanus cajan) and its related wild species. J SAT Agric Res 2:1–12

    Google Scholar 

  • Subbarao GV, Johansen C, Rao JVDKK, Jana MK (1990) Salinity tolerance in F1 hybrids of pigeonpea and a tolerant wild relative. Crop Sci 30:785–788

    Article  CAS  Google Scholar 

  • Subbarao GV, Johansen C, Jana MK, Rao JVDKK (1991) Comparative salinity responses among pigeonpea genotypes and their wild relatives. Crop Sci 31:415–418

    Article  Google Scholar 

  • Subbarao GV, Johansen C, Slinkard AE, Rao RCN, Saxena NP, Chauhan YS (1995) Strategies for improving drought resistance in grain legumes. Crit Rev Plant Sci 14(6):469–523

    Google Scholar 

  • Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen TH, Murata N (2003) Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J 36:165–176

    Article  PubMed  CAS  Google Scholar 

  • Sultana R, Vales MI, Saxena KB, Rathore A, Rao S, Rao SK, Myer M, Kumar RV (2012) Water-logging tolerances in pigeonpea (Cajanus cajan L. Millsp.). Genotypic variability and identification of tolerant genotypes. J Agric Sci :1–13. doi: 10.1017/S0021859612000755, Published online

  • Summerfield RJ, Hadley P, Roberts EH, Minchin FR, Rawsthrone S (1984) Sensitivity of chickpea (Cicer arietinum L.) to hot temperatures during the reproductive period. Exp Agric 20:77–93. doi:10.1017/S0014479700017610

    Article  Google Scholar 

  • Talukdar D (2013) Studies on antioxidant enzymes in Cana indica plant under copper stress. J Environ Biol 34:93–98

    PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  PubMed  CAS  Google Scholar 

  • Turner NC (1986) Adaptation to water deficits: a changing perspective. Aust J Plant Physiol 13(1):175–190

    Article  Google Scholar 

  • Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD, Hoisington DA, Varshney RK, Turner NC, Siddique KHM (2007) Large variation in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Res 104:123–129

    Article  Google Scholar 

  • Vales MI, Srivastava RK, Sultana R, Singh S, Singh I, Singh G, Patil SB, Saxena KB (2012) Development of new determinate and non-determinate super-early pigeonpea (Cajanus cajan L. Millspaugh) lines. Crop Sci 52:1–10

    Article  Google Scholar 

  • Varshney RK, Mohan MS, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj C, Mannur DM, Harer PN, Guo B, Liang X, Nadarajan N, Gowda CLL (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi arid tropics. Biotechnol Adv. http://dx.doi.org/10.1016/j.biotechadv.2013.01.0

  • Wang J, Gan YT, Clarke F, McDonald CL (2006) Response of chickpea yield to high temperature stress during reproductive development. Crop Sci 46:2171–2178

    Article  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Wei ZK, Shao HB (2007) The mutual responses of higher plants to environment: physiological and microbiological aspects. Biointerfaces 59:113–119

    Article  CAS  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sultana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Sultana, R., Choudhary, A.K., Pal, A.K., Saxena, K.B., Prasad, B.D., Singh, R. (2014). Abiotic Stresses in Major Pulses: Current Status and Strategies. In: Gaur, R., Sharma, P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9_9

Download citation

Publish with us

Policies and ethics