Skip to main content

Fungal Disease Management in Plants

  • Chapter
  • First Online:

Abstract

Fungal diseases damage crop plants and affect agricultural production. The defence strategy of plants against stress factors involves a multitude of tools, including various types of stress proteins with putative protective functions. Recent molecular advancements in understanding plant–pathogen studies have led to the identification of various host genes involved in the plant’s defence against pathogen attack. This knowledge has paved path for a number of options and strategies that can be and have been developed to make plants resistant to pathogens. These genes may involve resistance gene–avirulence gene interaction, antimicrobial peptides, enzymes for phytoalexin production, proteins involved in defence-signalling cascades and hydrolytic enzymes or pathogenesis-related proteins that are directly or indirectly responsible for the plant’s defence responses following a pathogen attack. Recently small RNAs have been identified as key players of many pathways they are important transcriptional and post-transcriptional regulators of gene expression. RNA interference (RNAi) is an emerging strategy for control of fungal pathogens, through silencing of pathogen-associated genes. miRNAs also play an important role in plant defence responses to pathogen attack. Certain microRNAs (miRNAs) are up- or downregulated during pathogen attack, indicating that these miRNAs could play important roles in biotic stress tolerance. All this information has been/or is being used to produce fungus-resistant transgenic plants in different crop species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abad LR, D’Urzo MP, Liu D, Narasimhan ML, Reuveni M, Zhu JK, Niu X, Singh NK, Hasegawa PM, Bressan RA (1996) Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci 118:11–23

    CAS  Google Scholar 

  • Acharya K, Pal AK, Gulati A, Kumar S, Singh AK, Ahuja PS (2013) Overexpression of Camellia sinensis thaumatin-like protein, CsTLP in potato confers enhanced resistance to Macrophomina phaseolina and Phytophthora infestans infection. Mol Biotechnol 54:609–622

    PubMed  CAS  Google Scholar 

  • Akiyama T, Pillai MA, Sentoku N (2004) Cloning, characterization and expression of OsGLN2, a rice endo-1,3-betaglucanase gene regulated developmentally in flowers and hormonally in germinating seeds. Planta 220:129–139

    PubMed  CAS  Google Scholar 

  • Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl-Goy P, Luntz T, Ward E, Ryals J (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci U S A 90:7327–7331

    PubMed  CAS  Google Scholar 

  • Amian AA, Papenbrock J, Jacobsen HJ, Hassan F (2011) Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (Chitinase and Glucanase). GM Crops 2:104–109

    PubMed  Google Scholar 

  • Antoniw JF, Ritter CE, Pierpoint WS, Van Loon LC (1980) Comparison of the pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J Gen Virol 47:79–87

    CAS  Google Scholar 

  • Anuradha TS, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786

    Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    PubMed  CAS  Google Scholar 

  • Bernier F, Berna A (2001) Germins and germin-like proteins: plant do-all proteins. But what do they do exactly? Plant Physiol Biochem 39:545–554

    CAS  Google Scholar 

  • Blilou I, Juan A, Ocampo JA, Carcia-Garrido JM (2000) Induction of LTP (lipid transfer protein) and PAL (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J Exp Bot 51:1969–1977

    PubMed  CAS  Google Scholar 

  • Boller T, Gehri A, Mauch F, Vögeli U (1983) Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157:22–31

    PubMed  CAS  Google Scholar 

  • Campo S, Peris-Peris C, Siré C, Moreno AB, Donaire L, Zytnicki M, Notredame C, Llave C, San Segundo B (2013) Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol 199(1):212–227

    PubMed  CAS  Google Scholar 

  • Carstens M, Vivier MA, Pretorius IS (2003) The Saccharomyces cerevisiae chitinase, encoded by the CTS1–2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transgenic Res 12:497–508

    PubMed  CAS  Google Scholar 

  • Chai B, Maqbool SB, Hajela RK, Green D, Vargas JM, Warkentin D, Sabzikar R, Sticklen MB (2002) Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Sci 163:183–193

    CAS  Google Scholar 

  • Chang M, Culley D, Choi JJ, Hadwiger LA (2002) Agrobacterium-mediated co-transformation of a pea b-1,3-glucanase and chitinase genes in potato (Solanum tuberosum L. c.v. Russet Burbank) using a single selectable marker. Plant Sci 163:83–89

    CAS  Google Scholar 

  • Chen Z, Ricigliano JW, Klessig DF (1993) Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci U S A 90(20):9533–9537

    PubMed  CAS  Google Scholar 

  • Chen SC, Liu AR, Zou ZR (2006) Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum. Plant Sci 5:2134–2140

    Google Scholar 

  • Chen WP, Chen PD, Liu DJ, Kynast R, Friebe B, Velazhahan R, Muthukrishnan S, Gill BS (1999) Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor Appl Genet 99:755–760

    CAS  Google Scholar 

  • Cheong YH, Kim CY, Chun HJ, Moon BC, Park HC, Kim JK, Lee SY, Cho MJ (2000) Molecular cloning of a soybean class III b-1,3-glucanase gene that is regulated both developmentally and in response to pathogen infection. Plant Sci 154:71–81

    PubMed  CAS  Google Scholar 

  • Christensen A, Ho Cho B, Naesby M, Gregersen P, Brandt J, Madriz-Ordeñana K, Collinge D, Thordal-Christensen H (2002) The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Mol Plant Pathol 3:135–144

    PubMed  CAS  Google Scholar 

  • Chye M, Zhao K, He Z, Ramalingam S, Fung K (2005) An agglutinating chitinase with two chitin-binding domains confers fungal protection in transgenic potato. Planta 220:717–730

    PubMed  CAS  Google Scholar 

  • Coca M, Bortolotti C, Rufat M, Peñas G, Eritja R, Tharreau D, Martinez del Pozo A, Messeguer J, Segundo SB (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54:245–259

    PubMed  CAS  Google Scholar 

  • Cohn J, Sessa G, Martin GB (2001) Innate immunity in plants. Curr Opin Immunol 13:55–62

    PubMed  CAS  Google Scholar 

  • Cooley MB, Pathirana S, Wu H-J, Kachroo P, Klessig DF (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663–676

    PubMed  CAS  Google Scholar 

  • Cornelissen BJ, Hooft van Huijsduijnen RA, Van Loon LC, Bol JF (1986) Molecular characterization of messenger RNAs for ‘pathogenesis related’ proteins la, lb and lc, induced by TMV infection of tobacco. EMBO J 5(1):37–40

    PubMed  CAS  Google Scholar 

  • Coventry HS, Dubery IA (2001) Lipopolysaccharides from Burkholderia cepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins in Nicotiana tabacum. Physiol Mol Plant Pathol 58:149–158

    CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    PubMed  CAS  Google Scholar 

  • Danon A, Delorme V, Mailhac N, Gallois P (2000) Plant programmed cell death: a common way to die. Plant Physiol Biochem 38:647–655

    CAS  Google Scholar 

  • Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S, Datta SK (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98:1138–1145

    CAS  Google Scholar 

  • Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection- related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    PubMed  CAS  Google Scholar 

  • de Alba Martinez AE, Flores R, Hernandez C (2002) Two chloroplastic viroids induce the accumulation of small RNAs associated with posttranscriptional gene silencing. J Virol 76:13094–13096

    Google Scholar 

  • Derckel JP, Legendre L, Audran J-C, Haye B, Lambert B (1996) Chitinases of the grapevine (Vitis vinifera L.): five isoforms induced in leaves by salicylic acid are constitutively expressed in other tissues. Plant Sci 119:31–37

    CAS  Google Scholar 

  • Duan CG, Wang CH, Guo HS (2012) Application of RNA silencing to plant disease resistance. Silence 3:5

    PubMed  CAS  Google Scholar 

  • El-kereamy A, El-sharkawy I, Ramamoorthy R, Taheri A, Errampalli D, Kumar P, Jayasankar S (2011) Prunus domestica pathogenesis-related protein-5 activates the defense response pathway and enhances the resistance to fungal infection. PLoS One 6:e17973

    PubMed  CAS  Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) The generation of plant disease resistance gene specificities. Trends Plant Sci 5:373–379

    PubMed  CAS  Google Scholar 

  • Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Pena L (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol Breed 7:175–185

    CAS  Google Scholar 

  • Fritig B, Heitz T, Legrand M (1998) Antimicrobial proteins in induced plant defense. Curr Opin Immunol 10:16–22

    PubMed  CAS  Google Scholar 

  • Girgi M, Breese WA, Lorz H, Oldach KH (2006) Rust and downy mildew resistance in pearl millet (Pennisetum glaucum) mediated by heterologous expression of the afp gene from Aspergillus giganteus. Transgenic Res 15:313–324

    PubMed  CAS  Google Scholar 

  • Girhepuje PV, Shinde GB (2011) Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. Lycopersici. Plant Cell Tiss Organ Cult 105:243–251

    CAS  Google Scholar 

  • Guo N, Ye WW, Wu XL, Shen DY, Wang YC, Xing H, Dou DL (2011) Microarray profiling reveals microRNAs involving soybean resistance to Phytophthora sojae. Genome 54(11):954–958

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Tang S, Harrison K, Jones JDG (1998) The tomato Cf-9 disease resistance gene functions in tobacco and potato to confer responsiveness to the fungal avirulence gene product Avr 9. Plant Cell 10:1251–1266

    PubMed  CAS  Google Scholar 

  • Hassan F, Meens J, Jacobsen H, Kiesecker H (2009) A family 19 chitinase (Chit30) from Streptomyces olivaceoviridis ATCC 11238 expressed in transgenic pea affects the development of T. harzianum in vitro. J Biotechnol 143:302–330

    PubMed  CAS  Google Scholar 

  • He X, Miyasaka SC, Fitch MMM, Moore PH, Zhu YJ (2008) Agrobacterium tumefaciens mediated transformation of taro [Colocasia esculenta (L.) Schott] with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii. Plant Cell Rep 27:903–909

    PubMed  CAS  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    PubMed  CAS  Google Scholar 

  • Hennin C, Hofte M, Diederichsen E (2001) Functional expression of Cf9 and Avr9 genes in Brassica napus induces enhanced resistance to Leptosphaeria maculans. Mol Plant Microbe Interact 14:1075–1085

    PubMed  CAS  Google Scholar 

  • Honée G (1999) Engineered resistance against fungal plant pathogens. Eur J Plant Pathol 105:319–326

    Google Scholar 

  • Hong JK, Hwang BK (2006) Promoter activation of pepper class II basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis. Planta 223:433–448

    PubMed  CAS  Google Scholar 

  • Hooft van Huijsduijnen RA, Cornelissen BJ, van Loon LC, van Boom JH, Tromp M, Bol JF (1985) Virus-induced synthesis of messenger RNAs for precursors of pathogenesis-related proteins in tobacco. EMBO J 4(9):2167–2171

    PubMed  CAS  Google Scholar 

  • Huang X, Wang J, Du Z, Zhang C, Li L, Xu Z (2013) Enhanced resistance to stripe rust disease in transgenic wheat expressing the rice chitinase gene RC24. Transgenic Res 22(5):939–947

    PubMed  CAS  Google Scholar 

  • Ignacimuthu S, Ceasar SA (2012) Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci 37:135–147. doi:10.1007/s12038-011-9178-y

    Google Scholar 

  • Jan FJ, Fagoaga C, Pang SZ, Gonsalves D (2000) A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J Gen Virol 81:235–242

    PubMed  CAS  Google Scholar 

  • Jin W, Fangli WU, Liang X, Guangwang L, Yuxian Z (2012) Microarray based analysis of tomato miRNA regulated by Botrytis cinerea. J Plant Growth Regul 31:38–46

    CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    PubMed  CAS  Google Scholar 

  • Jongedijk E, Tigelaar H, Roekel JSC, Bres-Vloemans SA, Dekker I, Elzen PJM, Cornelissen BJC, Melchers LS (1995) Synergistic activity of chitinases and beta-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85:173–180

    CAS  Google Scholar 

  • Kamoun S (2001) Nonhost resistance to Phytophthora: novel prospects for a classical problem. Curr Opin Plant Biol 4:295–300

    PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246

    PubMed  CAS  Google Scholar 

  • Khatri M, Rajam MV (2007) Targeting polyamines of Aspergillus nidulans by siRNA specific to fungal ornithine decarboxylase gene. Med Mycol 45(3):211–220

    PubMed  CAS  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochem Biophys Acta 1819:137–148

    PubMed  CAS  Google Scholar 

  • Kim JK, Jang IC, Wu R, Zuo WN, Boston RS, Lee YH, Ahn IP, Nahm BH (2003) Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res 12:475–484

    PubMed  CAS  Google Scholar 

  • Kishimoto K, Nishizawa Y, Tabei Y, Hibi T, Nakajima M, Akutsu K (2002) Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea). Plant Sci 162:655–662

    CAS  Google Scholar 

  • Kombrink E, Somssich IE (1995) Defense responses of plants to pathogens. Adv Bot Res (Formerly Adv Plant Pathol) 21:1–34

    CAS  Google Scholar 

  • Kombrink E, Somssich IE (1997) Pathogenesis-related proteins and plant defense. In: Carroll G, Tudzynski P (eds) The mycota, vol 5, Part A, Plant relationships. Springer, Berlin/Heidelberg, pp 107–128

    Google Scholar 

  • Kovacs G, Sagi L, Jacon G, Arinaitwe G, Busogoro JP, Thiry E, Strosse H, Swennen R, Remy S (2013) Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res 22:117–130

    PubMed  CAS  Google Scholar 

  • Kumar KK, Poovannan K, Nandakumar R, Thamilarasi K, Geetha C, Jayashree N, Kokiladevi E, Raja JAJ, Samiyappan R, Sudhakar D, Balasubramanian P (2003) A high throughput functional expression assay system for a defense gene conferring transgenic resistance on rice against the sheath blight pathogen, Rhizoctonia solani. Plant Sci 165:969–976

    CAS  Google Scholar 

  • Latha MA, Rao KV, Reddy VD (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci 169:657–667

    CAS  Google Scholar 

  • Li HY, Zhu YM, Chen Q, Conner RL, Ding XD, Zhang BB (2004) Production of transgenic soybean plants with two anti-fungal protein genes via Agrobacterium and particle bombardment. Biol Plant 48:367–374

    CAS  Google Scholar 

  • Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci U S A 91:1888–1892

    PubMed  CAS  Google Scholar 

  • Lu S, Sun YH, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077–1098

    PubMed  CAS  Google Scholar 

  • Mackintosh C, Lewis J, Radmer L, Shin S, Heinen S, Smith L, Wyckoff M, Dill-Macky R, Evans C, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer G (2007) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488

    PubMed  CAS  Google Scholar 

  • Mahdavi F, Sariah M, Maziah M (2012) Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to Fusarium wilt. Appl Biochem Biotechnol 166:1008–1019

    PubMed  CAS  Google Scholar 

  • Maruthasalam S, Kalpana K, Kumar KK, Loganathan M, Poovannan K, Raja JA, Kokiladevi E, Samiyappan R, Sudhakar D, Balasubramanian P (2007) Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep 26:791–804

    PubMed  CAS  Google Scholar 

  • Maziah M, Saraih M, Sreeramanan S (2007) Transgenic banana Rastali (AAB) with b-1,3-glucanase gene for tolerance to Fusarium wilt race 1 disease via Agrobacterium-mediated transformation system. Plant Pathol J 6:271–282

    CAS  Google Scholar 

  • Mei L, Zong-xiu S, Jei Z, Tong X, Gary EH, Matteo L (2004) Enhancing rice resistance to fungal pathogens by transformation with cell degrading enzyme genes from Trichoderma atroviride. J Zhejiang Uni Sci 5:133–136

    Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–350

    PubMed  CAS  Google Scholar 

  • Melander M, Kamnert I, Happstadius I, Liljeroth E, Bryngelsson T (2006) Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and b-1,3-glucanase genes in a double-gene construct. Plant Cell Rep 25:942–952

    PubMed  CAS  Google Scholar 

  • Mitani N, Kobayashi S, Nishizawa Y, Kuniga T, Matsumoto R (2006) Transformation of trifoliate orange with rice chitinase gene and the use of the transformed plant as a rootstock. Sci Hortic 108:439–441

    CAS  Google Scholar 

  • Mondal K, Bhattacharya R, Koundal K, Chatterjee S (2007) Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant Cell Rep 26:247–252

    PubMed  CAS  Google Scholar 

  • Moravčíková J, Matušíková I, Libantová J, Bauer M, Mlynárová L (2004) Expression of cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants. Plant Cell Tissue Organ Cult 79:161–168

    Google Scholar 

  • Moravcıkova J, Libantova J, Heldak J, Salaj JM, Matusıkova I, Galova Z, Mlynarov L (2007) Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifolia b-1,3- glucanase genes in transgenic potato plants. Acta Physiol Plant 29:133–141

    Google Scholar 

  • Naseri G, Sohani MM, Pourmassalehgou A, Allahi S (2012) In planta transformation of rice (Oryza sativa) using thaumatin-like protein gene for enhancing resistance to sheath blight. Afr J Biotechnol 11:7885–7893

    CAS  Google Scholar 

  • Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T (2003) Characterization of transgenic rice plants over-expressing the stress-inducible b-glucanase gene Gns1. Plant Mol Biol 51:143–152

    PubMed  CAS  Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    PubMed  CAS  Google Scholar 

  • Odjakova M, Hadjiivanova C (2001) The complexity of pathogen defence in plants. Bulg J Plant Physiol 27:101–109

    CAS  Google Scholar 

  • Osusky M, Osuska L, Hancock RE, Kay W, Misra S (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Trans Res 13:181–190

    CAS  Google Scholar 

  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540

    PubMed  CAS  Google Scholar 

  • Prasad K, Bhatnagar-Mathur P, Waliyar F, Sharma KK (2013) Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J Plant Biochem Biotechnol 22:222–233

    CAS  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    PubMed  CAS  Google Scholar 

  • Punja ZK (2005) Transgenic carrots expressing a thaumatin-like protein display enhanced resistance to several fungal pathogens. Can J Plant Pathol 27:291–296

    CAS  Google Scholar 

  • Raham SK, Rinaldi S, Ikuo N, Masahiro M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnol Rep 2:13–20

    Google Scholar 

  • Rajam MV (2012) Host induced silencing of fungal pathogen genes: an emerging strategy for disease control in crop plants. Cell Dev Biol 1(6):e118, http://dx.doi.org/10.4172/2168-9296.1000e118

    Google Scholar 

  • Rajam MV, Chandola N, SaiPrasad Goud P, Singh D, Kashyap V, Choudhary ML, Sihachakr D (2007) Thaumatin sweet protein gene confers tolerance to fungal pathogens as well as abiotic stresses in transgenic tobacco plants. Biol Plant 51:135–141

    CAS  Google Scholar 

  • Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    PubMed  CAS  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    PubMed  CAS  Google Scholar 

  • Schestibratov KA, Dolgov SV (2005) Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Sci Hortic 106:177–189

    CAS  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894

    PubMed  CAS  Google Scholar 

  • Shah MR, Mukherjee PK, Eapen S (2010) Expression of a fungal endochitinase gene in transgenic tomato and tobacco results in enhanced tolerance to fungal pathogens. Physiol Mol Biol Plants 16(1):39–51

    PubMed  CAS  Google Scholar 

  • Shah JM, Singh R, Veluthambi K (2013) Transgenic rice lines constitutively co-expressing tlp-D34 and chi11 display enhancement of sheath blight resistance. Biol Plant 57:351–358

    CAS  Google Scholar 

  • Sidorova T, Miroshnichenko D, Dolgov S, Tjukavin G (2013) Transgenic carrot expressing Thaumatin II gene has enhanced resistance against Fusarium avenaceum. Acta Hort (ISHS) 974:123–130

    Google Scholar 

  • Simon-Mateo C, Garcia JA (2011) Antiviral strategies in plants based on RNA silencing. Biochim Biophys Acta 1809:722–731

    PubMed  CAS  Google Scholar 

  • Somssich IE, Hahlbrock K (1998) Pathogen defence in plants – a paradigm of biological complexity. Trends Plant Sci 3:86–90

    Google Scholar 

  • Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K (2008) Combined expression of chitinase and b-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci 175:283–290

    CAS  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993) Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 75:687–706

    PubMed  CAS  Google Scholar 

  • Sundaresha S, Manoj Kumar A, Rohini S, Math S, Keshamma E, Chandrashekar S, Udayakumar M (2010) Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco b-1,3-glucanase. Eur J Plant Pathol 126:497–508

    CAS  Google Scholar 

  • Takakura Y, Ito T, Saito H, Inoue T, Komari T, Kuwata S (2000) Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.). Plant Mol Biol 42:883–897

    PubMed  CAS  Google Scholar 

  • Takatsu Y, Nishizawa Y, Hibi T, Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci Hortic 82:13–123

    Google Scholar 

  • Terakawa T, Takaya N, Horiuchi H, Koike M, Takagi M (1997) A fungal chitinase gene from Rhizopus oligosporus confers antifungal activity to transgenic tobacco. Plant Cell Rep 16:439–443

    CAS  Google Scholar 

  • Theis T, Stahl U (2004) Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci 61:437–455

    PubMed  CAS  Google Scholar 

  • Thomma B, Eggermont K, Penninckx I, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95:15107–15111

    PubMed  CAS  Google Scholar 

  • Tinoco ML, Dias BB, Dall’Astta RC, Pamphile JA, Aragão FJ (2010) in vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:27

    PubMed  Google Scholar 

  • Tobias DJ, Manoharan M, Pritsch C, Dahleen LS (2007) Co-bombardment, integration and expression of rice chitinase and thaumatin-like protein genes in barley (Hordeum vulgare cv.Conlon). Plant Cell Rep 26:631–639

    PubMed  CAS  Google Scholar 

  • Tohidfar MM, Mohammadi T, Ghareyazie B (2005) Agrobacterium- mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tissue Organ Cult 83:83–96

    CAS  Google Scholar 

  • Tomilov AA, Tomilova NB, Wroblewski T, Michelmore R, Yoder JI (2008) Trans-specific gene silencing between host and parasitic plants. Plant J 56:389–397

    PubMed  CAS  Google Scholar 

  • Tu J, Datta K, Khush GS, Zhang Q, Datta SK (2000) Field performance of Xa21 transgenic indica rice (Oryza sativa L.), IR72. Theor Appl Genet 101:15–20

    CAS  Google Scholar 

  • van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222

    PubMed  Google Scholar 

  • Van Loon LC, Van Kammen A (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. ‘Samsun’ and ‘Samsun NN’. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40:199–211

    Google Scholar 

  • van Loon L, van Strien E (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Google Scholar 

  • van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Rep 12:245–264

    Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    PubMed  Google Scholar 

  • Vazquez F, Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V et al (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79

    PubMed  CAS  Google Scholar 

  • Vellicce GR, Ricci JCD, Herna’ndez L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res 15:57–68

    PubMed  CAS  Google Scholar 

  • Vigers A, Wiedemann S, Roberts WK, Legrand M, Selitrennikoff CP, Fritig B (1992) Thaumatin-like pathogenesis- related proteins are antifungal. Plant Sci 83:155–161

    CAS  Google Scholar 

  • Wally O, Jayaraj J, Punja Z (2009) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, b-1,3-glucanase and peroxidise. Eur J Plant Pathol 123:331–342

    CAS  Google Scholar 

  • Wally O, Punja ZK (2010) Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops 1(4):199–206

    PubMed  Google Scholar 

  • Wang Y, Kausch AP, Chandlee JM, Luo H, Ruemmele BA, Browning M, Jackson N, Goldsmith MR (2003) Co-transfer and expression of chitinase, glucanase, and bar genes in creeping bentgrass for conferring fungal disease resistance. Plant Sci 106:497–506

    Google Scholar 

  • Wrobel-Kwiatkowska M, Lorenc-Kukula K, Starzycki M, Oszmianski J, Kepczynska E, Szopa J (2004) Expression of b-1,3-glucanase in flax causes increased resistance to fungi. Physiol Mol Plant Pathol 65:245–256

    CAS  Google Scholar 

  • Xie Z, Staehelin C, Wiemken A, Broughton W, Muller J, Boller T (1999) Symbiosis-stimulated chitinase isoenzymes of soybean (Glycine max (L.) Merr.). J Exp Bot 50:327–333

    CAS  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H et al (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    PubMed  Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    CAS  Google Scholar 

  • Yang SM, Gao MQ, Xu CW, Gao JC, Deshpande S, Lin S, Roe BA, Zhu H (2008) Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci U S A 105:12164–12169

    PubMed  CAS  Google Scholar 

  • Yu XM, Griffith M, Wiseman SB (2001) Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol 126:1232–1240

    PubMed  CAS  Google Scholar 

  • Zamani A, Motallebi M, Jonoubi P, Ghafarian-Nia NS, Zamani MR (2012) Heterologous expression of the Secale cereal thaumatin-like protein in transgenic canola plants enhances resistance to stem rot disease. Iran J Biotechnol 10:87–95

    CAS  Google Scholar 

  • Zhao BY, Lin XH, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci U S A 102:15383–15388

    PubMed  CAS  Google Scholar 

  • Zhao JP, Jiang XL, Zhang BY, Su XH (2012) Involvement of microRNAmediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. Plos One 7:1–13

    Google Scholar 

  • Zhu H, Xu X, Xiao G, Yuan L, Li B (2007) Enhancing disease resistances of super hybrid rice with four antifungal genes. Sci China C Life Sci 50:31–39

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Singh, D., Teotia, S. (2014). Fungal Disease Management in Plants. In: Gaur, R., Sharma, P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9_19

Download citation

Publish with us

Policies and ethics