Skip to main content

MAPK Signaling Cascades and Transcriptional Reprogramming in Plant–Pathogen Interactions

  • Chapter
  • First Online:
Approaches to Plant Stress and their Management

Abstract

In plants, innate immunity is triggered through pattern recognition receptors (PRRs) in response to microbe-associated molecular patterns (MAMPs) to provide the first line of inducible defense. Plant receptor protein kinases (RPKs) represent the main plasma membrane PRRs perceiving diverse MAMPs. RPKs trigger mitogen-activated protein kinase (MAPK) module which is one of the earliest signaling events after plant sensing of the invading pathogen as they link the perception of external stimuli to cellular responses. MAPK signaling networks serve specific and overlapping roles in controlling the activities and synthesis of a plethora of transcription factors (TFs), enzymes, hormones, peptides, and antimicrobial chemicals, contributing to resistance against bacteria, oomycetes, and fungi. Transcriptional reprogramming has been carried out by one of the most studied WRKY family of transcription factors. Recently, genetic evidence directly proved its significance as positive and negative regulators of disease resistance. WRKY genes were shown to be functionally connected forming a transcriptional network composed of positive and negative feedback loops and feed-forward modules. Within a web of partially redundant elements, some WRKY factors hold central positions mediating fast and efficient activation of defense programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P, Fumasoni I, Michel C, Paccanaro A, Guiderdoni E, Schaffrath U, Morel JB, Piffanelli P, Faivre-Rampant O (2012) OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Mol Plant Pathol 13:828–841

    PubMed  CAS  Google Scholar 

  • Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589

    PubMed  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    PubMed  CAS  Google Scholar 

  • Beckers GJM, Ml J, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

    PubMed  CAS  Google Scholar 

  • Bethke G, Unthan T, Uhrig JF, Poschi Y, Gust AA, Scheel D, Lee J (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis via ethylene signaling. Proc Natl Acad Sci USA 106:8067–8072

    PubMed  CAS  Google Scholar 

  • Birkenbihl RP, Diezel C, Somssich IE (2012) Arabidopsis WRKY33 is a key transcriptional regulator of hormone and metabolic responses towards Botrytis cinerea infection. Plant Physiol 159:266–285

    PubMed  CAS  Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46:189–214

    CAS  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arm race between pattern recognition in plants and effectors in microbial pathogens. Science 324:742–744

    PubMed  CAS  Google Scholar 

  • Brader G, Djamei A, Teige M, Palva ET, Hirt H (2007) The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis. Mol Plant Microbe Interact 20:589–596

    PubMed  CAS  Google Scholar 

  • Brodersen P, Petersen M, Bjørn Nielsen H, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546

    PubMed  CAS  Google Scholar 

  • Broekaert WF, Delaure SL, De Bolle MFC, Cammue BPA (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416

    PubMed  CAS  Google Scholar 

  • Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31:86–96

    PubMed  CAS  Google Scholar 

  • Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3:126–135

    PubMed  CAS  Google Scholar 

  • Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T, Hirt H (2000) Differential activation of four specific MAPK pathways by distinct elicitors. J Biol Chem 275:36734–36740

    PubMed  CAS  Google Scholar 

  • Chen Z, Gibson T, Robinson B, Silvestrol R, Pearson G, Xu B, Wright A, Vandrabilt C, Cobb MH (2001) MAP kinases. Chem Rev 101:2449–2476

    PubMed  CAS  Google Scholar 

  • Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC et al (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972

    PubMed  CAS  Google Scholar 

  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476

    PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host- microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    PubMed  CAS  Google Scholar 

  • Chujo T, Takai R, Akimoto-Tomiyama C, Ando S, Minami E, Nagamura Y, Kaku H, Shibuya N, Yasuda M, Nakashita H (2007) Involvement of the elicitor-induced gene OsWRKY53 in the expression of defense-related genes in rice. Biochim Biophys Acta 1769:497–505

    PubMed  CAS  Google Scholar 

  • Ciolkowski I, Wanke D, Birkenbihl R, Somssich I (2008) Studies on DNA binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68:81–92

    PubMed  CAS  Google Scholar 

  • Cvetkovska M, Ramptitsch C, Bykova N, Xing T (2005) Genomic analysis of MAPK Cascade in Arabidopsis defense responses. Plant Mol Biol Rep 23:331–343

    CAS  Google Scholar 

  • Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J (2006) Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 18:308–320

    PubMed  CAS  Google Scholar 

  • Dang FF, Wang YN, Yu L, Eulgem T, Lai Y, Liu ZQ, Wang X, Qiu AL, Zhang TX, Lin J, Chen YS, Guan DY, Cai HY, Mou SL, He SL (2012) CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant Cell Environ 36(4):757–774

    PubMed  Google Scholar 

  • Daxberger A, Nemak A, Mithofer A, Fliegmann J, Ligterink W, Hirt H, Ebel J (2006) Activation of members of a MAPK module in beta-glucan elicitor mediated non-host resistance of soybean. Planta 225(6):1559–1571. doi:10.1007/s00425-006-0442-6

    PubMed  Google Scholar 

  • Del Pozo O, Pedley KF, Martin GB (2004) MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 15:3072–3082

    Google Scholar 

  • Desikan R, Hancock TJ, Ichimura K, Shinozaki K, Neill ST (2001) Harpin induces activation of the Arabidopsis mitogen activated protein kinase AtMpk4 and AtMpk6. Plant Physiol 126:1579–1587

    PubMed  CAS  Google Scholar 

  • Deslandes L, Olivier J, Theulieres T, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404–2409

    PubMed  CAS  Google Scholar 

  • Doczi R, Brader G, Pettko-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19:3266–3279

    PubMed  CAS  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    PubMed  CAS  Google Scholar 

  • Eckardt NA (2002) Good things come in threes: a trio of triple kinases essential for cell division in Arabidopsis. Plant Cell 14:965–967

    PubMed  CAS  Google Scholar 

  • Ecker JR (2004) Reentry of the ethylene MPK6 module. Plant Cell 16:3169–3174

    CAS  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defense: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    PubMed  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    PubMed  CAS  Google Scholar 

  • Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nürnberger T (2002) NPP1, a phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J 32:375–390

    PubMed  CAS  Google Scholar 

  • Fliegmann J, Mithofer A, Wanner G, Ebel J (2004) An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J Biol Chem 279:1132–1140

    PubMed  CAS  Google Scholar 

  • Fliegmann J, Montel E, Djulic A, Cottaz S, Driguez H, Ebel J (2005) Catalytic properties of the bifunctional soybean beta-glucan-binding protein, a member of family 81 glycoside hydrolases. FEBS Lett 579:6647–6652

    PubMed  CAS  Google Scholar 

  • Fritz-Laylin LK, Krishnamurthy N, Tor M, Sjolander KV, Jones JD (2005) Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol 138:611–623

    PubMed  CAS  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98:373–378

    PubMed  CAS  Google Scholar 

  • Furman-Matarasso N, Cohen E, Du Q, Chejanovsky N, Hanania U, Avni A (1999) A point mutation in the ethylene-inducing xylanase elicitor inhibits the B-1-4-endoxylanase activity but not the elicitation activity. Plant Physiol 121:345–352

    PubMed  CAS  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    PubMed  CAS  Google Scholar 

  • Guo R, Yu F, Gao Z, An H, Cao X, Guo X (2011) GhWRKY3, a novel cotton (Gossypium hirsutum L.) WRKY gene, is involved in diverse stress responses. Mol Biol Rep 38:49–58

    PubMed  CAS  Google Scholar 

  • Hadiarto T, Nanmori T, Matsuoka D, Iwasaki T, Sato K (2006) Activation of Arabidopsis MAPK kinase kinase (AtMEKK1) and induction of AtMEKK1-AtMEK1 pathway by wounding. Planta 223:708–713

    PubMed  CAS  Google Scholar 

  • Hamel LP, Beaudoin N (2010) Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta 232:787–806

    PubMed  CAS  Google Scholar 

  • Han L, Li GJ, Yang KY, Mao G, Wang R, Liu Y, Zhang S (2010) Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J 64:114–127

    PubMed  CAS  Google Scholar 

  • Hann DR, Rathjen JP (2007) Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant J 49:607–618

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Komatsu K, Maejima K, Okano Y, Shiraishi T et al (2012) Identification of three MAPKKKs forming a linear signaling pathway leading to programmed cell death in. BMC Plant Biol 12(1):103

    PubMed  CAS  Google Scholar 

  • He ZH, Fujiki M, Kohorn BD (1996) A cell wall associated receptor-like kinase. J Biol Chem 271:19789–19793

    PubMed  CAS  Google Scholar 

  • He ZH, He D, Kohorn BD (1998) Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response. Plant J 14:55–63

    PubMed  CAS  Google Scholar 

  • He P, Shan L, Lin NC, Martin GB, Kemmerling B, Nürnberger T, Sheen J (2006) Specific bacterial suppressors of PAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125:563–575

    PubMed  CAS  Google Scholar 

  • Higashi K, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2008) Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol Genet Genomics 279:303–312

    PubMed  CAS  Google Scholar 

  • Hirt H (2000) Connecting oxidative stress, auxin, and cell cycle regulation through a plant MAPK pathway. Proc Natl Acad Sci USA 97:2405–2407

    PubMed  CAS  Google Scholar 

  • Hirt H (2009) Connecting oxidative stress, auxin, and cell cycle regulation through a plant MAPK pathway. Proc Natl Acad Sci USA 97:2405–2407

    Google Scholar 

  • Hord CLH, Sun Y-J, Pillitteri LJ, Torii KU, Wang H, Zhang S, Ma H (2008) Regulation of Arabidopsis early anther development by the mitogen-activated protein kinases, MPK3 and MPK6, and the ERECTA and related receptor-like kinases. Mol Plant 1:645–658

    PubMed  CAS  Google Scholar 

  • Huh SU, Choi LM, Lee GJ, Kim YJ, Paek KH (2012) Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. Plant Sci 197:50–58

    PubMed  CAS  Google Scholar 

  • Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K (2006) MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature dependent cell death in Arabidopsis. J Biol Chem 281(48):36969–36976

    PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Isolation of AtMEKK1 (A MAP kinase kinase kinase)-Interacting proteins and analysis of a MAPK kinase cascade in Arabidopsis. Biochem Biophys Res Commun 253:532–543

    PubMed  CAS  Google Scholar 

  • Ichimura K, Tena G, Henry Y, Zhang Z, Hirt H, Wilson C, Morris P, Mundy J, Innes R, Ecker J (2002) Mitogen-activated protein kinases in plants: a new nomenclature. Trends Plant Sci 7:301–308

    CAS  Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and β -amylase from sweet potato. Mol Gen Genet 244:563–571

    PubMed  CAS  Google Scholar 

  • Ishihama N, Yoshioka H (2012) Post-translational regulation of WRKY transcription factors in plant immunity. Curr Opin Plant Biol 15:431–437

    PubMed  CAS  Google Scholar 

  • James TY, Litvintseva AP, Vilgalys R, Morgan JAT, Taylor JW et al (2009) Rapid global expansion of the fungal disease chytridiomycosis into declining and healthy amphibian populations. PLoS Pathog 5(5):e1000458. doi:10.1371/journal.ppat.1000458

    PubMed  Google Scholar 

  • Jin H, Axtell MJ, Dahlbeck D, Ekwenna O, Zhang S, Staskawicz B, Baker B (2002) NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev Cell 2:291–297

    Google Scholar 

  • Jin H, Liu Y, Yang KY, Kim CY, Baker B, Zhang S (2003) Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. Plant J 33:719–731

    PubMed  CAS  Google Scholar 

  • Jonak C, Okresz L, Bogrw L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    PubMed  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  • Joo S, Liu Y, Lueth A, Zhang S (2008) MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J 54:129–140

    PubMed  CAS  Google Scholar 

  • Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302

    PubMed  CAS  Google Scholar 

  • Kaboshi MK, Okada K, Kurimoto L, Murakami S, Umezawa T et al (2010) A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J 63:599–612

    Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–11091

    PubMed  CAS  Google Scholar 

  • Kalde M, Barth M, Somssich IE, Lippok B (2003) Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe Interact 16:295–305

    PubMed  CAS  Google Scholar 

  • Kim YS, Lee JH, Yoon GM, Cho HS, Park S-W, Suh MC, Choi D, Ha HJ, Liu JR, Pai H-S (2000) CHRK1, a Chitinase-related receptor-like kinase in tobacco. Plant Physiol 123:905–915

    PubMed  CAS  Google Scholar 

  • Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371

    PubMed  CAS  Google Scholar 

  • Kim CY, Zhang S (2004) Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J 38:142–151

    PubMed  CAS  Google Scholar 

  • Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant-Microbe Interact 20:120–128

    PubMed  CAS  Google Scholar 

  • Kohorn B (2000) Plasma membrane-cell wall contacts. Plant Physiol 124:249–262

    Google Scholar 

  • Komjanc M, Festi S, Rizzotti L, Cattivelli L, Cervone V, De Lorenzo G (1999) A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Mol Biol 40:945–995

    PubMed  CAS  Google Scholar 

  • Kovtun Y, Chium WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    PubMed  CAS  Google Scholar 

  • Kroj T, Rudd JJ, Nurnberger T, Gabler Y, Lee J, Scheel D (2003) Mitogen activated protein kinases play an essential role in oxidative burst independent expression of pathogenesis-related genes in parsley. J Biol Chem 278:2256–2264

    PubMed  CAS  Google Scholar 

  • Krysan PJ, Jester PJ, Gottwald JR, Sussman MR (2002) An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell 14:1109–1120

    PubMed  CAS  Google Scholar 

  • Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K (2005) Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J 42:798–809

    PubMed  CAS  Google Scholar 

  • Lai Z, Vinod KM, Zheng Z, Fan B, Chen Z (2008) Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 8:68

    PubMed  Google Scholar 

  • Lalle M, Visconti S, Marra M, Camoni L, Velasco R, Aducci P (2005) ZmMPK6, a novel maize MAP kinase that interacts with 14–3-3 proteins. Plant Mol Biol 59:713–722

    PubMed  CAS  Google Scholar 

  • Lampard GR, MacAlister CA, Bergmann DC (2008) Arabidopsis stomatal initiation Is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science 322:1113–1116

    PubMed  CAS  Google Scholar 

  • Lee SW, Han SW, Bartley LE, Ronald PC (2006) Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci USA 103:18395–18400

    PubMed  CAS  Google Scholar 

  • Lee HB, Kim CJ, Yu SH (2001) Alternaria tenuissima causes strawberry fruit rot in Korea. Plant Dis 85:563

    Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    PubMed  CAS  Google Scholar 

  • Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491

    PubMed  CAS  Google Scholar 

  • Lieberherr D, Thao NP, Nakashima A, Umemura K, Kawasaki T, Shimamoto K (2005) A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice. Plant Physiol 138:1644–1652

    PubMed  CAS  Google Scholar 

  • Ligterink W, Kroj T, zur Nieden U, Hirt H, Scheel D (1997) Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276:2054–2057

    PubMed  CAS  Google Scholar 

  • Lippok B, Birkenbihl RP, Rivory G, Brummer J, Schmelzer E, Logemann E, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant Microbe Interact 20:420–429

    PubMed  CAS  Google Scholar 

  • Liu J, Coaker G (2008) Nuclear trafficking during plant innate immunity. Mol Plant 1:411–422

    PubMed  CAS  Google Scholar 

  • Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S (2007) Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J 51:941–954

    PubMed  CAS  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    PubMed  CAS  Google Scholar 

  • Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640

    PubMed  CAS  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    PubMed  CAS  Google Scholar 

  • Mao P, Duan M, Wei C, Li Y (2007) WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate responsive gene expression. Plant Cell Physiol 48:833–842

    PubMed  CAS  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653

    PubMed  CAS  Google Scholar 

  • Marchive C, Léon C, Kappel C, Coutos-Thévenot P, Corio-Costet MF, Delrot S, Lauvergeat V (2013) Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the Downy mildew. PLoS One 8:e54185

    PubMed  CAS  Google Scholar 

  • Matsuoka D, Nanmori T, Sato K, Fukami Y, Kikkawa U, Yasuda T (2002) Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J 29:637–647

    PubMed  CAS  Google Scholar 

  • Melech-Bonfil S, Sessa G (2010) Tomato MAPKKKε is a positive regulator of cell-death signaling networks associated with plant immunity. Plant J 64:379–391

    PubMed  CAS  Google Scholar 

  • Menges M, Doczi R, Okresz L, Morandini P, Mizzi L, Soloviev M, Murray J, Bogre L (2008) Comprehensive gene expression atlas for the Arabidopsis MAP kinase signalling pathways. New Phytol 179:643–662

    PubMed  CAS  Google Scholar 

  • Menke FL, Van Pelt JA, Pieterse CM, Klessig DF (2004) Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell 16:897–907

    PubMed  CAS  Google Scholar 

  • Mészáros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardóczy V, Teige M, Koncz C, Peck S et al (2006) The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant J 48:485–498

    PubMed  Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452:55–68

    PubMed  CAS  Google Scholar 

  • Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki K, Kamada H, Schinozaki K (1993) AtMPKs: a gene family of MAP Kinase in Arabidopsis thaliana. FEBS Lett 336:440–444

    PubMed  CAS  Google Scholar 

  • Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 93:765–769

    PubMed  CAS  Google Scholar 

  • Morris PC (2001) MAP kinase signal transduction pathways in plants. New Phytol 151:67–89

    CAS  Google Scholar 

  • Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio-Costet MF, Drira N, Hamdi S, Lauvergeat V (2007) Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol Plant 131:434–447

    PubMed  CAS  Google Scholar 

  • Nadarajah K, Kasirn NM, Fui VV (2009) Function of mitogen protein kinase gene in biotic stress. Asian J Plant Sci 85:191–198

    Google Scholar 

  • Nakagami H, Kiegeri S, Hirt H (2004) OMTK1, a novel MAPKKK, channels oxidative stress signalling through direct MAPK interaction. J Biol Chem 279:26959–26966

    PubMed  CAS  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci 10(7):1360–1385

    Google Scholar 

  • Nakagami H, Soukupová H, Schikora A, Zarsky V, Hirt H (2006) A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697–38704

    PubMed  CAS  Google Scholar 

  • Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JDG (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113–1128

    PubMed  CAS  Google Scholar 

  • Oh CS, Pedley KF, Martin GB (2010) Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKKa. Plant Cell 22:260–272

    PubMed  CAS  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    PubMed  CAS  Google Scholar 

  • Peck SC, Nuhse TS, Hess D, Iglesias A, Meins F, Boller T (2001) Directed proteomics identifies a plant specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13:1467–1475

    PubMed  CAS  Google Scholar 

  • Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z (2012) Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–1498

    PubMed  CAS  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120

    PubMed  CAS  Google Scholar 

  • Popescu SC, Popescu GV, Snyder M, Dinesh SP (2009) Integrated analysis of co-expressed MAP kinase substrates in Arabidopsis thaliana. Plant Signal Behav 4(6):524–527

    PubMed  CAS  Google Scholar 

  • Postel S, Kemmerling B (2009) Plant systems for recognition of pathogen-associated molecular patterns. Semin Cell Dev Biol 20:1025–1031

    PubMed  CAS  Google Scholar 

  • Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20:492–499

    PubMed  CAS  Google Scholar 

  • Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, Wang S (2008a) Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant 1:538–551

    PubMed  CAS  Google Scholar 

  • Qiu JL et al (2008b) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221

    PubMed  CAS  Google Scholar 

  • Qiu JL, Zhou L, Yun BW, Nielsen HB, Fiil BK, Petersen K, MacKinlay J, Loake GJ, Mundy J, Morris PC (2008c) Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol 148:212–222

    PubMed  CAS  Google Scholar 

  • Qutob D et al (2006) Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18:3721–3744

    PubMed  CAS  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    PubMed  CAS  Google Scholar 

  • Ren D, Liu Y, Yang KY, Hanm L, Mao G (2008) A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 105:5638–5643

    PubMed  CAS  Google Scholar 

  • Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 277(1):559–565

    PubMed  CAS  Google Scholar 

  • Reyna NS, Yang YN (2006) Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact 19:530–540

    PubMed  CAS  Google Scholar 

  • Rodríguez CS, Estévez JM, Llorente F, Blanco CH, Jordá L, Pagán I, Berrocal M, Marco Y, Somerville S, Molina A (2009) The ERECTA receptor-like kinase regulates cell wall–mediated resistance to pathogens in Arabidopsis thaliana. Am Phytopathol Soc 22:953–963

    Google Scholar 

  • Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ, Zhang S, Bent AF, Krysan PJ (2007) MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol 143:661–669

    Google Scholar 

  • Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    PubMed  CAS  Google Scholar 

  • Romeis T (2001) Protein kinases in the plant defence response. Curr Opin Plant Biol 4:407–414

    PubMed  CAS  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615

    PubMed  CAS  Google Scholar 

  • Ross CA, Liu Y, Shen QJ (2007) The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol 49:827–842

    CAS  Google Scholar 

  • Rudd JJ, Keon J, Kosack KEH (2008) The wheat mitogen-activated protein kinases TaMPK3 and TaMPK6 are differentially regulated at multiple levels during compatible disease interactions with Mycosphaerella graminicola. Plant Physiol 147:802–815

    PubMed  CAS  Google Scholar 

  • Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1:311–315

    PubMed  CAS  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    PubMed  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    PubMed  CAS  Google Scholar 

  • Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315:1098–1103

    PubMed  CAS  Google Scholar 

  • Shi J, An HL, Zhang L, Gao Z, Guo XQ (2010) GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. Plant Mol Biol 74(1–2):1–17. doi:10.1007/s11103-010-9661-0

    PubMed  CAS  Google Scholar 

  • Shi J, Zhang L, An H, Wu C, Guo X (2011) GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMC Mol Biol 12:22

    PubMed  CAS  Google Scholar 

  • Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y, Lee JS, Song JT, Kim JK, Choi YD (2013) AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73:483–495

    PubMed  CAS  Google Scholar 

  • Shimono M (2012) Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol Plant Pathol 13:83–94

    PubMed  CAS  Google Scholar 

  • Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076

    PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768

    PubMed  CAS  Google Scholar 

  • Shu-Ling Z, Xing-Fen W, Yan Z, Jian-Feng L, Li-Zhu W, Dong-Mei Z, Zhi-Ying M (2012) GbWRKY1, a novel cotton (Gossypium barbadense) WRKY gene isolated from a bacteriophage full-length cDNA library, is induced by infection with Verticillium dahliae. Indian J Biochem Biophys 46:405–413

    Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092

    PubMed  CAS  Google Scholar 

  • Sturgill TW, Ray LB (1986) Muscle proteins related to microtubule associated protein-2 are substrates for an insulin-stimulatable kinase. Biochem Biophys Res Commun 134(2):565–571

    PubMed  CAS  Google Scholar 

  • Taguchi F, Shimizu R, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003) Post translational modification of flagellin determines the specificity of HR induction. Plant Cell Physiol 44:342–349

    PubMed  CAS  Google Scholar 

  • Takahashi F, Riichiro Y, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3–MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818

    PubMed  CAS  Google Scholar 

  • Teige M (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    PubMed  CAS  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi F, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    PubMed  CAS  Google Scholar 

  • Tena G, Asai T, Chiu WL, Sheen J (2001) Plant mitogen activated protein kinase signaling cascades. Curr Opin Plant Biol 4:392–400

    PubMed  CAS  Google Scholar 

  • Tim X, Jordan M (2000) Genetic engineering of plant signal transduction mechanism. Plant Mol Biol Reprt 18:1–10

    Google Scholar 

  • Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine rich repeats. Plant Cell 8:735–746

    PubMed  CAS  Google Scholar 

  • Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syingae pv syringae. Plant Physiol 98:1304–1309

    PubMed  CAS  Google Scholar 

  • van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    PubMed  Google Scholar 

  • Van verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM (2008) A novel WRKY transcription factor is required for induction of PR-1A gene expression by salicylic acid and bacterial elicitors. Plant Physiol 146:1983–1995

    PubMed  CAS  Google Scholar 

  • Wagner T, Kohorn B (2001) Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13:303–318

    PubMed  CAS  Google Scholar 

  • Walia A, Lee JS, Wasteneys GO, Ellis BE (2009) Arabidopsis mitogen-activated protein kinase MPK18 mediates cortical microtubule functions in plant cells. Plant J 59(4):565–575

    PubMed  CAS  Google Scholar 

  • Wan J, Zhang S, Stacey G (2004) Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol Plant Pathol 5:125–135

    PubMed  CAS  Google Scholar 

  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like-kinase plays a critical role in chitin signalling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    PubMed  CAS  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2(11):123

    Google Scholar 

  • Wang H, Liu Y, Bruffett K, Lee J, Hause G, Walker JC, Zhang S (2008) Haplo-insufficiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. Plant Cell 20:602–613

    PubMed  CAS  Google Scholar 

  • Wang H, Avci U, Nakashima J, Hahn MG, Chen F, Dixon RA (2010) Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci USA 107:22338–22343

    PubMed  CAS  Google Scholar 

  • Wang N, Huabg HJ, Ren S, Sun Y, Sun D, Zhang SQ (2012) The rice wall-associated receptor-like kinase gene OsDEES1 plays a role in female gametophyte development. Plant Physiol 160(2):696–707

    PubMed  CAS  Google Scholar 

  • Wang Y, Dang F, Liu Z, Wang X, Eulgem T, Lai Y, Yu L, She J, Shi Y, Lin J, Chen C, Guan D, Qiu A, He S (2013) CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection. Mol Plant Pathol 14:131–144

    PubMed  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three kinase module from yeast to human. Physiol Rev 79:143–180

    PubMed  CAS  Google Scholar 

  • Wrzaczek M, Hirt H (2001) Plant MAP kinase pathways: how many and what for? Biol Cell 93:81–87

    PubMed  CAS  Google Scholar 

  • Xing T, Ouellet T, Miki BL (2002) Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions. Trends Plant Sci 7:224–231

    PubMed  CAS  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen activated protein kinase. Plant Cell 15:745–759

    PubMed  CAS  Google Scholar 

  • Xu X, Chen C, Fan B, Chen Z (2006a) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors. Plant Cell 18:1310–1326

    PubMed  CAS  Google Scholar 

  • Xu WH, Wang YS, Liu GZ, Chen X, Tinjuangjun P, Pi LY, Song WY (2006b) The autophosphorylated Ser686, Thr688, and Ser689 residues in the intracellular juxtamembrane domain of XA21 are implicated in stability control of rice receptor-like kinase. Plant 45:740–751

    CAS  Google Scholar 

  • Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D (2008) Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283:26996–27006

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Pearce G, Ryan CA (2006) The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci USA 103:10104–10109

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryana CA (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22:508–522

    PubMed  CAS  Google Scholar 

  • Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 98:741–746

    PubMed  CAS  Google Scholar 

  • You MK, Oh SL, Ok SH, Cho SK, Shin HY, Jeung JU, Shin JS (2007) Identification of putative MAPK kinases in Oryza minuta and O. sativa Responsive to biotic stresses. Mol Cells 23(1):108–114

    PubMed  CAS  Google Scholar 

  • Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001) Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol 42:1012–1016

    PubMed  CAS  Google Scholar 

  • Yu F, Huaxia Y, Lu W, Wu C, Cao X, Guo X (2012) GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.) is involved in disease resistance and plant development. BMC Plant Biol 12:144

    PubMed  CAS  Google Scholar 

  • Zhang S, Du H, Klessig DF (1998) Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. Plant Cell 10:435–450

    PubMed  CAS  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1–12

    PubMed  CAS  Google Scholar 

  • Zhang L, Li Y, Lu W, Meng F, Wu C, Guo X (2012) Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. J Exper Bot 63:3935–3952

    CAS  Google Scholar 

  • Zhang S, Liu Y, Klessig DF (2000) Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant J 23:339–347

    PubMed  CAS  Google Scholar 

  • Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, Mou Z (2007) Over expression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J 52:1066–1079

    PubMed  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    PubMed  CAS  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    PubMed  CAS  Google Scholar 

  • Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stress in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503

    PubMed  CAS  Google Scholar 

  • Zhou C, Cai Z, Guo Y, Gan S (2009) An Arabidopsis mitogen-activated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence. Plant Physiol 150:167–177

    PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S (2010) Pathogen-associated molecular pattern triggered immunity. Plant Physiol 154:551–554

    PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    PubMed  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial MAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gohar Taj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Taj, G., Giri, P., Tasleem, M., Kumar, A. (2014). MAPK Signaling Cascades and Transcriptional Reprogramming in Plant–Pathogen Interactions. In: Gaur, R., Sharma, P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9_17

Download citation

Publish with us

Policies and ethics