Skip to main content

Weed Stress in Plants

  • Chapter
  • First Online:
Approaches to Plant Stress and their Management

Abstract

Few plant species utilize available natural resources more efficiently as compared to other species in order to establish themselves in prevailing environmental conditions. Once established in early phase of growth, they can be sustained throughout the growing season by virtue of better stand. And this is the strategy behind the success of most of the notorious weeds in any cropping system. They, hence, continue to cause huge yield losses despite every effort made by farmers to manage them. Herbicides are largely used to manage weeds globally, but its application is also known to cause stress, though minimal, in crop plants. Another factor which contributes to the success of weeds is their hardiness and resilience to abiotic and biotic stress factors. Molecular mechanism(s) responsible for traits like competitiveness and invasiveness of weeds is poorly understood till date. However, development and availability of sophisticated molecular tools pave the way to dissect the mechanism of weed dominance. Competitiveness and tolerance to stress factors are important traits observed among different weed species that can be exploited in attempts to develop crop plants tolerant to abiotic/biotic stress(es). The need of the hour is to understand the molecular mechanisms underlying weed competitiveness over crop plants in field and to utilize the responsible gene(s) by transferring them into crop plants. However, success of such approaches depends upon integration and collaboration to bring expertise together from weed science, molecular biology, and plant physiology. An effort has been made to review the traits available among weed species that make them competitive and hardy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afifi M, Swanton C (2011) Maize seed and stem roots differ in response to neighboring weeds. Weed Res 51:442–450

    Article  Google Scholar 

  • Akey WC, Jurik TW, Dekker J (1990) Competition for light between velvetleaf (Abutilon theophrasti) and soybean (Glycine max). Wed Res 31:63–72

    Article  Google Scholar 

  • Attridge TH (1990) The natural environment. In: Attridge TH (ed) Light and plant responses. Edward Arnold, London, pp 1–5. ISBN 978-052-1427-48-7

    Google Scholar 

  • Ballaré CL, Casal JJ (2000) Light signals perceived by crop and weed plants. Field Crops Res 67(2):149–160, 0378–4290

    Article  Google Scholar 

  • Ballare’ CL, Scopel AL, Sa’nchez RA (1990) Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science 247:329–332

    Article  Google Scholar 

  • Barragan V, Leidi EO, Andrez Z, Rubio L, DeLuca A, Fernandez JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24(3):1127–1142

    Article  PubMed  CAS  Google Scholar 

  • Black CC, Chen TM, Brown RH (1969) Biochemical basis for plant competition. Weed Sci 17:338–344

    CAS  Google Scholar 

  • Blackshaw RE, Brandt RN, Janzen HH, Entz T, Grant CA, Derksen DA (2003) Differential response of weed species to added nitrogen. Weed Sci 51:532–539

    Article  CAS  Google Scholar 

  • Boerboom C (2007) Are weeds in corn risky business? In: Indiana CCA conference proceedings. http://www.agry.purdue.edu/CCA/2007/2007/proceedingss/ChrisBoerboom-CCAProceedings_KLS.doc

  • Burgos NR, Norman RJ, Gealy DR, Black H (2006) Competitive uptake between rice and weedy rice. Fields Crop Res 99:9–105

    Google Scholar 

  • Camacho-Cristobal JJ, Rexach J, Conejero G, Al-Ghazi Y, Nacry P, Doumas P (2008) PRD. An Arabidopsis AINTEGUMENTA-like gene, is involved in root architectural changes in response to phosphate starvation. Planta 22(8):511–522

    Article  Google Scholar 

  • Casal JJ (2013) Canopy light signals and crop yield in sickness and in health. ISRN agronomy. Article ID. 650439. Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2013/650439

  • Chardon F, Bartheyemy J, Daniel-vedele F, Masclaux-Daubresse C (2010) Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. J Exp Bot 61(9):2293–2302. doi:10.1093/jxb/erq059

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Xiao YG, Ni M (2012) Light regulated stomatal aperture in Arabidopsis. Mol Plant 5(3):566–572

    Article  PubMed  Google Scholar 

  • Cole DJ (1994) Detoxification and activation of agrochemicals in plants. Pesticide Sci 42:209–222

    Article  CAS  Google Scholar 

  • Concenço G, Aspiazu I, Ferreira EA, Galon L, da Silva AF (2012) Physiology of crops and weeds under biotic and abiotic stresses. In: Najafpour M (ed) Applied photosynthesis. Intechopen, pp 257–280. ISBN 978-953-0061-4. doi.10.5772/30691. http://www.intechopen.com/books/applied-photosynthesis/physiology-of-crops-and-weeds-under-biotic-and-abiotic-stressespublisher.

  • Cudney DW, Jordan LS, Hall AE (1991) Effect of wild oat (Avena fatua) infestations on light interception and growth rate of wheat (Triticm aestivum). Weed Sci 39:175–179

    Google Scholar 

  • Devaiah BN, Nagarajan VK, Raghothama KG (2007) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger, transcription factor ZAT1. Plant Physiol 145:147–159

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho SJP, Nicolai M, Ferreira RR, de Figueira OAV, Christoffoleti PJ (2009) Herbicide selectivity by differential metabolism: considerations for reducing crop damages. Sciencia Agricola (Piracicaba, Braz) 66:136–142

    Article  Google Scholar 

  • Devine MD, Duke SO, Fedtke C (1993) Herbicide translocation. In: Physiology of herbicide action. Prentice Hall, Englewood Cliffs, NJ: pp 67–94

    Google Scholar 

  • Donald CM (1963) Competition among crop and pasture plants. Adv Agron 15:1–118

    Google Scholar 

  • Dragicevic VD, Simic M, Brankov M, Spasojevic I, Secanski M, Kresovic B (2012) Thermodynamic characterization of early phytotoxic effects of sulfonyl urea herbicides to maize lines. Pestic Phytomed 27(3):231–237

    Article  CAS  Google Scholar 

  • Dunbabin V (2006) Using the ROOTMAP model of crop root growth to investigate root-soil interactions. “Ground breaking stuff” proceedings of the 13th ASA conference, 10–14 Sept 2006, Perth, www.agronomy.org.au

  • Edwards R, Brazier-Hicks M, Dixon DP, Cummins I (2005) Chemical manipulation of antioxidant defenses in plants. Adv Bot Res 42:1–32

    CAS  Google Scholar 

  • Floss EL (2008) Fisiologia das plantas cultivadas, 4th edn. Universidade de Passo Fundo, Passo Fundo. ISBN 978-857-5156-41-4

    Google Scholar 

  • Graf B, Hill JE (1992) Modelling the competition for light and nitrogen between rice and Echinochloa crusgalli. Agri Syst 40(94):345–359

    Article  Google Scholar 

  • Gupta OP (2000) The nature of weed–crop competition In: Modern weed management. Agrobios, Inida, pp 18–37

    Google Scholar 

  • Gurevitch J, Scheiner SM, Fox GA (2009) Ecologia vegetal, 2nd edn. Artmed, Porto Alegre. ISBN 978-853-6319-18-6

    Google Scholar 

  • Hamburger D, Rezzonico E, Petetot CMC, Somerville C, Poirera Y (2002) Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell 14:889–902

    Article  PubMed  CAS  Google Scholar 

  • Hansen SA, Clay SA, Moriles J, Clay D, Horvath D (2010) Investigating early growth and development response of corn to weed competition using transcriptome analysis. WSSa abstract, February, Denver

    Google Scholar 

  • Hatzios KK (1991) Biotransformations of herbicides in higher plants. In: Grover R, Cessna AJ (eds) Environmental chemistry of herbicides. CRC Press, Boca Raton, pp 141–185

    Google Scholar 

  • Humble GD, Hsiao TC (1970) Light-dependent influx and efflux of potassium of guard cells during stomatal opening and closing. Plant Physiol 46(3):483–487, ISSN 0032–0889

    Article  PubMed  CAS  Google Scholar 

  • King LJ (1996) Weeds of the world-biology and control. Interscience, New York, p 270

    Google Scholar 

  • Langebartels C, Harms H (1985) Analysis for nonextractable (bound) residues of pentachlorophenol in plant cells using a cell wall fractionation procedure. Ecotoxicol Environ Saf 10:268–279

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Wu W, Wang Y (2012) Transcriptomic analysis of rice root responses to potassium deficiency. BMC Plant Biol 12:161. doi:10.1186/1147-2229-12-161

    Article  PubMed  CAS  Google Scholar 

  • Manning R (2004) Against the grain: how agriculture has hijacked civilization. North Point Press, New York, 232

    Google Scholar 

  • Messinger SM, Buckley TN, Mott KA (2006) Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiol 140(2):771–778, ISSN 0032–0889

    Article  PubMed  CAS  Google Scholar 

  • Moriles J, Hansen S, Horvath DP, Reicks G, Clay DE, Clay SA (2012) Microarray and growth analysis identify differences and similarities of early season corn response to weeds, shade and nitrogen stress. Weed Sci 60(2):158–166

    Article  CAS  Google Scholar 

  • Oliveira Júnior RS (2001) Seletividade de herbicidas para culturas e plantas daninhas. In: Oliveira Júnior RS, Constantin JP (eds) Plantas daninhas e seu manejo. Guaíba, Agropecuária, pp 291–313

    Google Scholar 

  • Pillmoor JB, Gaunt JK, Roberts TR (1984) Examination of bound (non-extractable) residues of MCPA and flamprop in wheat straw. Pesticide Sci 15:375–381

    Article  CAS  Google Scholar 

  • Procópio, SO, Santos, JB, Silva, AA, Donagemma, GK and Mendonça, ESV (2004b) Ponto de murcha permanente de soja, feijão e plantas daninhas. Planta Daninha, 22(1):35–41

    Article  Google Scholar 

  • Radosevich SR, Holt JS, Ghersa CM (2007) Ecology of weeds and invasive plants: relationship to agriculture and natural resource management, 3rd edn. Wiley, Hoboken. ISBN 978-047-1767-79-4

    Book  Google Scholar 

  • Rajan AV, Sankaran S (1974) Studies on crop-weed competition for nutrients and its effect on grain yield of maize (vr. Ganga-5). Madras Agr J 61(4):413–416

    Google Scholar 

  • Rajcan I, Swanton CJ (2001) Understanding maize-weed competition: resource competition, light quality and the whole plant. Field Crops Res 71(2):139–150, ISSN 0378–4290

    Article  Google Scholar 

  • Rajcan I, Chandler J, Swanton CJ (2004) Red-far-red ratio of reflected light: a hypothesis of why early season weed control is important in corn. Weed Sci 52(5):774–778

    Article  CAS  Google Scholar 

  • Ronchi CP, Terra AA, Silva AA, Ferreira LR (2003) Nutrient contents of coffee plants under weed interference. Planta Daninha 21(2):217–227, ISSN 1806–9681

    Article  Google Scholar 

  • Santos JB, Procópio SO, Silva AA, Costa LC (2003) Captação e aproveitamento da radiação solar pelas culturas da soja e do feijão e por plantas daninhas. Bragantia 62(1):147–153, ISSN 0006–8705

    Article  Google Scholar 

  • Shahi HN (1978) Competitive effects of Chenopodium album for soil moisture and nutrients in wheat. Ind Pest Control 20(4):14–16

    CAS  Google Scholar 

  • Shimabukuro RH (1985) Detoxification of herbicides. In: Duke SO (ed) Weed physiology, vol 2. CRC Press, Boca Raton, pp 215–240

    Google Scholar 

  • Silva AA, Ferreira FA, Ferreira LR, Santos JB (2007) Biologia de plantas daninhas. In: Silva A, Silva JF (eds) Tópicos em Manejo de Plantas Daninhas. Universidade Federal de Viçosa, Viçosa, pp 17–61. ISBN 978-857-2692-75-5

    Google Scholar 

  • Sung FJM (1993) Waterlogging effect on nodule nitrogenase and leaf nitrate reductase activities in soybeans. Field Crops Res 35:183–189, ISSN 0378–4290

    Article  Google Scholar 

  • Turner JA, Pernich DJ (2002) Origin of enantiomeric selectivity in the aryloxyphenoxypropionic acid class of herbicidal acetyl coenzyme a carboxylase (ACCase) inhibitors. J Agric Food Chem 50:4554–4566

    Article  PubMed  CAS  Google Scholar 

  • van Eerd LL, Hoagland RE, Zablotowicz RM, Hall JC (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51:472–495

    Article  Google Scholar 

  • Ware GW, Whitacre DM (2004) An introduction to herbicides, 2nd edn. In: The pesticide book 6th edn. (http://ipmworld.umn.edu/chapters/whitacreherb.htm)

  • Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126(2):875–882

    Article  PubMed  CAS  Google Scholar 

  • Yuan JS, Tranel PJ, Stewart CN Jr (2007) Non-target-site herbicide resistance: a family business. Trends Plant Sci 12:6–13

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box genet hat controls nutrient induced changes in root architecture. Science 279(5349):407–409. doi:10.1126/science.279.5349.407

    Article  PubMed  CAS  Google Scholar 

  • Zimdahl RL (2007) Weed ecology. In: Fundamentals of weed science, 3rd edn. Elsevier, UK, pp 123–180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenal Rathore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Rathore, M., Singh, R., Choudhary, P.P., Kumar, B. (2014). Weed Stress in Plants. In: Gaur, R., Sharma, P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9_14

Download citation

Publish with us

Policies and ethics