Endophytes and Plant Secondary Metabolite Synthesis: Molecular and Evolutionary Perspective

  • P. Mohana Kumara
  • S. Shweta
  • M. M. Vasanthakumari
  • N. Sachin
  • B. L. Manjunatha
  • S. Sagar Jadhav
  • G. Ravikanth
  • K. N. Ganeshaiah
  • R. Uma Shaanker


The distribution of endophytes (fungal and bacterial) is ubiquitous and almost without exception; the endophytes have been reported from all tissues, including leaves, stems, roots, flowers and fruits. As typical symptomless organisms, in contrast to their pathogenic counterparts, they pose a serious challenge in explaining their continued maintenance in plants. How do plants tolerate them? And how do the endophytes contain the plant defences? But a more intriguing and enigmatic issue with many endophytes is the fact that they mimic the production of specific plant-associated secondary metabolites (e.g. taxol, camptothecin and rohitukine) in culture, independent of the host tissue. Several theories including the possibility of horizontal gene transfer from the respective hosts have been proposed, but none has so far been supported. In this paper, we critically review studies on endophytes producing plant secondary metabolites and explore the possible molecular mechanisms. By analysing the pathway genes for a few major metabolites, including taxol and camptothecin, we show that a far more intricate molecular mechanism might be involved in the production of the secondary metabolites by the endophytes. We show that these molecular mechanisms could have arisen through the evolutionary interactions of the endophytes with their respective host plants. We discuss these findings in the context of the current interest in harnessing endophytes as alternative sources of plant secondary metabolites.


Endophytic Fungus Plant Secondary Metabolite Indole Alkaloid Camptotheca Acuminata Secondary Metabolite Gene Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work reported in the paper has been supported by grants from the Department of Biotechnology, Government of India. Thanks are due to the members of the School of Ecology and Conservation for brainstorming some of the ideas presented in the chapter.


  1. Alex MS, Michael JB (1998) Bacterial fitness and plasmid loss: the importance of culture conditions and plasmid size. Can J Microbiol 44:351–355CrossRefGoogle Scholar
  2. Amna T, Puri SC, Verma V, Sharma JP, Khajuria RK, Musarrat J, Spiteller M, Qazi GN (2006) Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol 52:189–196PubMedCrossRefGoogle Scholar
  3. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  4. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549PubMedCrossRefGoogle Scholar
  5. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursat TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274CrossRefGoogle Scholar
  6. Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophyte limit pathogen damage in tropical trees. Proc Natl Acad Sci U S A 100:15649–15654PubMedCrossRefGoogle Scholar
  7. Bacon CW, White JF (2000) Microbial endophytes. Marcel Deker Inc., New York, p 487Google Scholar
  8. Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295PubMedCrossRefGoogle Scholar
  9. Bertaux J, Schmid M, Hutzler P, Hartmann A, Garbaye J, Frey-Klett P (2005) Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Environ Microbiol 7:1786–1795PubMedCrossRefGoogle Scholar
  10. Bianciotto V, Genre A, Jargeat P, Cumini E, Becard G, Bonfante P (2004) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 70:3600–3608PubMedCrossRefGoogle Scholar
  11. Bömke C, Tudzynski B (2009) Diversity, regulation and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893PubMedCrossRefGoogle Scholar
  12. Christensen MJ, Bennett RJ, Schmid J (2002) Growth of Epichloë/Neotyphodium and p-endophytes in leaves of Lolium and Festuca grasses. Mycol Res 106:93–106CrossRefGoogle Scholar
  13. Cordell GA (1974) The biosynthesis of indole alkaloids. Lloydia 37:219–298PubMedGoogle Scholar
  14. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124PubMedCrossRefGoogle Scholar
  15. Faeth SH, Hammon KE (1997) Fungal endophytes in oak trees. I. Long-term patterns of abundance and associations with leafminers. Ecology 78:810–819CrossRefGoogle Scholar
  16. Gaylord ES, Preszler RW, Boecklen WJ (1996) Interactions between host plants, endophytic fungi, and a phytophagous insect in an oak (Quercus Grisea × Q. Gambelii) hybrid zone. Oecologia 105:336–342CrossRefGoogle Scholar
  17. Govindachari TR, Viswanathan N (1972) 9-methoxy camptothecin A new alkaloid from Mappia foetida. Indian J Chem 10:453–454Google Scholar
  18. Griffithis AJF (1995) Natural plasmids of filamentous fungi. Microbiol Rev 59:673–685Google Scholar
  19. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implication of their occurrence. J Nat Prod 69:509–526PubMedCrossRefGoogle Scholar
  20. Gurudatt PS, Priti V, Shweta S, Ramesha BT, Ravikanth G, Vasudeva R, Amna T, Deepika S, Ganeshaiah KN, Uma Shaanker R, Puri S, Qazi GN (2010) Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae). Curr Sci 98:1006–1009Google Scholar
  21. Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342PubMedCrossRefGoogle Scholar
  22. Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170CrossRefGoogle Scholar
  23. Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075PubMedCrossRefGoogle Scholar
  24. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32(database issue):D277–D280PubMedCrossRefGoogle Scholar
  25. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741PubMedCrossRefGoogle Scholar
  26. Kusari S, Zühlke S, Spiteller M (2009a) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7PubMedCrossRefGoogle Scholar
  27. Kusari S, Zuhlke S, Kosuth J, Cellarova E, Spiteller M (2009b) Light independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72:1825–1835PubMedCrossRefGoogle Scholar
  28. Kusari S, Spiteller M (2010) Do endophyte metabolomics reflect the phytochemical diversity of the host plant? A test of the hypothesis with Hypericum species. In: Patro LR (ed) Biodiversity conservation and management. Discovery Publishing House Pvt. Ltd., New Delhi, pp 1–28Google Scholar
  29. Kusari S, Zuhlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on Camptothecin biosynthesis. J Nat Prod 74:764–775PubMedCrossRefGoogle Scholar
  30. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294PubMedCrossRefGoogle Scholar
  31. Kutchan TM, Hampp N, Lottspeich F, Beyreuther K, Zenk MH (1988) The cDNA clone for strictosidine synthase from Rauvolfia serpentina DNA sequence determination and expression in Escherichia coli. FEBS Lett 237:40–44PubMedCrossRefGoogle Scholar
  32. Li JY, Sidhu RS, Ford E, Hess WM, Strobel GA (1998) The induction of taxol production in the endophytic fungus Periconia sp. from Torreya grandifolia. J Ind Microbiol 20:259–264CrossRefGoogle Scholar
  33. McKnight TD, Roessner CA, Devagupta R, Scott AI, Nessler CL (1990) Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acids Res 18:4939PubMedCrossRefGoogle Scholar
  34. Medema MH, Trefzer A, Kovalchuk A, van den Berg M, Müller U, Heijne W, Wu L, Alam MT, Ronning CM, Nierman WC, Bovenberg RA, Breitling R, Takano E (2010) The Sequence of a 1.8-Mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2:212–224PubMedCrossRefGoogle Scholar
  35. Mohana Kumara P, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Uma Shaanker R (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101:323–329PubMedCrossRefGoogle Scholar
  36. Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98:380–386PubMedCrossRefGoogle Scholar
  37. Petrini O, Sieber TH, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–196PubMedCrossRefGoogle Scholar
  38. Priti V, Ramesha BT, Shweta S, Ravikanth G, Ganeshaiah KN, Suryanarayanan TS, Uma Shaanker R (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites. Curr Sci 97:4–6Google Scholar
  39. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719PubMedCrossRefGoogle Scholar
  40. Puri SC, Nazir A, Chawla R, Arora R, Riyaz-Ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510PubMedCrossRefGoogle Scholar
  41. Ramesha BT, Suma HK, Senthilkumar U, Priti V, Ravikanth G, Vasudeva R, Santhosh Kumar TR, Ganeshaiah KN, Uma Shaanker R (2013) New plant sources of the anti-cancer alkaloid, camptothecine from the Icacinaceae taxa, India. Phytomedicine 20:521–527PubMedCrossRefGoogle Scholar
  42. Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi GN (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44:203–209CrossRefGoogle Scholar
  43. Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araujowl WS (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of witches’ broom disease. Int J Biol Sci 1:24–33PubMedCrossRefGoogle Scholar
  44. Sachin N, Manjunatha BL, Mohana Kumara P, Ravikanth G, Shweta S, Suryanarayanan TS, Ganeshaiah KN, Uma Shaanker R (2013) Do endophytic fungi possess pathway genes for plant secondary metabolites? Curr Sci 104:178–182Google Scholar
  45. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343CrossRefGoogle Scholar
  46. Sandrine G, Bernard L, Olivier L (2010) FUNGI path: a tool to assess fungal metabolic pathways predicted by orthology. BMC Genomics 11:81CrossRefGoogle Scholar
  47. Schardl CL, Liu JS, White JF, Finkel RA, An Z, Siegel MR (1991) Molecular phylogenetic relationships of nonpathogenic grass mycosymbionts and clavicipitaceous plant pathogens. Plant Syst Evol 178:27–41CrossRefGoogle Scholar
  48. Schiff PB, Horowitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77:1561–1565PubMedCrossRefGoogle Scholar
  49. Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004CrossRefGoogle Scholar
  50. Shweta S, Zuehlke S, Ramesha BT, Priti V, Mohana Kumar P, Ravikanth G, Spiteller M, Vasudeva R, Uma Shaanker R (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122PubMedCrossRefGoogle Scholar
  51. Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna MB (2013a) Endophytic fungi from Miquelia dentata Bedd produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20:337–342PubMedCrossRefGoogle Scholar
  52. Shweta S, HimaBindu J, Raghu J, Suma HK, Manjunatha BL, Mohana Kumara P, Ravikanth G, Nataraja KN, Ganeshaiah KN, Uma Shaanker R (2013b) Isolation of endophytic bacteria producing the anti-cancer alkaloid camptothecine from Miquelia dentata Bedd (Icacinaceae). Phytomedicine. doi: org/10.1016/j.phymed.2013.04.004
  53. Staniek A, Woerdenbag HJ, Kayser O (2009) Taxomyces andreanae: a presumed paclitaxel producer demystified? Planta Med 75:1561–1566PubMedCrossRefGoogle Scholar
  54. Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216PubMedCrossRefGoogle Scholar
  55. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedCrossRefGoogle Scholar
  56. Suffness M (1995) Taxol, science and applications. CRC Press, Boca RatonGoogle Scholar
  57. Sun Y, Lu H, Li Y, Sun C, Song J, Niu Y, Zhu Y, Dong L, Lv A, Tramontano E, Chen S (2011) Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. BMC Genomics C7–533(12):1–11Google Scholar
  58. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459PubMedCrossRefGoogle Scholar
  59. Uma Shaanker R, Ramesha BT, Ravikanth G, Gunaga R, Vasudeva R, Ganeshaiah KN (2008) Chemical profiling of Nothapodytes nimmoniana for Camptothecin, an important anticancer alkaloid: toward the development of a sustainable production system. Bioactive Mol Med Plants 2008:197–213CrossRefGoogle Scholar
  60. Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold AE (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawaii, Mexico and Puerto Rico. Fungal Ecol 3:122–138CrossRefGoogle Scholar
  61. Wall ME, Wani MC, Cook CE (1966) Plant antitumor agents-I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890CrossRefGoogle Scholar
  62. Xiong Z-Q, Yang Y-Y, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol 13:71PubMedCrossRefGoogle Scholar
  63. Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol 44:395–403PubMedCrossRefGoogle Scholar
  64. Yamazaki Y, Kitajima M, Arita M, Takayama H, Sudo H, Yamazaki M, Aimi N, Saito K (2004) Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C] glucose. Plant Physiol 134:161–170PubMedCrossRefGoogle Scholar
  65. Yang X, Zhang L, Guo B, And Guo S (2004) Preliminary study of vincristine-endophytic fungus isolated from leaves of Catharanthus roseus. Zhongcaoyao 35:79–81Google Scholar
  66. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771PubMedCrossRefGoogle Scholar
  67. Zhang P, Zhou P, Yu LJ (2009) An endophytic Taxol producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59:227–232PubMedCrossRefGoogle Scholar
  68. Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. In: Mendez-Vilas A (ed) Current research, technology and education in tropics in applied microbiology and microbial biotechnology, Microbiology book series – Number 2Google Scholar
  69. Zhu D, Wang J, Zeng Q, Zhang Z, Yan R (2010) A novel endophytic Huperzine A–producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata. J Appl Microbiol 109:1469–1478PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • P. Mohana Kumara
    • 1
    • 2
  • S. Shweta
    • 1
    • 2
  • M. M. Vasanthakumari
    • 1
    • 2
  • N. Sachin
    • 1
    • 2
  • B. L. Manjunatha
    • 1
    • 2
  • S. Sagar Jadhav
    • 1
  • G. Ravikanth
    • 2
    • 3
  • K. N. Ganeshaiah
    • 2
    • 3
    • 4
  • R. Uma Shaanker
    • 1
    • 2
    • 3
  1. 1.Department of Crop PhysiologyUniversity of Agricultural SciencesBangaloreIndia
  2. 2.School of Ecology and ConservationUniversity of Agricultural SciencesBangaloreIndia
  3. 3.Ashoka Trust for Research in Ecology and the EnvironmentBangaloreIndia
  4. 4.Department of Forestry and Environmental SciencesUniversity of Agricultural SciencesBangaloreIndia

Personalised recommendations