Skip to main content

Asexual Endophytes of Grasses: Invisible Symbionts, Visible Imprints in the Host Neighborhood

  • Chapter
  • First Online:
Advances in Endophytic Research

Abstract

Asexual fungi from the genus Neotyphodium, relatives of the sexual epichloë species (Clavicipitaceae, Ascomycota), are symbionts of several cool-season grasses inhabiting virtually all terrestrial ecosystems. The host plants incur carbon costs to sustain this symbiosis, but, in return, they obtain multiple benefits from the fungal partners, above all, protection from herbivores. These endophytes are often considered to be defensive mutualists or private protectors because they produce a considerable range of secondary metabolites which prove to be toxic to livestock or deterrent to insects. Over the past decade, ecologists have begun to recognize the critical role played by this grass–endophyte symbiosis in the structure and functioning of natural and human-made communities. In this chapter, I will identify different pathways through which the presence of endophytic plants or their dead tissues (litter) can alter the fitness of nonsymbiotic plants. Those pathways lead to show how these symbionts impact on the establishment and productivity of nonsymbiotic neighbors and the interaction of the latter with multiple above- and belowground ecosystem components. A set of recent studies performed with plants of Lolium multiflorum associated with Neotyphodium occultans will provide experimental evidence to those effects. Finally, I will discuss the relevance of placing these pathways under the spotlight in order to understand the processes that determine the frequency of symbiotic plants within a population. Estimating endophyte impacts on host fitness must consider advantages or disadvantages transferred to conspecific plants in the neighborhood, coexisting as a consequence of inefficiencies during the transmission from plants to seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afkhami M, Rudgers J (2008) Symbiosis lost: imperfect vertical transmission of fungal endophytes in grasses. Am Nat 175:405–416

    Google Scholar 

  • Andrews MA, Edwards GRA, Ridgway HJA, Cameron KCA, Di HJA, Raven JA (2011) Positive plant microbial interactions in perennial ryegrass dairy pasture systems. Ann Appl Biol 159:79–92

    Google Scholar 

  • Antunes P, Miller J, Carvalho L, Klironomos JN, Newman J (2008) Even after death the endophytic fungus of Schedonorus phoenix reduces the arbuscular mycorrhizas of other plants. Funct Ecol 22:912–918

    Google Scholar 

  • Bacon CW, Hill NS (1997) Neotyphodium/grass interactions. Plenum, New York

    Google Scholar 

  • Barker GM (1987) Mycorrhizal infection influences Acremonium-induced resistance to Argentine stem weevil. Proc N Z Weed Pest Control Conf 40:199–203

    Google Scholar 

  • Brosi GB, McCulley RL, Bush LP, Nelson JA, Classen AT, Norby RJ (2011) Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytol 189:797–805

    PubMed  Google Scholar 

  • Bultman TLAB, Rodstrom JLB, Radabaugh KRB, VanDop JDB, Librizzi JMB, Longwell LLBC, Pulas CBD, Grant LBE, Sullivan TJB (2009) Influence of genetic variation in the fungal endophyte of a grass on an herbivore and its parasitoid. Entomol Exp Appl 130:173–180

    Google Scholar 

  • Cabral D, Stone J, Carroll G (1993) The internal mycobiota of Juncus spp: microscopic and cultural observations of infections patterns. Mycol Res 97:367–376

    Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:10–16

    Google Scholar 

  • Casas MC, Omacini M, Montecchia MS, Correa OS (2011) Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant Soil 340:347–355

    CAS  Google Scholar 

  • Chaneton E, Perelman S, Omacini M, Leon RJC (2002) Grazing, environmental heterogeneity and alien plant invasions in temperate Pampa grasslands. Biol Invasions 4:7–24

    Google Scholar 

  • Cheplick G, Faeth S (2009) Ecology and evolution of the grass-endophyte symbiosis. Oxford University Press, New York

    Google Scholar 

  • Christensen MJ, Zhang X, Scott B (2008) Regulation switching of Epichloe typhina within elongating perennial ryegrass leaves. Mycol Res 112:1056–1062

    PubMed  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Google Scholar 

  • Clay K (2009) Defensive mutualism and grass endophytes: still valid after all these years. In: White JF, Torres MR (eds) Defensive mutualism in microbial symbiosis. CRC Press, Boca Raton, pp 9–20

    Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    PubMed  CAS  Google Scholar 

  • Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Midl Nat 160:99–127

    Google Scholar 

  • Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increases in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci U S A 102:12465–12470

    PubMed  CAS  Google Scholar 

  • de Bary A (1879) Die Erscheinung der Symbiose. Verlag von Karl J. Trubner, Strassburg

    Google Scholar 

  • de Battista J (2005) Neotyphodium research and application: current trends in South America. In: Roberts C, West CP, Spiers D (eds) Neotyphodium in cool-season grasses. Blackwell publishing, Iowa, pp 65–71

    Google Scholar 

  • de Sassi C, Muller C, Krauss J (2006) Fungal plant endosymbionnts alter life history and reproductive success of aphid predators. Proc R Soc B 273:1301–1306

    PubMed  Google Scholar 

  • Douglas A (2010) The symbiotic habit. Princeton University Press, Princeton

    Google Scholar 

  • Facelli JM, Pickett STA (1991a) Plant litter: light interception and effects on an old field plant community. Ecology 72:1024–1031

    Google Scholar 

  • Facelli JM, Pickett STA (1991b) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–31

    Google Scholar 

  • Finkes L, Cady A, Mulroy J, Clay K, Rudgers J (2006) Plant-fungus mutualism affects spider composition in successional fields. Ecol Lett 9:347–356

    PubMed  Google Scholar 

  • García Parisi PA, Casas C, Gundel PE, Omacini M (2012) Consequences of grazing on the vertical transmission of a fungal Neotyphodium symbiont in an annual grass population. Aust Ecol 37:620–628

    Google Scholar 

  • Glenn A, Bacon C, Price R, Hanlin R (1996) Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88:369–383

    CAS  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Gundel P, Batista WH, Texeira M, Martinez-Ghersa MA, Omacini M, Ghersa CM (2008) Neotyphodium endophyte infection frequency in annual grass populations: relative importance of mutualism and transmission efficiency. Proc R Soc Lond B Biol Sci 275:897–905

    Google Scholar 

  • Gundel P, Garibald LA, Tognetti PM, Aragón R, Ghersa CM, Omacini M (2009) Imperfect vertical transmission of the endophyte Neotyphodium in exotic grasses in grasslands of the flooding Pampa. Microb Ecol 57:740–748

    PubMed  Google Scholar 

  • Gundel PE, Rudgers JA, Ghersa CM (2011) Incorporating the process of vertical transmission into understanding of host-symbiont dynamics. Oikos 120:1121–1128

    Google Scholar 

  • Hartley S, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    PubMed  CAS  Google Scholar 

  • Hoveland C, Bouton J, Durham R (1999) Fungal endophyte effects on production of legumes in association with tall fescue. Agron J 91:897–902

    Google Scholar 

  • Iannone L, White J Jr, Giussani L, Cabral D, Novas MV (2011) Diversity and distribution of Neotyphodium-infected grasses in Argentina. Mycol Prog 10:9–19

    Google Scholar 

  • Jensen JGA, Popay AJA, Tapper BAB (2009) Argentine stem weevil adults are affected by meadow fescue endophyte and its loline alkaloids. N Z Plant Prot 62:12–18

    CAS  Google Scholar 

  • Johnson N, Graham J, Smith F (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Google Scholar 

  • Kothamasi D, Kiers ET, van der Heijden MGA (2010) Mutualisms and community organization. In: Verhoef HA, Morin PJ (eds) Community ecology, processes, models, and applications. Oxford University Press, Oxford, pp 179–192

    Google Scholar 

  • Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA (2007) Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68:355–360

    PubMed  CAS  Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71

    Google Scholar 

  • Larimer AL, Bever JD, Clay K (2012) Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos 121:2090–2096

    Google Scholar 

  • Lehtonen P, Helander M, Siddiqui SA, Lehton K, Saikkonen K (2005) Are endophyte-mediated effects on herbivores conditional on soil nutrients? Oecologia 142:38–45

    PubMed  Google Scholar 

  • Lehtonen P, Helander M, Siddiqui S, Lehton K, Saikkonen K (2006) Endophytic fungus decreases plant virus infections in meadow ryegrass (Lolium pratense). Biol Lett 2:620–623

    PubMed  Google Scholar 

  • Lemons A, Clay K, Rudgers JA (2005) Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604

    PubMed  Google Scholar 

  • Leuchtmann A (2006) Systematics, distribution and host specificity of grass endophytes. Nat Toxins 1:150–162

    Google Scholar 

  • Mack K, Rudgers J (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi and fungal endophytes. Oikos 117:310–320

    Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    CAS  Google Scholar 

  • Márquez SS, Bills GF, Zabalgogeazcoa I (2007) The endophytic mycobiota of the grass Dactylis glomerata. Fungal Divers 27:171–195

    Google Scholar 

  • Mersch SM, Cahoon AB (2012) Biomass and tiller growth responses to competition between Ky31 and MaxQ Festuca arundinacea cultivars and response of Ky31 to exogenously applied liquid preparation of Neotyphodium coenophialum under glasshouse conditions. Grass Forage Sci 67:299–304

    Google Scholar 

  • Moon CD, Scott B, Schardl CL, Christensen MJ (2000) Evolutionary origins of Epichloë endophytes from annual ryegrasses. Mycologia 92:1103–1118

    Google Scholar 

  • Newsham KK, Fitter A, Watkinson A (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    PubMed  CAS  Google Scholar 

  • Novas MV, Iannone L, Godeas A, Cabral D (2009) Positive association between mycorrhiza and foliar endophytes in Poa bonariensis, a native grass. Mycol Prog 8:75–81

    Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Muller CB (2001) Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 409:78–81

    PubMed  CAS  Google Scholar 

  • Omacini M, Chaneton E, Ghersa CM, Otero P (2004) Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos 104:581–590

    Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM (2005) A framework for understanding the ecosystem consequences of endophyte grass symbioses. In: Roberts C, West CP, Spiers D (eds) Neotyphodium in cool-season grasses current research & applications. Ames, Blackwell publishing, Iowa, pp 141–161

    Google Scholar 

  • Omacini M, Eggers T, Bonkowsky M, Gange A, Jones TH (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232

    Google Scholar 

  • Omacini M, Chaneton EJ, Bush L, Ghersa CM (2009) A fungal endosymbiont affects host ant recruitment through seed and litter mediated mechanisms. Funct Ecol 23:1148–1156

    Google Scholar 

  • Omacini M, Semmartin M, Pérez LI, Gundel PE (2012) Grass-endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Iowa, Appl Soil Ecol Iowa 61:273–279

    Google Scholar 

  • Palmer TM, Foak DF, Stanton ML, Bronstein JL, Kiers ET, Young TP, Goheen JR, Pringle RM (2010) Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. Proc Natl Acad Sci 107:17234–17239

    PubMed  CAS  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Google Scholar 

  • Popay AI, Townsend RJ, Fletcher L (2003) The effect of endophyte (Neotyphodium uncinatum) in meadow fescue on grass grub larvae. N Z Plant Prot 56:123–128

    Google Scholar 

  • Rasmussen S, Parsons AJ, Bassett S, Christensen MJ, Hume DE, Johnson LJ, Johnson RD, Simpson WR, Stacke C, Voisey CR, Xue H, Newman JA (2007) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytol 173:787–797

    PubMed  CAS  Google Scholar 

  • Rasmussen S, Parsons A, Poppy A, Xue H, Newman J (2008) Plant-endophyte-herbivore interactions: more than just alkaloids? Plant Signal Behav 3:974–977

    PubMed  Google Scholar 

  • Rasmussen S, Parsons AJ, Newman JA (2009) Metabolomics analysis of the Lolium perenne-Neotyphodium lolii symbiosis: more than just alkaloids? Phytochem Rev 8:535–550

    CAS  Google Scholar 

  • Ravel C, Michalakis Y, Charmet G (1997) The effect of imperfect transmission on the frequency of mutualistic seed-borne endophytes in natural populations of grasses. Oikos 80:18–24

    Google Scholar 

  • Rodriguez A, Jacobo E (2010) Glyphosate application change plant functional groups proportion and reduces floristic richness and diversity in flooding Pampa rangeland (Argentina). Agric Ecosyst Environ 138:222–231

    CAS  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    PubMed  CAS  Google Scholar 

  • Rodriguez R, White J, Arnold A, Redman R (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    PubMed  CAS  Google Scholar 

  • Rudgers J, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21:107–124

    Google Scholar 

  • Rudgers J, Orr S (2009) Non-native grass alters growth of native tree species via leaf and soil microbes. J Ecol 97:247–255

    Google Scholar 

  • Rudgers J, Fischer S, Clay K (2010) Managing plant symbioses: fungal endophyte genotype alters plant community composition. J Appl Ecol 47:468–477

    Google Scholar 

  • Rudgers J, Miller T, Ziegler S, Craven K (2012) There are many ways to be a mutualist: endophytic fungus reduces plant survival but increases population growth. Ecology 93:565–574

    PubMed  Google Scholar 

  • Sachs JL, Mueller UC, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79:135–160

    PubMed  Google Scholar 

  • Saikkonen K, Faeth S, Helander M, Sullivan T (1998) Fungal endophytes: a continuum of interactions with host plants. Ann Rev Ecol Syst 29:319–343

    Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth S (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11:428–433

    PubMed  CAS  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113

    Google Scholar 

  • Schardl C (2010) The Epichloae, Symbionts of the grass subfamily Pooideae. Ann Mo Bot Gard 97:646–665

    Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering M (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    PubMed  CAS  Google Scholar 

  • Siegrist J, McCulley R, Bush L, Phillips T (2010) Alkaloids may not be responsible for endophyte-associated reductions in tall fescue decomposition rates. Funct Ecol 24:460–468

    Google Scholar 

  • Stanton M (2003) Interacting guilds: moving beyond the pairwise perspective on mutualisms. Am Nat 162:10–23

    Google Scholar 

  • Steinebrunner F, Schiestl FP, Leuchtmann A (2008) Ecological role of volatiles produced by Epichloë: differences in antifungal toxicity. FEMS Microbiol Ecol 64:307–316

    PubMed  CAS  Google Scholar 

  • Sutherland BL, Hume DE, Tapper BA (1999) Allelopathic effects of endophyte-infected perennial ryegrass extracts on white clover seedlings. N Z J Agric Res 42:19–26

    Google Scholar 

  • Tadych M, Bergen M, Dugan FM, White JF (2007) Evaluation of the potential role of water in spread of conidia of the Neotyphodium endophyte of Poa ampla. Mycol Res 11:466–472

    Google Scholar 

  • Tanaka A, Tapper B, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050

    PubMed  CAS  Google Scholar 

  • Thrall P, Hochberg ME, Burdon J, Bever JD (2007) Co-evolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126

    PubMed  Google Scholar 

  • Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ, Sheppard A, Russell RJ, Zalucki M, Heino M, Denison RF (2011) Evolution in agriculture – the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol Appl 4:200–215

    Google Scholar 

  • Tikhonovich I, Provorov N (2009) From plant-microbe interactions to symbiogenetics: a universal paradigm for the interspecies genetic integration. Ann Appl Biol 154:341–350

    Google Scholar 

  • Uchitel A, Omacini M, Chaneton E (2011) Inherited fungal symbionts enhance establishment of an invasive annual grass across successional habitats. Oecologia 165:465–475

    PubMed  Google Scholar 

  • van Der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders AR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    PubMed  Google Scholar 

  • van Der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    PubMed  Google Scholar 

  • van der Putten WH, Vet LEM, Harvey JH, Wackers FL (2001) Linking above and below ground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554

    Google Scholar 

  • Vázquez-de-Aldana BR, Romo M, García-Ciudad A, Petisco C, García-Criado B (2011) Infection with the fungal endophyte Epichloë festucae may alter the allelopathic potential of red fescue. Ann Appl Biol 159:281–290

    Google Scholar 

  • Vicari M, Hatcher P, Ayres A (2002) Combined effect of foliar and mycorrhizal endophytes on an insect herbivore. Ecology 83:2452–2464

    Google Scholar 

  • Vogl RJ (1980) The ecological factors that produce perturbation dependent ecosystems. In: Cairns J Jr (ed) The recovery process in damaged ecosystems. Ann Arbor Science, Arbor Ann, pp 63–94

    Google Scholar 

  • Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258

    Google Scholar 

  • White JF (1987) Wide spread distribution of endophytes in the Poaceae. Plant Dis 71:340–342

    Google Scholar 

  • White JF Jr, Torres M (2009) Defensive mutualism in microbial symbiosis. CRC Press, Boca Raton

    Google Scholar 

  • White BS, Sullivan R, Balady G, Gianfagna T, Yue Q, Meyer W, Cabral D (2001) A fungal endosymbiont of the grass Bromus setifolius: distribution in some Andean populations, identification and examination of beneficial properties. Symbiosis 31:241–257

    Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Google Scholar 

  • Wilkinson HH, Siegel DI, Blankenship JP, Mallory AC, Bush JP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection form aphids in a grass-endophyte mutualism. Mol Plant Microbe Interact 13:1027–1033

    PubMed  CAS  Google Scholar 

  • Wilson D (1995) Endophyte – the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Google Scholar 

  • Yue Q, Wang C, Gianfagna T, Meyer W (2001) Volatile compounds of endophyte-free and infected tall fescue (Festuca arundinaceae Schreb.). Phytochemistry 58:935–941

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to the lab group; most ideas presented here were developed through our helpful discussions on the issues dealt with this essay. I wish to thank Claudio M. Ghersa, Luis I. Perez, Pablo Garcia Parisi, and Beatriz Santos for thought-provoking conversations and helpful comments on earlier versions, and to Pablo Roset for many details that improved the manuscript. Preparation of this chapter was facilitated by grants from the University of Buenos Aires (UBA), the National Research Council (CONICET), and the National Scientific and Technological Promotion (FONCYT). Mirta Rabadán provided photos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Omacini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Omacini, M. (2014). Asexual Endophytes of Grasses: Invisible Symbionts, Visible Imprints in the Host Neighborhood. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_7

Download citation

Publish with us

Policies and ethics