Skip to main content

Interactions of Meristem-Associated Endophytic Bacteria

  • Chapter
  • First Online:
Advances in Endophytic Research

Abstract

Generally, all endophytes should be considered as a community that interacts with other symbiotic organisms, such as mycorrhiza. Even though an endophyte may colonize the plant systematically, communities colonizing the plant shoots normally differ to a degree from the root-associated endophytes. Meristem-associated shoot endophytic bacteria are often found as contaminants in plant tissue cultures started from shoot tips (buds) or embryos. Whereas root endophytic bacteria are reasonably well studied with respect to location and interactions with the host, not much is known about endophytes associated with shoot meristems. Endophytic bacteria have been localized in the meristematic tissues of buds and flowers by in situ hybridization and transmission electron microscopy. Meristem-associated endophytes may share some growth-promoting traits with the root endophytes, but likely additional mechanisms of actions exist. For example, such endophytes can produce adenine derivatives that induce growth of the host tissue. These endophytes may also affect the plant development by various ways. Some of them can co-synthesize secondary metabolites together with the plant host. Many more mechanisms remain to be determined by methods such as genomics and metabolomics, which are valuable tools for characterizing the interactions between the plant and endophytic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyoshi DE, Regier DA, Gordon MP (1987) Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 169:4242–4248

    PubMed  CAS  Google Scholar 

  • Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113:1139–1144

    Article  PubMed  CAS  Google Scholar 

  • Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI et al (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  PubMed  Google Scholar 

  • Ardanov P, Sessitsch A, Häggman H et al (2012) Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 7(10):e46802

    Article  PubMed  CAS  Google Scholar 

  • Bacon CW, Hinton DM (1999) Use of Bacillus subtilis as an endophyte for the control of diseases caused by fungi. US Patent and Trademark Office November 30, 1999

    Google Scholar 

  • Bacon CW, Hinton DM (2011) Bacillus mojavensis: its endophytic nature, the surfactins, and their role in the plant response to infection by Fusarium verticillioides. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin/Heidelberg, pp 21–39. doi:10.1007/978-3-642-20332-9_2

  • Bacon CW, Yates IE, Hinton DM et al (2001) Biological control of Fusarium moniliforme in maize. Environ Health Perspect 109:325

    PubMed  CAS  Google Scholar 

  • Bashan Y, de-Bashan L (2005) Bacteria/plant growth-promotion. Encycl Soil Environ 1:103–115

    Google Scholar 

  • Basile DV, Basile MR, Li QY et al (1985) Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum. (Hepaticae). Bryologist 88:77–81

    Google Scholar 

  • Bastián F, Cohen A, Piccoli P et al (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined cultures. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Baumann TW, Schulthess BH, Linden A et al (1994) Structure and metabolism of 7-β-D-glucopyranosyladenine – the product of a cytokinin-sparing reaction? Phytochemistry 36:537–542

    Article  CAS  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG et al (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  PubMed  CAS  Google Scholar 

  • Brandl MT, Lindow SE (1996) Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl Environ Microbiol 62:4121–4128

    PubMed  CAS  Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M et al (2005) Bacterial endophytes from seed of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG et al (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  PubMed  Google Scholar 

  • Costacurta A, Mazzafera P, Rosato Y (1998) Indole-3-acetic acid biosynthesis by Xanthomonas axonopodis pv. citri is increased in the presence of plant leaf extracts. FEMS Microbiol Lett 159:215–220

    Article  CAS  Google Scholar 

  • DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Doronina NV, Ivanova EG, Trotsenko YA (2002) New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins. Mikrobiologiya 71:130–132

    CAS  Google Scholar 

  • Doronina NV, Ivanova EG, Suzina NE et al (2004) Methanotrophs and methylobacteria are found in woody plant tissues within the winter period. Mikrobiologiya 73:702–709

    CAS  Google Scholar 

  • Fall R (1996) Cycling of methanol between plants, methylotrophs and the atmosphere. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C1 compounds. Kluwer Academic Publishers, Dordrecht, pp 343–350

    Chapter  Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol – the simplest natural product from plants. Trends Plant Sci 1:296–301

    Google Scholar 

  • Ferreira A, Quecine MC, Lacava PT et al (2008) Diversity of endophytic bacteria from Eucalyptus species seed and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14

    Article  PubMed  CAS  Google Scholar 

  • Fester T, Fetzer I, Buchert S et al (2011) Towards a systemic metabolic signature of the arbuscular mycorrhizal interaction. Oecologia 167:913–924

    Article  PubMed  Google Scholar 

  • Frank AC (2011) The genomes of endophytic bacteria. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications, vol 80, 1st edn, Forestry sciences. Springer, New York, pp 107–136

    Chapter  Google Scholar 

  • Gamalero E, Fracchia L, Cavaletto M et al (2003) Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biol Biochem 35:55–65

    Article  CAS  Google Scholar 

  • Garbaye J (1994) Tansley review No. 76. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128(2):197–210

    Article  Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  PubMed  CAS  Google Scholar 

  • George EF, Sherrington PD (1984) Plant propagation by tissue culture methods. Handbook and directory of commercial laboratories. Eastern Press, Reading/Berks

    Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 25:1–7

    Article  Google Scholar 

  • Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075

    Article  PubMed  CAS  Google Scholar 

  • Holland MA, Polacco JC (1994) PPFMs and other covert contamination: is there more to plant physiology than just plant? Annu Rev Plant Phys Plant Mol Biol 45:197–209

    Article  CAS  Google Scholar 

  • Ivanova EG, Doronina NV, Shepelyakovskaya AO et al (2000) Facultative and obligate aerobic methylobacteria synthesize cytokinins. Mikrobiologiya 69:764–769

    CAS  Google Scholar 

  • Ivanova EG, Doronina NV, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Mikrobiologiya 70:452–458

    CAS  Google Scholar 

  • Ivanova EG, Fedorov DN, Doronina NV et al (2006) Production of vitamin B12 in aerobic methylotrophic bacteria. Mikrobiologiya 75:494–496

    CAS  Google Scholar 

  • Ivanova EG, Pirttilä AM, Fedorov DNF et al (2008) Association of methylotrophic bacteria with plants: metabolic aspects. In: Sorvari S, Pirttilä AM (eds) Prospects and applications for plant associated microbes. A laboratory manual, part A: bacteria. Biobien Innovations, Turku, pp 225–231

    Google Scholar 

  • Izumi HIH, Anderson ICAIC, Killham KKK et al (2008) Diversity of predominant endophytic bacteria in European deciduous and coniferous trees. Can J Microbiol 54:173–179

    Article  PubMed  CAS  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6(6):e20396

    Article  PubMed  CAS  Google Scholar 

  • Kamoun R, Lepoivre P, Boxus P (1998) Evidence for the occurrence of endophytic prokaryotic contaminants in micropropagated plantlets of Prunus cerasus cv. ‘Montgomery’. Plant Cell Tissue Organ Cult 52:57–59

    Article  CAS  Google Scholar 

  • Kim K, Yim W, Trivedi P et al (2010) Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil 327:429–440

    Article  CAS  Google Scholar 

  • Koch B, Jensen LE, Nybroe O (2001) A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Method 45:187–195

    Article  CAS  Google Scholar 

  • Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842

    Article  PubMed  CAS  Google Scholar 

  • Koopman V, Kutschera U (2005) In vitro regeneration of sunflower plants: effects of a Methylobacterium strain on organ development. J Appl Bot Food Qual 79:59–62

    Google Scholar 

  • Koskimäki JJ, Nylund S, Suorsa M et al (2010) Mycobacterial endophytes are enriched during micropropagation of Pogonatherum paniceum. Environ Microbiol Rep 2:619–624

    Article  PubMed  Google Scholar 

  • Koutsompogeras P, Kyriacou A, Zabetakis I (2007) The formation of 2, 5-dimethyl-4-hydroxy-2H-furan-3-one by cell free extracts of Methylobacterium extorquens and strawberry (Fragaria × ananassa cv. Elsanta). Food Chem 104:1654–1661

    Article  CAS  Google Scholar 

  • Krings M, Taylor TN, Hass H et al (2007) Fungal endophytes in a 400–million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    Article  PubMed  Google Scholar 

  • Krishnan P, Bhat R, Kush A et al (2012) Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. J Appl Microbiol 113:308–317

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk EL, Validov S, Lamers GEM et al (2010) Genetic tools for tagging Gram-negative bacteria with mCherry for visualization in-vitro and in natural habitat, biofilms and pathogenicity studies. FEMS Microbiol Lett 305:81–90

    Article  PubMed  CAS  Google Scholar 

  • Lata H, Li XC, Silva B et al (2006) Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Cult 85:353–359

    Article  CAS  Google Scholar 

  • Laukkanen H, Soini H, Kontunen-Soppela S et al (2000) A mycobacterium isolated from tissue cultures of mature Pinus sylvestris interferes with growth of Scots pine seedlings. Tree Physiol 20:915–920

    Article  PubMed  Google Scholar 

  • Liu Q, Parsons AJ, Xue H et al (2011) Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Funct Ecol 25:910–920

    Article  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3:e2702

    Article  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Kang BG et al (2010) Effect of co-inoculation of methylotrophic Methylo-bacterium oryzae with Azospirillum brasilense and Burkholderia pyrrocinia on the growth and nutrient uptake of tomato, red pepper and rice. Plant Soil 328:71–82

    Article  CAS  Google Scholar 

  • Madmony A, Chernin L, Pleban S et al (2005) Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines. Folia Microbiol 50:209–216

    Article  CAS  Google Scholar 

  • Malfanova N, Kamilova F, Validov S et al (2011) Characterization of Bacillus subtilis HC8, a novel plant‐beneficial endophytic strain from giant hogweed. Microb Biotechnol 4:523–532

    Article  PubMed  CAS  Google Scholar 

  • Malfanova N, Franzil L, Lugtenberg B et al (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899

    Article  PubMed  CAS  Google Scholar 

  • Mano H, Tanaka F, Watanabe A et al (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microb Environ 21:86–100

    Article  Google Scholar 

  • Mano H, Tanaka F, Nakamura C et al (2007) Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microb Environ 22:175–185

    Article  Google Scholar 

  • Merzaeva OV, Shirokikh IG (2010) The production of auxins by the endophytic bacteria of winter rye. Appl Biochem Microbiol 46:51–57

    Article  CAS  Google Scholar 

  • Moore FP, Barac T, Borremans B et al (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterization of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  PubMed  CAS  Google Scholar 

  • Moritz T, Sundberg B (1996) Endogenous cytokinins in the vascular cambial region of Pinus sylvestris during activity and dormancy. Physiol Plant 98:693–698

    Article  CAS  Google Scholar 

  • Murthy BNS, Vettakkorumakankav NN, KrishnaRaj S et al (1999) Characterization of somatic embryogenesis in Pelargonium × hortorum mediated by a bacterium. Plant Cell Rep 18:607–613

    Article  CAS  Google Scholar 

  • Nasopoulou C (2012) Study of strawberry (F. ananassa) and M. extorquens cells for the biosynthesis of strawberry flavor. Scientific Report of COST STSM Reference Number: COST-STSMFA1103-10547 and COST Action: FA1103. 1

    Google Scholar 

  • Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves (enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development). Plant Physiol 108:1359–1368

    PubMed  CAS  Google Scholar 

  • Nishio N, Tanaka M, Matsuno R et al (1977) Production of vitamin B12 by methanol-utilizing bacteria, Pseudomonas AM-1 and Microcyclus eburneus. Ferment Technol 55:200–203

    CAS  Google Scholar 

  • Nonomura AM, Benson AA (1991) The path of carbon in photosynthesis: improved crop yields with methanol. Proc Natl Acad Sci USA 89:9794–9798

    Article  Google Scholar 

  • Novas MV, Iannone LJ, Godeas AM, Cabral D (2009) Positive association between mycorrhiza and foliar endophytes in Poa bonariensis, a native grass. Mycol Prog 8:75–81

    Article  Google Scholar 

  • Pirttilä AM (2011) Colonization of tree shoots by endophytic fungi. In: Pirttilä AM, Sorvari S (eds) Prospects and applications for plant-associated microbes. A laboratory manual, Part B: fungi. Biobien Innovations, Turku, pp 93–95

    Google Scholar 

  • Pirttilä AM, Laukkanen H, Pospiech H et al (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077

    Article  PubMed  Google Scholar 

  • Pirttilä AM, Laukkanen H, Hohtola A (2002) Chitinase production in pine callus (Pinus sylvestris L.): a defense reaction against endophytes? Planta 214:848–852

    Article  PubMed  Google Scholar 

  • Pirttilä AM, Pospiech H, Laukkanen H et al (2003) Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L.). Microb Ecol 45:53–62

    Article  PubMed  Google Scholar 

  • Pirttilä AM, Joensuu P, Pospiech P et al (2004) Endophytic products affect morphology and mitigate browning of callus cultures of Scots pine (Pinus sylvestris L.). Physiol Plant 121:305–312

    Article  PubMed  Google Scholar 

  • Pirttilä AM, Pospiech H, Laukkanen H et al (2005) Seasonal variation in location and population structure of endophytes in buds of Scots pine. Tree Physiol 25:289–297

    Article  PubMed  Google Scholar 

  • Pirttilä AM, Hohtola A, Ivanova EG et al (2008) Identification and localization of methylotrophic plant-associated bacteria. In: Sorvari S, Pirttilä AM (eds) Prospects and applications for plant associated microbes. A laboratory manual, part A: bacteria. Biobien Innovations, Turku, pp 218–224

    Google Scholar 

  • Podolich О, Ardanov P, Voznyuk T et al (2007) Endophytic bacteria from potato activated by exogenic non-pathogenic bacteria. Biopolym Cell 23:21–27

    Article  Google Scholar 

  • Pohjanen J, Koskimäki JJ, Sutela S et al. (2013) Interaction between ectomycorrhizal fungi and endophytic Methylobacterium affects nutrition and growth of Scots pine seedlings in vitro (Manuscript, submitted)

    Google Scholar 

  • Poonguzhali S, Madhaiyan M, Yim WJ et al (2008) Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence in rhizosphere. Appl Microbiol Biotechnol 78:1033–1043

    Article  PubMed  CAS  Google Scholar 

  • Prieto P, Schilirò E, Maldonado-González MM et al (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445

    Article  PubMed  Google Scholar 

  • Ramírez I, Dorta F, Espinoza V et al (2006) Effects of foliar and root applications of methanol on the growth of Arabidopsis, tobacco and tomato plants. J Plant Growth Regul 25:30–44

    Article  Google Scholar 

  • Ramos HJ, Yates MG, Pedrosa FO et al (2011) Strategies for bacterial tagging and gene expression in plant-host colonization studies. Soil Biol Biochem 43:1626–1638

    Article  CAS  Google Scholar 

  • Reed BM, Mentzer J, Tanprasert P et al (1998) Internal bacterial contamination of micropropagated hazelnut: identification and antibiotic treatment. Plant Cell Tissue Organ Cult 52:67–70

    Article  CAS  Google Scholar 

  • Rincón A, Ruiz‐Díez B, García‐Fraile S et al (2005) Colonisation of Pinus halepensis roots by Pseudo-monas fluorescens and interaction with the ectomycorrhizal fungus Suillus granulatus. FEMS Microbiol Ecol 51:303–311

    Article  PubMed  Google Scholar 

  • Rogers A, McDonald K, Muehlbauer MF et al (2012) Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology. GCB Bioenergy 4:364–370

    Article  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  • Scherling C, Ulrich K, Ewald D et al (2009) Metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro–grown poplar plants revealed by metabolomics. Mol Plant Microbe Interact 22:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Google Scholar 

  • Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247–4260

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136

    Article  PubMed  CAS  Google Scholar 

  • Sundram S, Meon S, Seman IA, Othman R (2011) Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense. J Microbiol 49:551–557

    Article  PubMed  Google Scholar 

  • Taghavi A, Garafola C, Monchy S et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  PubMed  CAS  Google Scholar 

  • Tejesvi MV, Ruotsalainen AL, Markkola AM et al (2010) Root endophytes along a primary succession gradient in northern Finland. Fungal Diver 41:125–134

    Article  Google Scholar 

  • Thomas P, Kumari S, Swarna GK et al (2007) Ubiquitous presence of fastidious endophytic bacteria in field shoots and index-negative apparently clean shoot-tip cultures of papaya. Plant Cell Rep 26:1491–1499

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Swarna GK, Roy PK et al (2008) Identification of culturable and originally non-culturable endophytic bacteria isolated from shoot tip cultures of banana cv Grand Naine. Plant Cell Tissue Organ Cult 93:55–63

    Article  Google Scholar 

  • Timmusk S, Nicander B, Granhall U et al (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Troll JV, Adin DM, Wier AM et al (2009) Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal-bacterial symbiosis. Cell Microbiol 11:1114–1127

    Article  PubMed  CAS  Google Scholar 

  • Ulrich K, Ulrich A, Ewald D (2008) Paenibacillus- a predominant endophytic bacterium colonizing tissue cultures of woody plants. Plant Cell Tissue Organ Cult 93:347–351

    Article  Google Scholar 

  • Van Aken B, Peres CM, Doty SL et al (2004) Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides × nigra DN34). Int J Syst Evol Microbiol 54:1191–1196

    Article  PubMed  Google Scholar 

  • Visser C, Murthy BNS, Odumeru J et al (1994) Modulation of somatic embryogenesis in hypocotyl cultures of geranium (Pelargonium × hortorum Bailey) cv. Ringo Rose by a bacterium. In Vitro Cell Dev Biol 30P:140–143

    Google Scholar 

  • Yang CH, Crowley DE, Borneman J et al (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci USA 98:3889–3894

    Article  PubMed  CAS  Google Scholar 

  • Yashiro E, Spear RN, McManus PS (2011) Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere. J Appl Microbiol 110(5):1284–1296

    Google Scholar 

  • Yrjälä K, Mancano G, Fortelius C et al (2010) The incidence of Burkholderia in epiphytic and endophytic bacterial cenoses in hybrid aspen grown on sandy peat. Boreal Environ Res 15:81–96

    Google Scholar 

  • Zabetakis I (1997) Enhancement of flavour biosynthesis from strawberry (Fragaria × ananassa) callus cultures by Methylobacterium species. Plant Cell Tissue Organ Cult 50:179–183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Societas pro Fauna et Flora Fennica, The Finnish Cultural Foundation, North Ostrobothnia Regional Fund, Tauno Tönning Foundation, and Niemi Foundation are thanked for financial support to J. Pohjanen and J. J. Koskimäki. We would also like to thank Dr. Ellen L. Lagendijk and Dr. Ole Nybroe, M.Sc. Emmi-Leena Ihantola, and M.Sc. Pavlo Ardanov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Pirttilä .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Pohjanen, J., Koskimäki, J.J., Pirttilä, A.M. (2014). Interactions of Meristem-Associated Endophytic Bacteria. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_5

Download citation

Publish with us

Policies and ethics