Advertisement

Interactions of Meristem-Associated Endophytic Bacteria

  • Johanna Pohjanen
  • Janne J. Koskimäki
  • Anna Maria Pirttilä
Chapter

Abstract

Generally, all endophytes should be considered as a community that interacts with other symbiotic organisms, such as mycorrhiza. Even though an endophyte may colonize the plant systematically, communities colonizing the plant shoots normally differ to a degree from the root-associated endophytes. Meristem-associated shoot endophytic bacteria are often found as contaminants in plant tissue cultures started from shoot tips (buds) or embryos. Whereas root endophytic bacteria are reasonably well studied with respect to location and interactions with the host, not much is known about endophytes associated with shoot meristems. Endophytic bacteria have been localized in the meristematic tissues of buds and flowers by in situ hybridization and transmission electron microscopy. Meristem-associated endophytes may share some growth-promoting traits with the root endophytes, but likely additional mechanisms of actions exist. For example, such endophytes can produce adenine derivatives that induce growth of the host tissue. These endophytes may also affect the plant development by various ways. Some of them can co-synthesize secondary metabolites together with the plant host. Many more mechanisms remain to be determined by methods such as genomics and metabolomics, which are valuable tools for characterizing the interactions between the plant and endophytic bacteria.

Keywords

Endophytic Bacterium Shoot Tissue Meristematic Tissue Bacterial Endophyte Plant Growth Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Societas pro Fauna et Flora Fennica, The Finnish Cultural Foundation, North Ostrobothnia Regional Fund, Tauno Tönning Foundation, and Niemi Foundation are thanked for financial support to J. Pohjanen and J. J. Koskimäki. We would also like to thank Dr. Ellen L. Lagendijk and Dr. Ole Nybroe, M.Sc. Emmi-Leena Ihantola, and M.Sc. Pavlo Ardanov.

References

  1. Akiyoshi DE, Regier DA, Gordon MP (1987) Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 169:4242–4248PubMedGoogle Scholar
  2. Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113:1139–1144PubMedCrossRefGoogle Scholar
  3. Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI et al (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236PubMedCrossRefGoogle Scholar
  4. Ardanov P, Sessitsch A, Häggman H et al (2012) Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 7(10):e46802PubMedCrossRefGoogle Scholar
  5. Bacon CW, Hinton DM (1999) Use of Bacillus subtilis as an endophyte for the control of diseases caused by fungi. US Patent and Trademark Office November 30, 1999Google Scholar
  6. Bacon CW, Hinton DM (2011) Bacillus mojavensis: its endophytic nature, the surfactins, and their role in the plant response to infection by Fusarium verticillioides. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin/Heidelberg, pp 21–39. doi: 10.1007/978-3-642-20332-9_2
  7. Bacon CW, Yates IE, Hinton DM et al (2001) Biological control of Fusarium moniliforme in maize. Environ Health Perspect 109:325PubMedGoogle Scholar
  8. Bashan Y, de-Bashan L (2005) Bacteria/plant growth-promotion. Encycl Soil Environ 1:103–115Google Scholar
  9. Basile DV, Basile MR, Li QY et al (1985) Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum. (Hepaticae). Bryologist 88:77–81Google Scholar
  10. Bastián F, Cohen A, Piccoli P et al (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined cultures. Plant Growth Regul 24:7–11CrossRefGoogle Scholar
  11. Baumann TW, Schulthess BH, Linden A et al (1994) Structure and metabolism of 7-β-D-glucopyranosyladenine – the product of a cytokinin-sparing reaction? Phytochemistry 36:537–542CrossRefGoogle Scholar
  12. Bell CR, Dickie GA, Harvey WLG et al (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53CrossRefGoogle Scholar
  13. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18PubMedCrossRefGoogle Scholar
  14. Brandl MT, Lindow SE (1996) Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl Environ Microbiol 62:4121–4128PubMedGoogle Scholar
  15. Cankar K, Kraigher H, Ravnikar M et al (2005) Bacterial endophytes from seed of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345PubMedCrossRefGoogle Scholar
  16. Compant S, Mitter B, Colli-Mull JG et al (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197PubMedCrossRefGoogle Scholar
  17. Costacurta A, Mazzafera P, Rosato Y (1998) Indole-3-acetic acid biosynthesis by Xanthomonas axonopodis pv. citri is increased in the presence of plant leaf extracts. FEMS Microbiol Lett 159:215–220CrossRefGoogle Scholar
  18. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363PubMedCrossRefGoogle Scholar
  19. Doronina NV, Ivanova EG, Trotsenko YA (2002) New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins. Mikrobiologiya 71:130–132Google Scholar
  20. Doronina NV, Ivanova EG, Suzina NE et al (2004) Methanotrophs and methylobacteria are found in woody plant tissues within the winter period. Mikrobiologiya 73:702–709Google Scholar
  21. Fall R (1996) Cycling of methanol between plants, methylotrophs and the atmosphere. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C1 compounds. Kluwer Academic Publishers, Dordrecht, pp 343–350CrossRefGoogle Scholar
  22. Fall R, Benson AA (1996) Leaf methanol – the simplest natural product from plants. Trends Plant Sci 1:296–301Google Scholar
  23. Ferreira A, Quecine MC, Lacava PT et al (2008) Diversity of endophytic bacteria from Eucalyptus species seed and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14PubMedCrossRefGoogle Scholar
  24. Fester T, Fetzer I, Buchert S et al (2011) Towards a systemic metabolic signature of the arbuscular mycorrhizal interaction. Oecologia 167:913–924PubMedCrossRefGoogle Scholar
  25. Frank AC (2011) The genomes of endophytic bacteria. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications, vol 80, 1st edn, Forestry sciences. Springer, New York, pp 107–136CrossRefGoogle Scholar
  26. Gamalero E, Fracchia L, Cavaletto M et al (2003) Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biol Biochem 35:55–65CrossRefGoogle Scholar
  27. Garbaye J (1994) Tansley review No. 76. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128(2):197–210CrossRefGoogle Scholar
  28. Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411PubMedCrossRefGoogle Scholar
  29. George EF, Sherrington PD (1984) Plant propagation by tissue culture methods. Handbook and directory of commercial laboratories. Eastern Press, Reading/BerksGoogle Scholar
  30. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 25:1–7CrossRefGoogle Scholar
  31. Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075PubMedCrossRefGoogle Scholar
  32. Holland MA, Polacco JC (1994) PPFMs and other covert contamination: is there more to plant physiology than just plant? Annu Rev Plant Phys Plant Mol Biol 45:197–209CrossRefGoogle Scholar
  33. Ivanova EG, Doronina NV, Shepelyakovskaya AO et al (2000) Facultative and obligate aerobic methylobacteria synthesize cytokinins. Mikrobiologiya 69:764–769Google Scholar
  34. Ivanova EG, Doronina NV, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Mikrobiologiya 70:452–458Google Scholar
  35. Ivanova EG, Fedorov DN, Doronina NV et al (2006) Production of vitamin B12 in aerobic methylotrophic bacteria. Mikrobiologiya 75:494–496Google Scholar
  36. Ivanova EG, Pirttilä AM, Fedorov DNF et al (2008) Association of methylotrophic bacteria with plants: metabolic aspects. In: Sorvari S, Pirttilä AM (eds) Prospects and applications for plant associated microbes. A laboratory manual, part A: bacteria. Biobien Innovations, Turku, pp 225–231Google Scholar
  37. Izumi HIH, Anderson ICAIC, Killham KKK et al (2008) Diversity of predominant endophytic bacteria in European deciduous and coniferous trees. Can J Microbiol 54:173–179PubMedCrossRefGoogle Scholar
  38. Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6(6):e20396PubMedCrossRefGoogle Scholar
  39. Kamoun R, Lepoivre P, Boxus P (1998) Evidence for the occurrence of endophytic prokaryotic contaminants in micropropagated plantlets of Prunus cerasus cv. ‘Montgomery’. Plant Cell Tissue Organ Cult 52:57–59CrossRefGoogle Scholar
  40. Kim K, Yim W, Trivedi P et al (2010) Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil 327:429–440CrossRefGoogle Scholar
  41. Koch B, Jensen LE, Nybroe O (2001) A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Method 45:187–195CrossRefGoogle Scholar
  42. Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842PubMedCrossRefGoogle Scholar
  43. Koopman V, Kutschera U (2005) In vitro regeneration of sunflower plants: effects of a Methylobacterium strain on organ development. J Appl Bot Food Qual 79:59–62Google Scholar
  44. Koskimäki JJ, Nylund S, Suorsa M et al (2010) Mycobacterial endophytes are enriched during micropropagation of Pogonatherum paniceum. Environ Microbiol Rep 2:619–624PubMedCrossRefGoogle Scholar
  45. Koutsompogeras P, Kyriacou A, Zabetakis I (2007) The formation of 2, 5-dimethyl-4-hydroxy-2H-furan-3-one by cell free extracts of Methylobacterium extorquens and strawberry (Fragaria × ananassa cv. Elsanta). Food Chem 104:1654–1661CrossRefGoogle Scholar
  46. Krings M, Taylor TN, Hass H et al (2007) Fungal endophytes in a 400–million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657PubMedCrossRefGoogle Scholar
  47. Krishnan P, Bhat R, Kush A et al (2012) Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. J Appl Microbiol 113:308–317PubMedCrossRefGoogle Scholar
  48. Lagendijk EL, Validov S, Lamers GEM et al (2010) Genetic tools for tagging Gram-negative bacteria with mCherry for visualization in-vitro and in natural habitat, biofilms and pathogenicity studies. FEMS Microbiol Lett 305:81–90PubMedCrossRefGoogle Scholar
  49. Lata H, Li XC, Silva B et al (2006) Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Cult 85:353–359CrossRefGoogle Scholar
  50. Laukkanen H, Soini H, Kontunen-Soppela S et al (2000) A mycobacterium isolated from tissue cultures of mature Pinus sylvestris interferes with growth of Scots pine seedlings. Tree Physiol 20:915–920PubMedCrossRefGoogle Scholar
  51. Liu Q, Parsons AJ, Xue H et al (2011) Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Funct Ecol 25:910–920CrossRefGoogle Scholar
  52. Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3:e2702PubMedCrossRefGoogle Scholar
  53. Madhaiyan M, Poonguzhali S, Kang BG et al (2010) Effect of co-inoculation of methylotrophic Methylo-bacterium oryzae with Azospirillum brasilense and Burkholderia pyrrocinia on the growth and nutrient uptake of tomato, red pepper and rice. Plant Soil 328:71–82CrossRefGoogle Scholar
  54. Madmony A, Chernin L, Pleban S et al (2005) Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines. Folia Microbiol 50:209–216CrossRefGoogle Scholar
  55. Malfanova N, Kamilova F, Validov S et al (2011) Characterization of Bacillus subtilis HC8, a novel plant‐beneficial endophytic strain from giant hogweed. Microb Biotechnol 4:523–532PubMedCrossRefGoogle Scholar
  56. Malfanova N, Franzil L, Lugtenberg B et al (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899PubMedCrossRefGoogle Scholar
  57. Mano H, Tanaka F, Watanabe A et al (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microb Environ 21:86–100CrossRefGoogle Scholar
  58. Mano H, Tanaka F, Nakamura C et al (2007) Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microb Environ 22:175–185CrossRefGoogle Scholar
  59. Merzaeva OV, Shirokikh IG (2010) The production of auxins by the endophytic bacteria of winter rye. Appl Biochem Microbiol 46:51–57CrossRefGoogle Scholar
  60. Moore FP, Barac T, Borremans B et al (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterization of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556PubMedCrossRefGoogle Scholar
  61. Moritz T, Sundberg B (1996) Endogenous cytokinins in the vascular cambial region of Pinus sylvestris during activity and dormancy. Physiol Plant 98:693–698CrossRefGoogle Scholar
  62. Murthy BNS, Vettakkorumakankav NN, KrishnaRaj S et al (1999) Characterization of somatic embryogenesis in Pelargonium × hortorum mediated by a bacterium. Plant Cell Rep 18:607–613CrossRefGoogle Scholar
  63. Nasopoulou C (2012) Study of strawberry (F. ananassa) and M. extorquens cells for the biosynthesis of strawberry flavor. Scientific Report of COST STSM Reference Number: COST-STSMFA1103-10547 and COST Action: FA1103. 1Google Scholar
  64. Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves (enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development). Plant Physiol 108:1359–1368PubMedGoogle Scholar
  65. Nishio N, Tanaka M, Matsuno R et al (1977) Production of vitamin B12 by methanol-utilizing bacteria, Pseudomonas AM-1 and Microcyclus eburneus. Ferment Technol 55:200–203Google Scholar
  66. Nonomura AM, Benson AA (1991) The path of carbon in photosynthesis: improved crop yields with methanol. Proc Natl Acad Sci USA 89:9794–9798CrossRefGoogle Scholar
  67. Novas MV, Iannone LJ, Godeas AM, Cabral D (2009) Positive association between mycorrhiza and foliar endophytes in Poa bonariensis, a native grass. Mycol Prog 8:75–81CrossRefGoogle Scholar
  68. Pirttilä AM (2011) Colonization of tree shoots by endophytic fungi. In: Pirttilä AM, Sorvari S (eds) Prospects and applications for plant-associated microbes. A laboratory manual, Part B: fungi. Biobien Innovations, Turku, pp 93–95Google Scholar
  69. Pirttilä AM, Laukkanen H, Pospiech H et al (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077PubMedCrossRefGoogle Scholar
  70. Pirttilä AM, Laukkanen H, Hohtola A (2002) Chitinase production in pine callus (Pinus sylvestris L.): a defense reaction against endophytes? Planta 214:848–852PubMedCrossRefGoogle Scholar
  71. Pirttilä AM, Pospiech H, Laukkanen H et al (2003) Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L.). Microb Ecol 45:53–62PubMedCrossRefGoogle Scholar
  72. Pirttilä AM, Joensuu P, Pospiech P et al (2004) Endophytic products affect morphology and mitigate browning of callus cultures of Scots pine (Pinus sylvestris L.). Physiol Plant 121:305–312PubMedCrossRefGoogle Scholar
  73. Pirttilä AM, Pospiech H, Laukkanen H et al (2005) Seasonal variation in location and population structure of endophytes in buds of Scots pine. Tree Physiol 25:289–297PubMedCrossRefGoogle Scholar
  74. Pirttilä AM, Hohtola A, Ivanova EG et al (2008) Identification and localization of methylotrophic plant-associated bacteria. In: Sorvari S, Pirttilä AM (eds) Prospects and applications for plant associated microbes. A laboratory manual, part A: bacteria. Biobien Innovations, Turku, pp 218–224Google Scholar
  75. Podolich О, Ardanov P, Voznyuk T et al (2007) Endophytic bacteria from potato activated by exogenic non-pathogenic bacteria. Biopolym Cell 23:21–27CrossRefGoogle Scholar
  76. Pohjanen J, Koskimäki JJ, Sutela S et al. (2013) Interaction between ectomycorrhizal fungi and endophytic Methylobacterium affects nutrition and growth of Scots pine seedlings in vitro (Manuscript, submitted)Google Scholar
  77. Poonguzhali S, Madhaiyan M, Yim WJ et al (2008) Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence in rhizosphere. Appl Microbiol Biotechnol 78:1033–1043PubMedCrossRefGoogle Scholar
  78. Prieto P, Schilirò E, Maldonado-González MM et al (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445PubMedCrossRefGoogle Scholar
  79. Ramírez I, Dorta F, Espinoza V et al (2006) Effects of foliar and root applications of methanol on the growth of Arabidopsis, tobacco and tomato plants. J Plant Growth Regul 25:30–44CrossRefGoogle Scholar
  80. Ramos HJ, Yates MG, Pedrosa FO et al (2011) Strategies for bacterial tagging and gene expression in plant-host colonization studies. Soil Biol Biochem 43:1626–1638CrossRefGoogle Scholar
  81. Reed BM, Mentzer J, Tanprasert P et al (1998) Internal bacterial contamination of micropropagated hazelnut: identification and antibiotic treatment. Plant Cell Tissue Organ Cult 52:67–70CrossRefGoogle Scholar
  82. Rincón A, Ruiz‐Díez B, García‐Fraile S et al (2005) Colonisation of Pinus halepensis roots by Pseudo-monas fluorescens and interaction with the ectomycorrhizal fungus Suillus granulatus. FEMS Microbiol Ecol 51:303–311PubMedCrossRefGoogle Scholar
  83. Rogers A, McDonald K, Muehlbauer MF et al (2012) Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology. GCB Bioenergy 4:364–370CrossRefGoogle Scholar
  84. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837PubMedCrossRefGoogle Scholar
  85. Scherling C, Ulrich K, Ewald D et al (2009) Metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro–grown poplar plants revealed by metabolomics. Mol Plant Microbe Interact 22:1032–1037PubMedCrossRefGoogle Scholar
  86. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32Google Scholar
  87. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247–4260PubMedCrossRefGoogle Scholar
  88. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136PubMedCrossRefGoogle Scholar
  89. Sundram S, Meon S, Seman IA, Othman R (2011) Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense. J Microbiol 49:551–557PubMedCrossRefGoogle Scholar
  90. Taghavi A, Garafola C, Monchy S et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757PubMedCrossRefGoogle Scholar
  91. Tejesvi MV, Ruotsalainen AL, Markkola AM et al (2010) Root endophytes along a primary succession gradient in northern Finland. Fungal Diver 41:125–134CrossRefGoogle Scholar
  92. Thomas P, Kumari S, Swarna GK et al (2007) Ubiquitous presence of fastidious endophytic bacteria in field shoots and index-negative apparently clean shoot-tip cultures of papaya. Plant Cell Rep 26:1491–1499PubMedCrossRefGoogle Scholar
  93. Thomas P, Swarna GK, Roy PK et al (2008) Identification of culturable and originally non-culturable endophytic bacteria isolated from shoot tip cultures of banana cv Grand Naine. Plant Cell Tissue Organ Cult 93:55–63CrossRefGoogle Scholar
  94. Timmusk S, Nicander B, Granhall U et al (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852CrossRefGoogle Scholar
  95. Troll JV, Adin DM, Wier AM et al (2009) Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal-bacterial symbiosis. Cell Microbiol 11:1114–1127PubMedCrossRefGoogle Scholar
  96. Ulrich K, Ulrich A, Ewald D (2008) Paenibacillus- a predominant endophytic bacterium colonizing tissue cultures of woody plants. Plant Cell Tissue Organ Cult 93:347–351CrossRefGoogle Scholar
  97. Van Aken B, Peres CM, Doty SL et al (2004) Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides × nigra DN34). Int J Syst Evol Microbiol 54:1191–1196PubMedCrossRefGoogle Scholar
  98. Visser C, Murthy BNS, Odumeru J et al (1994) Modulation of somatic embryogenesis in hypocotyl cultures of geranium (Pelargonium × hortorum Bailey) cv. Ringo Rose by a bacterium. In Vitro Cell Dev Biol 30P:140–143Google Scholar
  99. Yang CH, Crowley DE, Borneman J et al (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci USA 98:3889–3894PubMedCrossRefGoogle Scholar
  100. Yashiro E, Spear RN, McManus PS (2011) Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere. J Appl Microbiol 110(5):1284–1296Google Scholar
  101. Yrjälä K, Mancano G, Fortelius C et al (2010) The incidence of Burkholderia in epiphytic and endophytic bacterial cenoses in hybrid aspen grown on sandy peat. Boreal Environ Res 15:81–96Google Scholar
  102. Zabetakis I (1997) Enhancement of flavour biosynthesis from strawberry (Fragaria × ananassa) callus cultures by Methylobacterium species. Plant Cell Tissue Organ Cult 50:179–183CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Johanna Pohjanen
    • 1
  • Janne J. Koskimäki
    • 1
  • Anna Maria Pirttilä
    • 1
  1. 1.Department of BiologyUniversity of OuluOuluFinland

Personalised recommendations