Skip to main content

Entomopathogenic and Nematophagous Fungal Endophytes

  • Chapter
  • First Online:
Advances in Endophytic Research

Abstract

Biological control agents have received a considerable amount of attention as alternatives to chemicals for the development of new control methods but also due to the disparate ecological niches occupied by them. Entomopathogenic (EF) and nematophagous fungi (NF) enter their hosts directly via the cuticle or natural openings, what makes them attractive agents for biological pest control. These fungi have been traditionally viewed simply as animal predators, but recent studies show that a considerable number of fungal pathogens of invertebrates have an endophytic phase in their life cycles. Several taxa of EF and NF have been identified as naturally occurring endophytes and could be artificially inoculated in agricultural plant species. In addition, symbioses with some endophytic species positively affect plant growth and resistance against fungal pathogens. These additional ecological roles give a new perspective to the study of these organisms, because they are part of tritrophic interactions where plants, invertebrates, and fungi are closely involved. Understanding fungal-plant, fungal-pest, fungal-pathogen, and fungal-plant-pest interactions, plus the role of fungal viruses, that infect EF, could lead to the development of novel integrated crop production and protection tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akello J, Dubois T, Gold CS, Coyne D, Nakavuma J, Paparu P (2007) Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). J Invertebr Pathol 96:34–42

    PubMed  Google Scholar 

  • Akello J, Dubois T, Coyne D, Kyamanywa S (2008) Effect of endophytic Beauveria bassiana on populations of the banana weevil, Cosmopolites sordidus, and their damage in tissue-cultured banana plants. Entomol Exp Appl 129:157–165

    Google Scholar 

  • Anderson LA, Lewis LC (1992) Temporal relationships between Zea mays, Ostrinia nubilalis (Lep. Pyralidae) and endophytic Beauveria bassiana. Entomophaga 37:525–536

    Google Scholar 

  • Anderson CMT, McGee PA, Nehl DB, Mensah RK (2007) The fungus Lecanicillium lecanii colonises the plant Gossypium hirsutum and the aphid Aphis gossypii. Aust Mycol 26:65–70

    Google Scholar 

  • Arteaga N, Díaz Minguez JM, Gómez J, García I, Zabalgogeazcoa I (2013) Fungal endophytes of bean roots and their interactions with Fusarium oxysporum vascular wilts. In: Schneider C, Leifert C, Feldmann F (eds) Endophytes for plant protection: the state of the art. Deutsche Phytomedizinische Gesellschaft, Braunschweig, p 168

    Google Scholar 

  • Askary H, Benhamou N, Brodeur J (1997) Ultrastructural and cytochemical investigations of the antagonistic effect of Verticillium lecanii on cucumber powdery mildew. Phytopathology 87:359–368

    PubMed  CAS  Google Scholar 

  • Backman PA, Sikora RA (2008) Endophytes: an emerging tool for biological control. Biol Control 46:1–3

    Google Scholar 

  • Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336:1576

    PubMed  CAS  Google Scholar 

  • Benhamou N, Brodeur J (2000) Evidence for antibiosis and induced host defense reactions in the interaction between Verticillium lecanii and Penicillium digitatum, the causal agent of green mold. Phytopathology 90:932–943

    PubMed  CAS  Google Scholar 

  • Bills GF, Polishook JD (1991) Microfungi from Carpinus caroliniana. Can J Bot 69:1477–1482

    Google Scholar 

  • Bing LA, Lewis LC (1992) Temporal relationships between Zea mays, Ostrinia nubilalis (Lep.: Pyralidae) and endophytic Beauveria bassiana. Entomophaga 37:525–536

    Google Scholar 

  • Biswas C, Dey P, Satpathy S, Satya P (2012) Establishment of the fungal entomopathogen Beauveria bassiana as a season long endophyte in jute (Corchorus olitorius) and its rapid detection using SCAR marker. BioControl 57:565–571

    CAS  Google Scholar 

  • Bogo MR, Queiroz MV, Giménez DM, Azevedo JL, Schrank A (1996) Double-stranded RNA and isometric virus-like particles in the entomopathogenic fungus Metarhizium anisopliae. Micol Res 100:1468–1472

    CAS  Google Scholar 

  • Bordallo JJ, Lopez-Llorca LV, Jansson HB, Salinas J, Persmark L, Asensio L (2002) Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol 154:491–499

    Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Google Scholar 

  • Brownbridge M, Reay SD, Nelson TL, Glare TR (2012) Persistence of Beauveria bassiana (ascomycota: Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings. Biol Control 61:194–200

    Google Scholar 

  • Bruck DJ (2010) Fungal entomopathogens in the rhizosphere. BioControl 55:103–112

    Google Scholar 

  • Castrillo LA, Griggs MH, Vandenberg JD (2004) Vegetative compatibility groups in indigenous and mass-released strains of the entomopathogenic fungus Beauveria bassiana: likelihood of recombination in the field. J Invertebr Pathol 86:26–37

    PubMed  CAS  Google Scholar 

  • Charnley AK, Collins SA (2007) Entomopathogenic fungi and their role in pest control. In: Kubicek CP, Druzhinina IS (eds) The mycota IV: environmental and microbial relationships. Springer, Berlin, pp 159–187

    Google Scholar 

  • Chiba S, Salaipeth L, Lin YH, Sasaki A, Kanematsu S, Suzuki N (2009) A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control. J Virol 83:12801–12812

    PubMed  CAS  Google Scholar 

  • Clark MM, Gwinn KD, Ownley BH (2006) Biological control of Pythium myriotylum. Phytopathology 96:S25

    Google Scholar 

  • Collado J, Platas G, González I, Peláez F (1999) Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytol 14:525–532

    Google Scholar 

  • Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741

    PubMed  CAS  Google Scholar 

  • Dalzoto PR, Glienke-Blanco C, Kava-Cordeiro V, Ribeiro JZ, Kitajima EW, Azevedo JL (2006) Horizontal transfer and hypovirulence associated with double-stranded RNA in Beauveria bassiana. Mycol Res 110:1475–1481

    PubMed  CAS  Google Scholar 

  • de Souza Vieira PD, de Souza Motta CM, Lima D, Torres JB, Maria Carolina Quecine MC, Azevedo JL, Tinti de Oliveira N (2011) Endophytic fungi associated with transgenic and non-transgenic cotton. Mycology 2:91–97

    Google Scholar 

  • Eilengberg J, Hokkanen H (2006) An ecological and societal approach to biological control. Springer, Dordrecht

    Google Scholar 

  • Elliot SL, Sabelis MW, Janssen A, van der Geest LPS, Beerling EAM, Fransen J (2000) Can plants use entomopathogens as bodyguards? Ecol Lett 3:228–235

    Google Scholar 

  • Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110:318–327

    PubMed  Google Scholar 

  • García JE, Posadas JB, Perticari A, Lecuona RE (2011) Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Adv Biol Res 5:22–27

    Google Scholar 

  • Ghabrial SA, Suzuki N (2009) Viruses of plant pathogenic fungi. Annu Rev Phytopathol 47:353–384

    PubMed  CAS  Google Scholar 

  • Ghabrial SA, Suzuki N (2010) Fungal viruses. In: Mahy BWJ, Van Regenmortel MHV (eds) Desk encyclopedia of plant and fungal virology. Elsevier, Oxford, pp 517–524

    Google Scholar 

  • Giménez-Pecci M, Bogo MR, Santi L, Moraes CK, Corrêa CT, Henning Vainstein M, Schrank A (2002) Charac-terization of mycoviruses and analyses of chitinase secretion in the biocontrol fungus Metarhizium anisopliae. Curr Microbiol 45:334–339

    Google Scholar 

  • Giordano L, Gonthier P, Varese GC, Miserere L, Nicolotti G (2009) Mycobiota inhabiting sapwood of healthy and declining Scots pine (Pinus sylvestris L.) trees in the Alps. Fungal Divers 38:69–83

    Google Scholar 

  • Goettel MS, Eilenberg J, Glare T (2005) Entomopathogenic fungi and their role in regulation of insect populations. In: Latrou K, Gilbert LB (eds) Comprehensive molecular insect science. Elsevier/Pergamon, Oxford

    Google Scholar 

  • Gómez Vidal S, López llorca LV, Jansson HB, Salinas J (2006) Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi. Micron 37:624–632

    PubMed  Google Scholar 

  • Griffin MR (2007) Beauveria bassiana, a cotton endophyte with biocontrol activity against seedling disease. PhD dissertation. University of Tennessee, Knoxville

    Google Scholar 

  • Herrero N, Zabalgogeazcoa I (2011) Mycoviruses infecting the endophytic and entomopathogenic fungus Tolypocladium cylindrosporum. Virus Res 29:755–763

    Google Scholar 

  • Herrero N, Sánchez Márquez S, Zabalgogeazcoa I (2009) Mycoviruses are common among different species of endophytic fungi of grasses. Arch Virol 154:327–330

    PubMed  CAS  Google Scholar 

  • Herrero N, Pérez-Sánchez R, Oleaga A, Zabalgogeazcoa I (2011) Tick pathogenicity, thermal tolerance and virus infection in Tolypocladium cylindrosporum. Ann Appl Biol 159:192–201

    Google Scholar 

  • Herrero N, Dueñas E, Quesada-Moraga E, Zabalgogeazcoa I (2012a) Prevalence and diversity of viruses in the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 78:8523–8530

    PubMed  CAS  Google Scholar 

  • Herrero N, Sánchez Márquez S, Zabalgogeazcoa I (2012b) Mycovirus effect on the endophytic establishment of the entomopathogenic fungus Tolypocladium cylindrosporum in tomato and bean plants. BioControl 58:225–232

    Google Scholar 

  • Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstorff K, Diepenbrock W, Merbach U (2003) Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass Forage Sci 58:407–415

    Google Scholar 

  • Hirano E, Koike M, Aiuchi D, Tani M (2008) Pre-inoculation of cucumber roots with Verticillium lecanii (Lecanicillium muscarium) induces resistance to powdery mildew. Res Bull Obihiro Univ 29:82–94

    CAS  Google Scholar 

  • Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr Pathol 98:262–266

    PubMed  Google Scholar 

  • Inglis PW, Valadares-Inglis MC (1997) Rapid isolation of double-stranded RNAs from entomopathogenic species of the fungus Paecilomyces using a commercial minicolumn system. J Virol Methods 67:113–116

    PubMed  CAS  Google Scholar 

  • Isawa H, Kuwata R, Hoshino K et al (2011) Identification and molecular characterization of a new nonsegmented double-stranded RNA virus isolated from Culex mosquitoes in Japan. Virus Res 155:147–155

    PubMed  CAS  Google Scholar 

  • Kavková M, Curn V (2005) Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) as a potential mycoparasite on Sphaerotheca fuliginea (Ascomycotina: Erysiphales). Mycopathology 159:53–63

    Google Scholar 

  • Kennedy AC (1998) The rhizosphere and spermosphere. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, pp 389–407

    Google Scholar 

  • Kepler RM, Bruck DJ (2006) Examination of the interaction between the black vine weevil (Coleoptera: Curculionidae) and an entomopathogenic fungus reveals a new tritrophic interaction. Environ Entomol 35:1021–1029

    Google Scholar 

  • Khan AL, Hamayun M, Khan SA, Kang SM, Shinwari ZK, Kamran M, ur Rehman S, Kim JG, Lee IJ (2011) Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol 28:1483–1494

    PubMed  Google Scholar 

  • Kim JJ, Goettel MS, Gillespie DR (2008) Evaluation of Lecanicillium longisporum, Vertalec® for simultaneous suppression of cotton aphid, and Sphaerotheca fuliginea, on potted cucumbers. Biol Control 45:404–409

    Google Scholar 

  • Landa BB, López-Díaz C, Jiménez-Fernández D, Montes-Borrego M, Muñoz-Ledesma FJ, Quesada-Moraga E (2013) In-planta detection and monitorization of colonization of an endophytic Beauveria bassiana strain by using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. J Invertebr Pathol 114:128–138

    Google Scholar 

  • Leal SCM, Bertioli DJ, Butt TM, Peberdy JF (1994) Characterization of isolates of the entomopathogenic fungus Metarhizium anisopliae by RAPD-PCR. Mycol Res 98:1077–1081

    CAS  Google Scholar 

  • López Llorca LV, Jansson HB, Maciá Viocente JG, Salinas J (2006) Nematophagous fungi as root endophytes. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes, vol 9, Soil biology. Springer, Berlin, pp 191–206, Ch 11

    Google Scholar 

  • Maciá Vicente JG, Jansson HB, Talbot NJ, López Llorca LV (2009) Real time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytol 182:213–228

    PubMed  Google Scholar 

  • Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    PubMed  Google Scholar 

  • Martins MK, Furlaneto MC, Sosa-Gomez DR, Faria MR, Pelegrinelli Fungaro MH (1999) Double-stranded RNA in the entomopathogenic fungus Metarhizium flavoviride. Curr Genet 36:94–97

    PubMed  CAS  Google Scholar 

  • Melzer MJ, Bidochka MJ (1998) Diversity of double-stranded RNA viruses within populations of entomopathogenic fungi and potential implications for fungal growth and virulence. Mycologia 90:586–594

    CAS  Google Scholar 

  • Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155

    Google Scholar 

  • Miles LA, Lopera CA, González S, Cepero de García MC, Franco AE, Restrepo S (2012) Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. BioControl. doi:10.1007/s10526-012-9442-6

    Google Scholar 

  • Miller TC, Gubler WD, Laemmlen FF, Geng S, Rizzo DM (2004) Potential for using Lecanicillium lecanii for suppression of strawberry powdery mildew. Biocontrol Sci Technol 14:215–220

    Google Scholar 

  • Monfort E, López Llorca LV, Jansson HB, Salinas J, Park JO, Sivasithamparam K (2005) Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root rot. Soil Biol Biochem 37:1229–1235

    CAS  Google Scholar 

  • Morris TJ, Dodds JA (1979) Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology 69:854–858

    CAS  Google Scholar 

  • Nordbring-Hertz B, Jansson HB, Tunlid A (2006) Nemato-phagous fungi. eLS. doi:10.1038/npg.els.0004293

    Google Scholar 

  • Obledo EN, Barragán-Barragán LB, Gutiérrez-González P, Ramírez Hernández BC, Ramírez JJ, Rodríguez-Garay B (2003) Increased photosynthetic efficiency generated by fungal symbiosis in Agave victoria-reginae. Plant Cell Tissue Organ Cult 74:237–241

    CAS  Google Scholar 

  • Ownley BH, Bishop DG, Pereira RM (2000) Biocontrol of Rhizoctonia damping-off of tomato with Beauveria bassiana. Phytopathology 90:S58

    Google Scholar 

  • Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl 55:113–128

    Google Scholar 

  • Parfitt D, Hunt J, Dockrell D, Rogers HJ, Boddy L (2010) Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol 3:338–346

    Google Scholar 

  • Posada F, Vega F (2005) Establishment of the fungal entomopathogen Beauveria bassiana (ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia 97:1195–1200

    PubMed  Google Scholar 

  • Posada FA, Aime MC, Peterson SW, Rehner SA, Vega FA (2007) Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol Res 111:748–757

    PubMed  CAS  Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590

    PubMed  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Google Scholar 

  • Quesada-Moraga E, Santiago-Álvarez C (2008) Hongos Entomopatógenos. In: Urbaneja A, Jacas J (eds) Control biológico de plagas. Phytoma y Publicaciones de la Universidad Pública de Navarra, Navarra, pp 98–120

    Google Scholar 

  • Quesada-Moraga E, Landa BB, Muñoz Ledesma J, Jiménez Díaz RM, Santiago Álvarez C (2006) Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathology 161:323–329

    CAS  Google Scholar 

  • Quesada-Moraga E, Navas-Cortés JA, Maranhao EA, Ortiz-Urquiza A, Santiago-Álvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and agricultural soils. Mycol Res 111:947–966

    PubMed  Google Scholar 

  • Quesada-Moraga E, Muñoz-Ledesma FJ, Santiago-Álvarez C (2009) Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ Entomol 38:723–730

    PubMed  CAS  Google Scholar 

  • Quesada-Moraga E, Muñoz-Ledesma FJ, Santiago-Álvarez C (2010) Cepa de Beauveria bassiana y sus aplicaciones. Patent WO2010092223. Int. Cl: A01N 63/04, C12N 1/14, C12R 1/645

    Google Scholar 

  • Quesada-Moraga E, Landa BB, López-Díaz C (2013) Vertical transmission of an endophytic strain of Beauveria bassiana (Ascomycota; Hypocreales) colonizing opium poppy Papaver somniferum. In: 14th meeting of the IOBV/wprs working group “Insect pathogens and entomoparasitic nematodes”. Zagreb, June 2013

    Google Scholar 

  • Rangel-Castro JI, Killham K, Ostle N, Nicol GW, Anderson IC, Scrimgeour CM, Ineson P, Meharg A, Prosser JI, Rangel-Castro JI (2005) Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environ Microbiol 7:828–838

    PubMed  CAS  Google Scholar 

  • Rodríguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    PubMed  CAS  Google Scholar 

  • Romaine CP, Goodin MM (2002) Unraveling the viral complex associated with La France disease of the cultivated mushroom, Agaricus bisporus. In: Tavantzis SM (ed) Concepts and applications in agriculture, forestry, and medicine dsRNA genetic elements. CRC Press, Boca Raton, pp 237–257

    Google Scholar 

  • Roossinck MJ (2010) Lifestyles of plant viruses. Philos Trans R Soc B 365:1899–1905

    Google Scholar 

  • Roossinck MJ (2011) The good viruses: viral mutualistic symbiosis. Nat Rev Microbiol 9:99–108

    PubMed  CAS  Google Scholar 

  • Roy HE, Brodie EL, Chandler D, Goettel MS, Pell JK, Wajnberg E, Vega FE (2010) Deep space and hidden depths: understanding the evolution and ecology of fungal entomopathogens. BioControl 55:1–6

    Google Scholar 

  • Sánchez S, Bills GF, Zabalgogeazcoa I (2007) The endophytic mycobiota of Dactylis glomerata. Fungal Divers 27:171–195

    Google Scholar 

  • Sánchez S, Bills GF, Zabalgogeazcoa I (2008) Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers 33:87–100

    Google Scholar 

  • Sánchez S, Bills GF, Domínguez Acuña L, Zabalgogeazcoa I (2010) Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers 41:115–123

    Google Scholar 

  • Sánchez S, Bills GF, Zabalgogeazcoa I (2011) Fungal species diversity in juvenile and adult leaves of Eucalyptus globulus from plantations affected by Mycosphaerella leaf disease. Ann Appl Biol 158:177–187

    Google Scholar 

  • Sánchez S, Bills GF, Herrero N, Zabalgogeazcoa I (2012) Non systemic fungal endophytes of grasses. Fungal Ecol 5:289–297

    Google Scholar 

  • Sánchez-Rodríguez AR, López-Díaz C, del Campillo MC, Quesada-Moraga E (2012) Response of wheat Triticum aestivum to colonisation by an endophytic strain of the entomopathogenic ascomycete Beauveria bassiana (Ascomycota; Hypocreales). Environment workshops. UNIA. Plant-microbe-insect Interactions: from molecular mechanims to ecological implications, Baeza

    Google Scholar 

  • Santiago-Álvarez C, Valverde-García P, Quesada-Moraga E (2008) Control biológico de langostas y saltamontes. In: Urbaneja A, Jacas J (eds) Control biológico de plagas. Phytoma y Publicaciones de la Universidad Pública de Navarra, Navarra, pp 165–178

    Google Scholar 

  • Sasan RK, Bidochka MJ (2012) The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 99:101–107

    PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  • Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    PubMed  CAS  Google Scholar 

  • Shirouzu T, Hirose D, Fukasawa Y, Tokumasu S (2009) Fungal succession associated with the decay of leaves of an evergreen oak, Quercus myrsinifolia. Fungal Divers 34:87–109

    Google Scholar 

  • Souza Azevedo AC, Sosa-Gomez DR, Rodrigues Faria M, Pelegrinelli Fungaro MH (2000) Effects of double-stranded RNA on virulence of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) against the silverleaf whitefly, Bemisia tabaci strain B (Homoptera: Aleyrodidae). Genet Mol Biol 23:61–63

    Google Scholar 

  • St. Leger RJ (2008) Studies on adaptations of Metarhizium anisopliae to life in the soil. J Invertebr Pathol 98:271–276

    PubMed  Google Scholar 

  • Sugimoto M, Koike M, Hiyama N, Nagao H (2003) Genetic, morphological, and virulence characterization of the entomopathogenic fungus Verticillium lecanii. J Invertebr Pathol 82:176–187

    PubMed  CAS  Google Scholar 

  • Tanada Y, Kaya HK (1993) Insect pathology. Academic, San Diego, p 665

    Google Scholar 

  • Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. Biocontrol 54:663–669

    Google Scholar 

  • Thomas SE, Crozier J, Catherine Aime M, Evans HC, Holmes KA (2008) Molecular characterisation of fungal endophytic morphospecies associated with the indigenous forest tree, Theobroma gileri, in Ecuador. Mycol Res 112:852–860

    PubMed  CAS  Google Scholar 

  • Tremblay E (1994) Entomologia Applicata, vol 4. Liguori, Ercolano/Napoli

    Google Scholar 

  • Usuki F, Narisawa H (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184

    PubMed  CAS  Google Scholar 

  • Vandermeer J, Perfecto I, Liere H (2009) Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathol 58:636–664

    Google Scholar 

  • Varma A, Verma S, Nirmal Sahay S, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    PubMed  CAS  Google Scholar 

  • Vázquez de Aldana BR, Bills G, Zabalgogeazcoa I (2013) Are endophytes an important link between airborne spores and allergen exposure? Fungal Divers 60:33–42

    Google Scholar 

  • Vega FE, Posada F, Aima MC, Pava-Ripoll M, Infate F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH, Pell JK, Rangel DEN, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Google Scholar 

  • Wagner BL, Lewis LC (2000) Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 66:3468–3473

    PubMed  CAS  Google Scholar 

  • Wearn JA, Sutton BC, Morley NJ, Gange AC (2012) Species and organ specificity of fungal endophytes in herbaceous grassland plants. J Ecol 100:1085–1092

    Google Scholar 

  • Yuan ZL, Rao LB, Chen YC, Zhang CL, Wu YG (2011) From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biol 115:197–213

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Quesada-Moraga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Quesada-Moraga, E., Herrero, N., Zabalgogeazcoa, Í. (2014). Entomopathogenic and Nematophagous Fungal Endophytes. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_4

Download citation

Publish with us

Policies and ethics