Skip to main content

Foliar Fungal Endophytes in Herbaceous Plants: A Marriage of Convenience?

  • Chapter
  • First Online:
Advances in Endophytic Research

Abstract

Foliar fungal endophytes are widespread in herbaceous plants, although their interactions and ecological roles are little understood. They are phylogenetically and ecologically diverse, with the potential to be influential members of the biotic community. Compositionally, the endophyte community within a plant is determined by both the fungi (genotype, competitive ability, tissue specificity, infection location) and the host (genotype, variations in plant defences, geographical location). The plant–endophyte relationship is dynamic, as fungal composition varies temporally across months and seasons, with subsequent infections occurring after initial colonisation. Transmission generally occurs horizontally via air- or waterborne spores, with hyphae entering the host through stomata or through direct penetration. Contrasting to extensive mycorrhizal fungal colonisation in roots, infection by any one endophyte in aerial parts appears to be limited, due to plant defences, intra- or interspecific competition between endophytes and other factors governing niche occupancy. Fungal endophytes colonise host tissues for at least part of their life cycle, with no apparent outward pathology. Simultaneously, they can benefit their hosts through improved tolerance to biotic stress such as drought, enhanced photosynthesis and transpiration, protection against pathogens through induced plant systemic resistance and the deterrence of phytophagous invertebrates (depending on their feeding guild and degree of specialism). These benefits arise directly from endophyte metabolism or indirectly through the production of compounds that alter the host’s physiology. Thus, the influence of fungal endophytes may pervade beyond their host plant, potentially affecting the nature of plant communities and that of higher tropic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams PD, Kloepper JW (2002) Effect of host genotype on indigenous bacterial endophytes of cotton (Gossypium hirsuta). Plant Soil 240:181–189

    CAS  Google Scholar 

  • Agee CS, Hill NS (1994) Ergovaline variability in Acremonium-infected tall fescue due to environmental and plant genotype. Crop Sci 34:221–226

    Google Scholar 

  • Ahlholm JU, Helander ML, Henriksson J, Metzler M, Saikkonen K (2002a) Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution 56:1566–1573

    PubMed  Google Scholar 

  • Ahlholm JU, Helander M, Lehtimäki S, Wäli P, Saikkonen K (2002b) Vertically transmitted fungal endophytes: different response of host-parasite systems to environmental conditions. Oikos 99:173–183

    Google Scholar 

  • Ahmad S, Govindarajan S, Funk CR, Johnson-Cicalese JM (1985) Fatality of house crickets on perennial ryegrass infected with fungal endophyte. Entomol Exp Appl 39:183–190

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  CAS  Google Scholar 

  • Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe E (1989) Effect of the tall fescue endophyte on plant response to environmental stress. Agron J 81:83–90

    Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges and frontiers. Fungal Biol Rev 21:51–66

    Google Scholar 

  • Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Carson W, Schnitzer S (eds) Tropical forest community ecology. Blackwell Scientific Inc., Malden

    Google Scholar 

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological patterns and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398

    PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Google Scholar 

  • Arnold AE, Mejia LC, Kyllo Dm Rojas E, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100(26):15649–15654

    PubMed  CAS  Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    PubMed  CAS  Google Scholar 

  • Bacon CW (1993) Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agr Ecosyt Environ 44:123–141

    Google Scholar 

  • Barnes SE, Shaw MW (2002) Factors affecting symptom production by latent Botrytis cinerea in Primula × Polyantha. Plant Pathol 5:746–754

    Google Scholar 

  • Barton KE, Koricheva J (2010) The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. Am Nat 175:481–493

    PubMed  Google Scholar 

  • Bascom-Slack CA, Arnold AE, Strobel SA (2012) Student-directed discovery of the plant microbiome and its products. Science 338:485–486

    PubMed  CAS  Google Scholar 

  • Bernays EA (1993) Plant sterols and host-plant affiliations of herbivores. In: Bernays EA (ed) Insect–plant interactions, vol IV. CRC, Boca Raton, pp 45–57

    Google Scholar 

  • Bernstein ME, Carroll GC (1977) Internal fungi in old-growth Douglas fir foliage. Can J Bot 55:644–653

    Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    PubMed  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Breen JP (1994) Acremonium endophyte interactions with enhanced plant resistance to insects. Annu Rev Entomol 39:401–423

    Google Scholar 

  • Bucheli E, Leuchtmann A (1996) Evidence for genetic differentiation between choke-inducing and asymptomatic strains of Epichloë grass endophyte from Brachypodium sylvaticum. Evolution 50:1879–1887

    Google Scholar 

  • Bultman TL, Bell GD (2003) Interaction between fungal endophytes and environmental stressors influences plant resistance to insects. Oikos 103:182–190

    Google Scholar 

  • Bultman TL, Borowicz KL, Schneble RM, Coudron TA, Bush LP (1997) Effect of a fungal endophyte on the growth and survival of two Euplectrus parasitoids. Oikos 78(Fasc 1):170–176

    Google Scholar 

  • Bultman TL, McNeill MR, Goldson SL (2003) Isolate-dependent impacts of fungal endophytes in a multitrophic interaction. Oikos 102:491–496

    Google Scholar 

  • Bultman TL, Bell GD, Martin WD (2004) A fungal endophyte mediates reversal of wound-induced resistance and constrains tolerance in a grass. Ecology 85:679–685

    Google Scholar 

  • Bush LP, Gray S, Burham W (1993) Accumulation of alkaloids during growth of tall fescue. In: Proceedings XVII international grassland congression. Palmerston North, pp 1379–1381

    Google Scholar 

  • Cabral D, Stone JK, Carroll GC (1993) The internal mycoflora of Juncus spp.: microscopic and cultural observations of infection patterns. Mycol Res 9:367–376

    Google Scholar 

  • Campanile G, Ruscelli A, Luisi N (2007) Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta test. Eur J Plant Pathol 117:237–246

    Google Scholar 

  • Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 9:210–220

    Google Scholar 

  • Carrol GC (1999) The foraging ascomycete. In: Abstracts, XVI international botanical congress, St Louis, p 309

    Google Scholar 

  • Carroll GC (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Google Scholar 

  • Carroll GC (1995) Forest endophytes: patterns and processes. Can J Bot 73(S1):1316–1324

    Google Scholar 

  • Carroll GC, Carroll FE (1978) Studies on the incidences of coniferous needle endophytes in the Pacific Northwest. Can J Bot 56:3034–3043

    Google Scholar 

  • Chapela IH, Boddy L (1988) Fungal colonization of attached beech branches. I. Early stages of development of fungal communities. New Phytol 110:39–45

    Google Scholar 

  • Chen J, Hu K, Hou X, Guo S (2011) Endophytic fungal assemblages from 10 Dendrobium medicial plants (Orchidaceae). World J Microbiol Biot 27:1009–1016

    Google Scholar 

  • Christensen MJ, Ball OJ-P, Bennett RJ, Schardl CL (1997) Fungal and host genotype effects on compatibility and vascular colonization by Epichloë festucae. Mycol Res 101:493–501

    Google Scholar 

  • Christensen MJ, Bennette RJ, Schmid J (2002) Growth of Epichloë/Neotyphodium and endophytes in leaves of Lolium and Festuca grasses. Mycol Res 106:93–106

    Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–279

    Google Scholar 

  • Clay K (2004) Fungi and the food of the gods. Nature 427:401–402

    PubMed  CAS  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    PubMed  CAS  Google Scholar 

  • Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127

    Google Scholar 

  • Clement SL, Elberson LR, Youssef NN, Davitt CM (2001) Incidence and diversity of Neotyphodium fungal endophytes in tall fescue from Morocco, Tunisia and Sardinia. Crop Sci 41:570–576

    Google Scholar 

  • Clement SL, Hu J, Steward AV, Wang B, Elberson LR (2011) Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance. J Insect Sci 11:1–13

    Google Scholar 

  • Collado J, Platas G, González I, Peláez F (1999) Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytol 144:525–532

    Google Scholar 

  • Correa OS, Romero AM, Montecchia MS, Soria MA (2007) Tomato genotype and Azospirillum inoculation modulate the changes in bacterial communities associated with roots and leaves. J Appl Microbiol 102:781–786

    PubMed  CAS  Google Scholar 

  • Crawford KM, Land JM, Rudgers JA (2010) Fungal endophytes of native grasses decrease insect herbivore preference and performance. Oecologia 164:431–444

    PubMed  Google Scholar 

  • Currie AF, Murray PJ, Gange AC (2011) Is a specialist root-feeding insect affected by arbuscular mycorrhizal fungi? Appl Soil Ecol 47:77–83

    Google Scholar 

  • Davidson AW, Potter DA (1995) Response of plant-feeding, predatory, and soil-inhabiting invertebrates to Acremonium endophyte and nitrogen fertilization in tall fescue turf. J Econ Entomol 88:367–379

    Google Scholar 

  • Davis EC, Shaw AJ (2008) Biogeographic and phylogentic patterns in diversity of liverwort-associated endophytes. Am J Bot 95:914–924

    PubMed  Google Scholar 

  • Davis EC, Franklin JB, Shaw AJ, Vilgalys R (2003) Endophytic Xylaria (Xylariaceae) amongst liverworts and angiosperms: phylogenetics, distribution and symbiosis. Am J Bot 90:1661–1667

    PubMed  Google Scholar 

  • de Sassi C, Müller CB, Krauss J (2006) Fungal plant endosymbionts alter life history and reproductive success of aphid predators. Proc R Soc Edinb B 273:1301–1306

    Google Scholar 

  • Deckert RJ, Melville L, Peterson RL (2001) Structural features of a Lophodermium endophyte during the cryptic life-cycle in the foliage of Pinus strobus. Mycol Res 105:991–997

    Google Scholar 

  • Devarajan PT, Suryanarayanan TS (2006) Evidence for the role of phytophagous insects in dispersal of non-grass fungal endophytes. Fungal Divers 23:111–119

    Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of natural products with therapeutic potential. Butterworth-Heinemann, Stoneham, pp 49–80

    Google Scholar 

  • Egan S, James S, Holmstrom C, Kjelleberg S (2000) Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicate. Environ Microbiol 4:433–442

    Google Scholar 

  • Elbersen HW, West CP (2006) Growth and water relations of field-grown tall fescue as influenced by drought and endophyte. Grass Forage Sci 51:333–342

    Google Scholar 

  • Eriksen M, Bjureke KE, Dhillion SS (2002) Mycorrhizal plants of traditionally managed Boreal Grasslands in Norway. Mycorrhiza 12:117–123

    PubMed  Google Scholar 

  • Estrada C, Wcislo WT, van Bael S (2013) Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytol 198:241–251

    PubMed  Google Scholar 

  • Faeth SH (2002) Are endophytic fungi generally plant mutualists? Oikos 98:25–36

    Google Scholar 

  • Faeth SH, Bultman TL (2002) Endophytic fungi and interactions among host plants, herbivores and natural enemies. In: Tscharnkte T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 89–123

    Google Scholar 

  • Faeth S, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42:360–368

    PubMed  Google Scholar 

  • Faeth SH, Sullivan TJ (2003) Mutualistic, asexual endophytes in a native grass are usually parasitic. Am Nat 161:310–325

    PubMed  Google Scholar 

  • Fisher P, Petrini O (1987a) Location of fungal endophytes in tissues of Suaeda fruticosa: a preliminary study. Trans Br Mycol Soc 89:246–249

    Google Scholar 

  • Fisher PJ, Petrini O (1987b) Tissue specificity of fungi endophytic in Ulex europaeus. Sydowia 40:46–50

    Google Scholar 

  • Fisher PJ, Petrini O (1992) Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol 120:137–143

    Google Scholar 

  • Fisher PJ, Petrini O, Petrini LE, Descals E (1992) A preliminary study of fungi inhabiting xylem and whole stems of Olea europea. Sydowia 44:117–121

    Google Scholar 

  • Fisher PJ, Graf F, Petrini LE, Sutton BC, Wookey PA (1995) Fungal endophytes of Dryas octopetala from the high arctic polar semidesert and from the Swiss Alps. Mycologia 87:319–323

    Google Scholar 

  • Fledman TS, O’Brien H, Arnold AE (2008) Moth dispersal of mycoparasites and endophytes associated with Claviceps paspali and the grass Paspalum (Poaceae). Microb Ecol 56:742–750

    Google Scholar 

  • Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Bot 96:1455–1464

    CAS  Google Scholar 

  • Frohlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004

    Google Scholar 

  • Gallery RE, Dalling JW, Arnold AE (2007) Diversity, host affinity, and distribution of seed-infecting fungi: a case study with Ceropia. Ecology 88:582–588

    PubMed  Google Scholar 

  • Gamboa MA, Bayman P (2001) Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae). Biotropica 33:352–360

    Google Scholar 

  • Gamboa MA, Laureano S, Bayman P (2002) Measuring diversity of endophytic fungi in leaf fragments: does size matter? Mycopathologia 156:41–45

    PubMed  Google Scholar 

  • Gange AC, Ayres RL (1999) On the relation between arbuscular mycorrhizal colonization and plant benefit. Oikos 87:615–621

    Google Scholar 

  • Gange AC, Bower E, Brown VK (1999) Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits. Oecologia 120:123–131

    Google Scholar 

  • Gange AC, Brown VK, Aplin DM (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett 6:1051–1055

    Google Scholar 

  • Gange AC, Dey S, Currie AF, Sutton BC (2007) Site- and Species-specific differences in endophyte occurrence in two herbaceous hosts. J Ecol 95:614–622

    Google Scholar 

  • Gange AC, Eschen R, Wearn JA, Thawer A, Sutton BC (2012) Differential effects of foliar endophytic fungi on insect herbivores attacking a herbaceous plant. Oecologia 168:1023–1031

    PubMed  Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110:318–327

    PubMed  Google Scholar 

  • Gaynor DL, Rowan DD, Latch GMC, Pilkington S (1983) Preliminary results on the biochemical relationship between adult Argentine stem weevil and two endophytes in ryegrass. Proc NZ Weed Pest Control Conf 36:220–224

    Google Scholar 

  • Gazis R, Miadlikowska J, Lutzoni F, Arnold AE, Chaverri P (2012) Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: Xylonomycetes. Mol Phylogenet Evol 65:294–304

    PubMed  CAS  Google Scholar 

  • Gibert A, Volaire F, Barre P, Hazard L (2012) A fungal endophyte reinforces population adaptive differentiation in its host grass species. New Phytol 194:561–571

    PubMed  Google Scholar 

  • Gibert A, Magda D, Hazard L (2013) Endophytic fungus fine-tunes the persistence strategy of its alpine host grass in response to soil resource levels. Oikos 122:367–376

    Google Scholar 

  • Gloer JB (1997) Applications of fungal ecology in the search for new bioactive natural products. In: Wicklow DT, Soderstrom BE (eds) The mycota, vol. IV. Environmental and microbial relationships. Springer, New York, pp 249–268

    Google Scholar 

  • Göre ME, Bucak C (2007) Geographical and seasonal influences on the distribution of fungal endophytes in Laurus nobilis. For Pathol 37:281–288

    Google Scholar 

  • Gundel PE, Martinez-Ghersa MA, Omacini M, Cuyeu R, Pagano E, Rios R, Ghersa CM (2012) Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background. Evol Appl 5:838–849

    PubMed  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    PubMed  CAS  Google Scholar 

  • Helander ML, Neuvonen S, Sieber T, Petrini O (1993) Simulated acid rain affects birch leaf endophyte populations. Microb Ecol 26:227–234

    PubMed  CAS  Google Scholar 

  • Herre EA, Van Bael SA, Maynard Z, Robbins N, Bischoff J, Arnold AE, Rojas E, Mejia LC, Cordero RA, Woodward C, Kyllo DA (2005) Tropical plants as chimera, some implications of foliar endophytic fungi for the study of host plant defense, physiology and genetics. In: Burslem DFRP, Pinard MA, Hartley SE (eds) Biotic interactions in the tropics. Cambridge University Press, Cambridge, pp 226–237

    Google Scholar 

  • Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstoff K, Diepenbrock W, Merbach W (2003) Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass Forage Sci 58:407–415

    Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    PubMed  CAS  Google Scholar 

  • Hodgson S (2010) Foliar fungal endophyte dynamics in herbaceous hosts. PhD thesis, University of London, London

    Google Scholar 

  • Hoffman MT, Arnold AE (2008) Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycol Res 112:331–344

    PubMed  CAS  Google Scholar 

  • Hunt MG, Newman JA (2005) Reduced herbivore resistance from a novel grass-endophyte association. J Appl Ecol 42:762–769

    Google Scholar 

  • Jani AJ, Faeth SH, Gardner D (2010) Asexual endophytes and associated alkaloids alter arthropod community structure and increase herbivore abundances on a native grass. Ecol Lett 13:106–117

    PubMed  Google Scholar 

  • Johnston PR (1998) Leaf endophytes of manuka (Leptospermum scoparium). Mycol Res 102:1009–1016

    Google Scholar 

  • Jordaan A, Taylor JE, Rossenkham R (2006) Occurrence and possible role of endophytic fungi associated with the seed pods of Colophospermum mopane (Fabaceae) in Botswana. S Afr J Bot 72:245–255

    Google Scholar 

  • Junker C, Draeger S, Schultz B (2012) A fine line – endophytes or pathogens in Arabidopsis thaliana. Fungal Ecol 5:657–662

    Google Scholar 

  • Klerks MN, Franz E, van Gent-Pelzer M, Zijlstra C, van Bruggen AHC (2007) Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. ISME J 1:620–631

    PubMed  Google Scholar 

  • Kloepper JW (2002) Effect of host genotype on indigenous bacterial endophytes of cotton (Gossypium hirsutum L.). Plant Soil 240:181–189

    Google Scholar 

  • Knoch TR, Faeth SH, Arnott DS (1993) Fungal endophytes: plant mutualists via seed predation and germination. Bull Ecol Soc Am 74(Abstr):313

    Google Scholar 

  • Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–824

    PubMed  CAS  Google Scholar 

  • Krauss J, Härri SA, Bush LP, Husi R, Bigler L, Power SA, Müller CB (2007) Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies. Funct Ecol 21:107–116

    Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    Google Scholar 

  • Lacey LA, Neven LG (2006) The potential of the fungus, Muscodor albus, as a microbial control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. J Invertebr Pathol 9:195–198

    Google Scholar 

  • Latch GCM, Christensen MJ, Gaynor DL (1985) Aphid detection of endophyte infection in tall fescue. NZ J Agric Res 28:129–132

    Google Scholar 

  • Lehtonen P, Helander M, Saikkonen K (2005) Are endophyte-mediated effects on herbivores conditional on soil nutrients? Oecologia 142:38–45

    PubMed  Google Scholar 

  • Leuchtmann A, Schmidt D, Bush LP (2000) Different levels of protective alkaloids in grasses with stroma-forming and seed transmitted Epichloë/Neotyphodium endophytes. J Chem Ecol 26:1025–1036

    CAS  Google Scholar 

  • Lewis GC, Clements RO (1986) A survey of ryegrass endophyte (Acremonium loliae) in the UK and its apparent ineffectuality on a seedling pest. J Agr Sci 107:633–663

    Google Scholar 

  • Lodge DJ, Fisher PJ, Sutton BC (1996) Endophytic fungi of Manikara bidentata leaves in Puerto Rico. Mycologia 88:733–738

    Google Scholar 

  • Lu G, Cannon PF, Reid A, Simmons CM (2004) Diversity and molecular relationships of endophytic Colletotrichum isolates from the Iwokrama Forest Reserve, Guyana. Mycol Res 108:53–63

    PubMed  CAS  Google Scholar 

  • Lucero ME, Barrow JR, Osuna P, Reyes I (2006) Plant-fungal interactions in arid and semi-arid ecosystems: large scale impacts from microscale process. J Arid Environ 65:276–284

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    CAS  Google Scholar 

  • Malinowski D, Leuchtmann A, Schmidt D, Nösberger J (1997) Symbiosis with Neotyphodium uncinatum endophyte may increase the competitive ability of meadow fescue. Agron J 89:833–839

    Google Scholar 

  • Marquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant – three way symbiosis required for thermal tolerance. Science 315:513–515

    PubMed  CAS  Google Scholar 

  • Marquez SS, Bills GF, Herrero N, Zabalgogeazcoa I (2012) Non-systemic fungal endophytes of grasses. Fungal Ecol 5:289–297

    Google Scholar 

  • McGee PA (2002) Reduced growth and deterrence from feeding of the insect pest Helicoverpa armigera associated with fungal endophytes from cotton. Aus J Exp Agr 42:995–999

    Google Scholar 

  • Meister B, Krauss J, Harri SA, Schneider MV, Müller CB (2006) Fungal endosymbionts affect aphid population size by reduction of adult life span and fecundity. Basic Appl Ecol 7:244–252

    Google Scholar 

  • Miller JD, Mackenzie S, Foto M, Adams GW, Findlay JA (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contain rugulosin reducing spruce budworm growth rate. Mycol Res 106:471–479

    Google Scholar 

  • Monk KA, Samuels GJ (1990) Mycopaghy in grasshoppers (Orthoptera Acrididae) in Indo-Malayan rain forest. Biotropica 22:16–21

    Google Scholar 

  • Morse LJ, Faeth SH, Day TA (2007) Neotyphodium interactions with a wild grass are driven mainly by endophyte haplotype. Funct Ecol 21:813–822

    Google Scholar 

  • Mucciarelli M, Scannerini S, Bertea C, Maffei M (2003) In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonisation. New Phytol 158:579–591

    Google Scholar 

  • Narisawa LA, Kawamata H, Currah RS, Hashiba T (2002) Suppression of Verticillium wilt in eggplant by some fungal root endophytes. Eur J Plant Pathol 108:103–109

    Google Scholar 

  • Newcombe G, Shipunov A, Eigenbrode SD, Raghavendra AKH, Ding H, Anderson CL, Menjivar R, Crawford M, Schwarzlände M (2009) Endophytes influence protection and growth of an invasive plant. Commun Integr Biol 2:29–31

    PubMed  Google Scholar 

  • Newsham KK (1994) First record of intracellular sporulation by a coelomycete fungus. Mycol Res 98:1390–1392

    Google Scholar 

  • Nishida T, Katayama N, Izumi N, Ohgushi T (2010) Arbuscular mycorrhizal fungi species-specificity affect induced plant responses to a spider mite. Popul Ecol 52:507–515

    Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Müller CB (2001) Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 409:78–81

    PubMed  CAS  Google Scholar 

  • Pan JJ, Clay K (2004) Epichloë glyceriae infection affects carbon translocation in the grass Glyceria striata. New Phytol 164:467–475

    Google Scholar 

  • Pan JJ, Baumgarten AM, May G (2008) Effects of host plant environment and Ustilago maydis infection on the fungal endophyte community of maze (Zea mays). New Phytol 178:147–156

    PubMed  Google Scholar 

  • Parker JE, Holub EB, Forst LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8:2033–2046

    PubMed  CAS  Google Scholar 

  • Peláez F, Collado J, Arenal F, Basilio A, Cabello A, Diez Matas MT (1998) Endophytic fungi from plants living on gypsum soil as a source of secondary metabolites with antimicrobial activity. Mycol Res 102:755–761

    Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokenna NJ, van den Heuvel J (eds) Microbiology of the phylosphere. Cambridge University Press, Cambridge, pp 175–187

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial Ecology of Leaves. Springer, New York, pp 179–197

    Google Scholar 

  • Petrini O, Stone J, Carroll FE (1982) Endophytic fungi in evergreen shrubs in western Oregon: a preliminary study. Can J Bot 60:789–796

    Google Scholar 

  • Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowery T, Natvig DO (2008) Novel root fungal consortium associated with a dominant desert grass. Appl Environ Microbiol 74:2805–2813

    PubMed  CAS  Google Scholar 

  • Posada F, Vega FE (2005) Establishment of the fungal entomopathogen Beauveria baasiana (Ascomycota: Hyocreales) as an endophyte in cocoa seedlings (Theobroma cocao). Mycologia 97:1195–1200

    PubMed  Google Scholar 

  • Prestidge RA, Pottinger RP, Barker GM (1982) An association of Lolium endophyte with ryegrass resistance to Argentine stem weevil. In: Proceedings of the 35th New Zealand weed and pest control, Hamilton, pp 119–122

    Google Scholar 

  • Rajagopal K, Suryanarayanan TS (2000) Isolation of endophytic fungi from leaves of neem (Azadirachta indica A. Juss). Curr Sci 78:1375–1377

    Google Scholar 

  • Rasche F, Trondl R, Naglreiter C, Reichenauer TG, Sessitsch A (2006) Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum). Can J Microbiol 52:1036–1045

    PubMed  CAS  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal Symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716

    Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson MJ (2002a) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581

    PubMed  CAS  Google Scholar 

  • Redman RS, Roossinck MJ, Maher S, Andrews QC, Schneider WL, Rodriguez RJ (2002b) Field performance of cucurbit and tomato plants colonised by a non-pathogenic, mutualistic mutant (path-1) of Colletotrichum magna (Teleomorph: Glomerella magna; Jenkins and Winstead). Symbiosis 32:55–70

    Google Scholar 

  • Rodrigues KF (1994) The foliar endophytes of the Amazonian palm Euterpe oleracea. Mycologia 86:376–385

    Google Scholar 

  • Rodrigues AAC, Menezes M (2005) Identification and pathogenic characterization of endophytic Fusarium species from cowpea seeds. Mycopathologia 159:79–85

    PubMed  CAS  Google Scholar 

  • Rodrigues KF, Sieber TN, Gruenig CR, Holdenrieder O (2004) Characterization of Guinnardia mangiferae isolated from tropical plants based upon morphology, ISSR-PCR amplifications and ITSI-5.8S-ITS2 sequences. Mycol Res 108:45–52

    PubMed  CAS  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    PubMed  CAS  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strateg Glob Chang 9:261–272

    Google Scholar 

  • Rodriguez RS, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kin YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009a) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    PubMed  CAS  Google Scholar 

  • Rodriguez RJ, Freeman DC, McArthur ED, Ki YO, Redman RS (2009b) Symbiotic regulation of plant growth, development and reproduction. Commun Integr Biol 2:141–143

    PubMed  Google Scholar 

  • Roger A, Gétaz M, Rasmann S, Sanderd IR (2013) Identity and combinations of arbuscular mycorrhizal fungal isolates influence plant resistance and insect preference. Ecol Entomol. doi:10.1111/een.12022

    Google Scholar 

  • Rosenberg E, Sharon G, Zilber-Rosenberg I (2009) The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ Microbiol 11:2959–2962

    PubMed  Google Scholar 

  • Rudgers JA, Miller TEX, Ziegler SM, Craven KD (2012) There are many ways to be a mutualist: endophytic fungus reduces plant survival but increases population growth. Ecology 93:565–574

    PubMed  Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21:67–74

    Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Google Scholar 

  • Saikkonen K, Helander ML, Faeth SH, Schultthess F, Wilson D (1999) Endophyte-grass-herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia 121:411–420

    Google Scholar 

  • Saikkonen K, Helander ML, Rousi M (2003) Endophytic foliar in Betula pendula. For Pathol 31:321–329

    Google Scholar 

  • Saikkonen K, Wali P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    PubMed  CAS  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte grass literature. Trends Plant Sci 11:428–433

    PubMed  CAS  Google Scholar 

  • Schäfer P, Khatabi B, Kogel KH (2007) Root cell death and systemic effects of Piriformospora indica: a study on mutualism. FEMS Microbiol Lett 275:1–7

    PubMed  Google Scholar 

  • Schardl CL, Clay K (1997) Evolution of mutalistic endophytes from plant pathogens. In: Carroll GC, Tudzynski P (eds) The mycota V. Part B, plant relationships. Springer, Berlin, pp 221–238

    Google Scholar 

  • Schardl CL, Leuchtmann A, Chung KR, Penny D, Siegel MR (1997) Coevolution by common descent of fungal symbionts (Epichloë spp.) and grass hosts. Mol Biol Evol 14:133–143

    CAS  Google Scholar 

  • Schulz C, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  • Schulz B, Guske S, Damman U, Boyle C (1998) Endophyte-host interactions II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227

    Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of biologically active secondary metabolites. Mycol Res 106:996–1004

    CAS  Google Scholar 

  • Schweitzer JA, Bailey JK, Bangert RK, Hart SC, Whitham TG (2006) The role of plant genetics in determining above- and below-ground microbial communities. In: Bailey MJ, Lilley AK, Timms-Wilson PTN, Spencer-Phillips PTN (eds) Microbial ecology of the aerial plant surface. CABI, Wallingford, pp 107–119

    Google Scholar 

  • Selosse MA, Vohnik M, Chauvet E (2008) Out of the rivers: are some aquatic hyphomycetes plant endophytes? New Phytol 178:3–7

    PubMed  Google Scholar 

  • Sieber TN (2002) Fungal root endophytes. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 887–917

    Google Scholar 

  • Siegel MR, Latch GCM, Bush LP, Fannin FF, Rowen DD, Tapper BA, Bacon CW, Johnson MC (1990) Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. J Chem Ecol 16:3301–3315

    CAS  Google Scholar 

  • Sinclair JB, Cerkauskas RF (1996) Latent infection vs. endophyte colonization by fungi. In: Carris LM, Redlin CS (eds) Endophytic fungi in grasses and woody plants. American Phytopathological Society Press, St Paul

    Google Scholar 

  • Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Annu Rev Phytopathol 37:473–491

    PubMed  CAS  Google Scholar 

  • Stewart JA, Chadwick VS, Murray A (2005) Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J Med Microbiol 54:1239–1242

    PubMed  CAS  Google Scholar 

  • Stone JK (1987) Initiation and development of latent infections by Rhabdocline parkeri on Douglas – fir. Can J Bot 65:2614–2621

    Google Scholar 

  • Stone JK (1988) Fine structure of latent infections by Rhabdocline parkeri on Douglas fir, with observation of uninfected epidermal cells. Can J Bot 66:45–54

    Google Scholar 

  • Stone JK, Viret O, Petrini O, Chapela I (1994) Histological studies of host penetration and colonization by endophytic fungi. In: Petrini O, Ouellette GB (eds) Host wall alterations by parasitic fungi. American Phytopathological Society Press, St Paul, pp 115–128

    Google Scholar 

  • Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York

    Google Scholar 

  • Suryanarayan TS, Murali TS (2006) Incidence of Leptosphaerulina crassiasca in symptomless leaves of peanut in Southern India. J Basic Microbiol 46:305–309

    Google Scholar 

  • Swarthout D, Harper E, Judd S, Gonthier D, Shyne R, Stowe T, Bultman T (2009) Measures of leaf-level water-use efficiency in drought stressed endophyte infected and non-infected tall fescue grasses. Environ Exp Bot 66:88–93

    Google Scholar 

  • Tikhonovich IA, Provorov NA (2009) From plant-microbe interactions to symbiogenetics: a universal paradigm for the interspecies genetic integration. Ann Appl Biol 154:341–350

    Google Scholar 

  • Tudzynski B, Sharon A (2002) Biosynthesis, biological role and application of fungal phyto-hormones. In: Osiewacz HD (ed) The mycota x. Industrial applications. Springer, Berlin

    Google Scholar 

  • Vaahtovuo J, Toivanen P, Eerola E (2003) Bacterial composition of murine faecal microflora is indigenous and genetically guided. FEMS Microbiol Ecol 44:131–136

    PubMed  CAS  Google Scholar 

  • Valenzuela-Soto JH, Estrada-Hernandez MG, Ibarra-Laclette E, Delano-Frier JP (2010) Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta 231(2):397–410

    PubMed  CAS  Google Scholar 

  • van Bael SA, Valencia MC, Rojas EI, Gómez N, Windsor DM, Herre EA (2009a) Effects of foliar endophytic fungi on the preference and performance of the leaf beetle Chelymorpha alternans in Panama. Biotropica 4:221–225

    Google Scholar 

  • van Bael SA, Fernández-Marín H, Valencia MC, Rojas EI, Wcislo WT, Herre EA (2009b) Two fungal symbioses collide: endophytic fungi are not welcome in leaf-cutting ant gardens. Proc R Soc Lond B276:2419–2426

    Google Scholar 

  • van Dam NM, Heil M (2011) Multitrophic interactions below and above ground: en route to the next level. J Ecol 99:77–88

    Google Scholar 

  • Van der Heijden MGA (2004) Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecol Lett 7:293–303

    Google Scholar 

  • van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  • Vicari M, Hatcher PE, Ayres PG (2002) Combined effect of foliar and mycorrhizal endophytes on an insect herbivore. Ecology 83:2452–2464

    Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Hier T, Hűckelhoven R, Neumann C, von Wettsein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    PubMed  CAS  Google Scholar 

  • Wang W, Vincur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    PubMed  CAS  Google Scholar 

  • Washington WS, Stewart-Wade S, Hood V (1999) Phomopsis castanea, a seed-borne endophyte in chestnut trees. Aust J Bot 47:77–84

    Google Scholar 

  • Wawrzynska A, Christiansen KM, Lan Y, Rodibaugh NL, Innes RW (2008) Powdery mildew resistance conferred by loss of the enhanced disease resistance1 protein kinase is suppressed by a missense mutation in keep on going, a regulator of abscisic acid signaling. Plant Physiol 148:1510–1522

    PubMed  CAS  Google Scholar 

  • Wawrzynska A, Rodibaugh NL, Innes RW (2010) Synergistic activation of defense responses in Arabidopsis by simultaneous loss of GSL5 callose synthase and the EDR1 protein kinase. Mol Plant Microbe Interact 23(5):578–584

    PubMed  CAS  Google Scholar 

  • Wearn J (2009) Pithomyces chartarum – a fungus on the up? Field Mycol 10:36–37

    Google Scholar 

  • Wearn JA, Sutton BC, Morley NJ, Gange AC (2012) Species and organ specificity of fungal endophytes in herbaceous grassland plants. J Ecol 100:1085–1092

    Google Scholar 

  • Webber J (1981) A natural biological-control of Dutch elm disease. Nature 292:449–451

    Google Scholar 

  • Weber RWS, Stenger E, Meffert A, Hahn M (2004) Brefeldin-A production by Phoma medicaginis in dead pre-colonized plant tissue: a strategy for habitat conquest. Mycol Res 108:662–671

    PubMed  CAS  Google Scholar 

  • Welty RE, Craig AM, Azevedo MD (1994) Variability of ergovaline in seeds and straw and endophyte infection in seeds among endophyte-infected genotypes of tall fescue. Plant Dis 78:845–849

    CAS  Google Scholar 

  • White PS, Pickett STA (1985) Natural disturbance and patch dynamics: an introduction. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, pp 3–13

    Google Scholar 

  • Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant Microbe Interact 1:1027–1033

    Google Scholar 

  • Williamson RC, Potter DA (1997) Turfgrass species and endophyte effects on survival, development, and feeding preference of black cutworms (Lepidoptera: Noctuidae). J Econ Entomol 90:1290–1299

    Google Scholar 

  • Wilson D, Carroll GC (1994) Infection studies of Discula quercina an endophyte of Quercus garryana. Mycologia 86:635–647

    Google Scholar 

  • Yuan ZL, Zhang C-L, Lin F-C (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126

    CAS  Google Scholar 

  • Zheng RY, Jiang H (1995) Rhizomucor endophyticus sp. Nov., an endophytic zygomycetes from higher plants. Mycotaxon 56:455–466

    Google Scholar 

  • Zoetendal EG, Akkermans ADL, Akkermans-van Vliet WM, de Visser JAGM, de Vos WM (2001) The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13:129–134

    Google Scholar 

  • Züst T, Härris SA, Müller CB (2008) Endophytic fungi decrease available resources for the aphid Rhopa-losiphum padi and impair their ability to induce defences against predators. Ecol Entomol 33:80–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda F. Currie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Currie, A.F., Wearn, J., Hodgson, S., Wendt, H., Broughton, S., Jin, L. (2014). Foliar Fungal Endophytes in Herbaceous Plants: A Marriage of Convenience?. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_3

Download citation

Publish with us

Policies and ethics