Skip to main content

Microbial Endophytes: Future Challenges

  • Chapter
  • First Online:
Advances in Endophytic Research

Abstract

Endophytes are represented by a diverse group of prokaryotic (bacteria or cyanobacteria) or eukaryotic (fungi or parasitic vascular plants) organisms that form lifelong associations within tissues of plants. Ecologically, these associations are viewed as mutualistic and as sources of secondary metabolites capable of serving as novel medicinals and agrichemicals. It is this area that serve to stimulate the large research investigations from all parts of the planet. The challenges as we see them are multifaceted. These include an understanding of the genetics nature of microbial endophytes, how endophytes communicate and partition themselves within hosts, how do these biotrophic organisms obtain nutrients, and are specific nutrient acquisitions key to the final effects observed? Further, are there basic difference between bacterial endophytes and fungal endophytes? What influence the host interactions to produce the desired effects, and how is the stability of the system affected. Thus, future challenges are dependent on identifying, delineating, dissecting, and defining the mechanisms whereby hosts and their symbionts accomplish this curious lifestyle. Defining these biological mechanisms will ensure the present and future successful technological applications of microbial endophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arechavaleta M, Bacon CW, Plattner RD et al (1992) Accumulation of ergopeptide alkaloids in symbiotic tall fescue grown under deficits of soil water and nitrogen fertilizer. Appl Environ Microbiol 58:857–861

    PubMed  CAS  Google Scholar 

  • Bacon CW (1985) A chemically defined medium for the growth and synthesis of ergot alkaloids by the species of Balansia. Mycologia 77:418–423

    Article  CAS  Google Scholar 

  • Bacon CW (1988) Procedure for isolating the endophyte from tall fescue and screening isolates for ergot alkaloids. Appl Environ Microbiol 54:2615–2618

    PubMed  CAS  Google Scholar 

  • Bacon CW, Porter JK, Robbins JD et al (1977) Epichloe typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581

    PubMed  CAS  Google Scholar 

  • Bacon CW, Hinton DM, Mitchell TR et al (2012) Characterization of endophytic strains of Bacillus Mojavensis and their production of surfactin isomers. Biol Control 62:1–9

    Article  CAS  Google Scholar 

  • Bailly J, Fraissinet-Tachet L, Verner M-C (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1:632–642

    Article  PubMed  CAS  Google Scholar 

  • Bashyal B, Li JY, Strobel G et al (1999) Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from himalayan yew (Taxus Wallachiana). Mycotaxon 72:33–42

    Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    Article  PubMed  CAS  Google Scholar 

  • Draper J, Rasmussen S, Zubair H (2011) Metabolite analysis and metabolomics in the study of biotrophic interactions between plants and microbes. In: Biology of plant metabolomics, Blackwell Publishing, Oxford. Ann Plant Rev 43:1–24

    Google Scholar 

  • Duang LM, Jeewon R, Lumyoung S et al (2006) DGGE coupled with ribosomal DNA phylogenies reveal uncharacterized fungal phylotypes on living leaves of Magnolia Liliifera. Fungal Divers 23:121–138

    Google Scholar 

  • Felitti S, Shields K, Ramsperger M et al (2006) Transcriptome analysis of Neotyphodium and Epichloe grass endophytes. Fungal Genet Biol 43:465–475

    Article  PubMed  CAS  Google Scholar 

  • Findlay JA, Buthelezi S, Lavoie R et al (1995) Bioactive isocoumarins and related metabolites from conifer endophytes. J Nat Prod 58:1759–1766

    Article  PubMed  CAS  Google Scholar 

  • Germida JJ, Siciliano SD, De Freitas JR (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus) and wheat (Triticum aestivum). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol Phylogenet Evol 20:1–13

    Article  CAS  Google Scholar 

  • Hallmann J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant-pathogen associations. CABI Publishing, New York, pp 87–119

    Chapter  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF et al (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Handelman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  Google Scholar 

  • Hoff JA, Klopfenstein NB, McDonald GI (2004) Fungal endophytes in woody roots of Douglas-fir (Pseudotsuga menziesii) and Ponderosa pine (Pinus ponderosa). For Pathol 34:255–271

    Article  Google Scholar 

  • Hunt MG, Rasmussen S, Newton PCD et al (2005) Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on Lolium perenne L. growth, chemical composition and alkaloid production. Plant Cell Environ 28:1345–1354

    Article  CAS  Google Scholar 

  • Imada C, Koseki N, Kmata M et al (2007) Isolation and characterization of antibacterial substances produced by marine actinomycetes in the presence of seawater. Actinomycetologica 21:27–31

    Article  CAS  Google Scholar 

  • Klitgord N, Segre D (2010) Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 6:e1001002

    Article  PubMed  Google Scholar 

  • Li QY, Zu YG, Shi RZ et al (2006) Review camptothecin: current perspectives. Curr Med Chem 13:2021–2039

    Article  PubMed  CAS  Google Scholar 

  • Lin FC, Liu XH, Wang KK et al (2003) Recent research and prospect on taxol and its producing fungi. Appl Microbiol Biotechnol 86:1701–1717

    Google Scholar 

  • Liu K, Ding X, Chen CL (2006) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 43:534–538

    Google Scholar 

  • Lyons PC, Evans JJ, Bacon CW (1990) Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol 92:726–732

    Article  PubMed  CAS  Google Scholar 

  • Matsumura H, Reich S, Ito A et al (2003) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci U S A 100:15718–15723

    Article  PubMed  CAS  Google Scholar 

  • Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents Biotech 4:81–95

    Article  CAS  Google Scholar 

  • Mundy J, Nielsen HB, Brodersen P (2006) Crosstalk. Trends Plant Sci 11:63–64

    Article  PubMed  CAS  Google Scholar 

  • Murray FR, Latch GCM, Scott DB (1992) Surrogate transformation of perennial ryegrass Lolium perenne, using genetically modified Acremonium endophyte. Mol Gen Genet 233:1–9

    Article  PubMed  CAS  Google Scholar 

  • Parish JA, McCann MA, Watson RH et al (2003a) Use of nonergot alkaloid-producing endophytes for alleviating tall fescue toxicosis in sheep. J Anim Sci 81:1316–1322

    PubMed  CAS  Google Scholar 

  • Parish JA, McCann MA, Watson RH et al (2003b) Use of nonergot alkaloid-producing endophytes for alleviating tall fescue toxicosis in stocker cattle. J Anim Sci 81:2856–2868

    PubMed  CAS  Google Scholar 

  • PatentStorm (2013) Endophytes. http://www.patenstorm.us/patents/6060051.html. Accessed 29 Jan 2013

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, Van Den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 175–187

    Google Scholar 

  • Petrini O (1990) Endophytic fungi in British ericaceae: a preliminary study. Trans Br Mycol Soc 83:510–512

    Article  Google Scholar 

  • Petrini LE, Petrini O (1989) Recovery of endophytes of Abies balsamea from needles and galls of Paradiplosis tumifex. Phytoprotection 70:97–103

    Google Scholar 

  • Pirttila AM, Laukkanen H, Pospiech H et al (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077

    Article  PubMed  CAS  Google Scholar 

  • Priti V, Ramesha BT, Sing S et al (2009) Opinion: how promising are endophytic fungi as alternative sources of plant secondary metabolites? Curr Sci 97:477–478

    Google Scholar 

  • Rasmussen S, Parsons AJ, Liu Q, Xue H et al (2007) High nutrient supply and carbohydrate content reduce endophyte and alkaloid concentration. In: Popay AJ, Thom ER (eds) Proceedings of the 16th international symposium on fungal endophytes of grasses. New Zealand Grassland Research Association, Dunedin, pp 135–138

    Google Scholar 

  • Rasmussen S, Parson AJ, Newman JA (2009) Metabolomics analysis of the lolium perenne-Neotyphodium lolii symbiosis: more than just alkaloids? Phytochem Rev 8:535–550

    Article  CAS  Google Scholar 

  • Rasmussen S, Parsons AJ, Fraser K et al (2012) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. Plant Physiol 146:1440–1453

    Article  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K, Wali P, Helander M et al (2001) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    Article  Google Scholar 

  • Schardl CL (1994) Molecular and genetic methodologies and transformation of grass endophytes. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, pp 151–165

    Google Scholar 

  • Schardl CL, Moon CD (2003) Processes of species evolution in Ephchloe/Neotyphodium endophytes of grasses. In: White JF Jr, Bacon CW, Hywel-Jones NL, Spatafora JW (eds) Clavicipitalean fungi. Marcel Dekker, New York, pp 273–310

    Google Scholar 

  • Schardl CL, Phillips TD (1997) Protective grass endophytes: where are they from and where are they going. Plant Dis 81:430–438

    Article  Google Scholar 

  • Schulz B, Guske S, Dammann U (1998) Endophyte host interactions II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227

    Google Scholar 

  • Scott B, Schardl C (1993) Fungal symbionts of grasses: evolutionary insights and agricultural potential. Trends Microbiol 1:196–200

    Article  PubMed  CAS  Google Scholar 

  • Soliman SSM, Tsao R, Raizada MN (2011) Chemical inhibitors suggests endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways. J Nat Prod 74:2497–2504

    Article  PubMed  CAS  Google Scholar 

  • Southcott KA, Johnson JA (1997) Isolation of endophytes from two species of palm, from Bermuda. Can J Microbiol 43:789–792

    Article  CAS  Google Scholar 

  • Stierle AA, Stierle DB (2005) Bioprospecting in the Berkeley pit: bioactive metabolites from acid mine waste extremophiles. Stud Nat Prod Chem 32:1123–1175

    Article  CAS  Google Scholar 

  • Strobel GA (2002) Rainforest endophytes and bioactive compounds. Crit Rev Biotechnol 22:315–333

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Yang XS, Sears J et al (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440

    Article  PubMed  CAS  Google Scholar 

  • Strobel GA, Miller RV, Martinez-Miller C et al (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926

    Article  PubMed  CAS  Google Scholar 

  • Strobel GA, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:268

    Article  Google Scholar 

  • Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467

    Article  Google Scholar 

  • Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the Mangrove Rhizophora. Can J Microbiol 44:1003–1006

    CAS  Google Scholar 

  • Tanaka A, Tapper B, Popay AJ et al (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D et al (2006) Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D et al (2007) Endophyte production of reactive oxygen species is critical for maintaining the mutualistic symbiotic interaction between Epichloe festucae and Pooid grasses. In: Popay AJ, Thom ER (eds) Proceedings of the 6th international symposium on fungal endophytes of grasses, New Zealand Grassland Association, Dunedin, pp 185–188

    Google Scholar 

  • Taylor JE, McAinsh MR (2004) Signalling crosstalk in plants: emerging issues. J Exp Bot 55:147–149

    Article  PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: Mechanisms and antifungal metabolites. In: Stacy G, Keen NT (eds) Plant-microbe-interactions. Chapman and Hall, New York, pp 187–235

    Chapter  Google Scholar 

  • Tsai H-F, Siegel MR, Schardl CL (1992) Transformation of Acremonium coenophialum, a protective fungal symbiont of the grass Festuca arundinacea. Curr Genet 22:399–406

    Article  PubMed  CAS  Google Scholar 

  • Wenzel S, Muller R (2005) Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol 16:594–606

    Article  PubMed  CAS  Google Scholar 

  • Wrede C, Dreier A, Kokoschka S et al (2012) Archaea in symbioses. Archaea 2012

    Google Scholar 

  • Young CA, Bryant MK, Christensen MJ et al (2005) Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol Genet Genomics 274:13–29

    Article  PubMed  CAS  Google Scholar 

  • Yu HZC, Guo L, Li W et al (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449

    Article  PubMed  CAS  Google Scholar 

  • Zhang HR, Boghigian BA, Armando JE et al (2011) Methods and options for the heterologous production of complex natural products. Nat Prod Rep 28:125–151

    Article  PubMed  Google Scholar 

  • Zhou XZH, Liu L, Lin J (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1701–1717

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Bacon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Bacon, C.W., Hinton, D.M. (2014). Microbial Endophytes: Future Challenges. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_22

Download citation

Publish with us

Policies and ethics