Skip to main content

Endophytes as a Novel Source of Bioactive New Structures

  • Chapter
  • First Online:
Advances in Endophytic Research

Abstract

Fighting the existing and emerging diseases is one of the big challenges of this age, as the appearance of drug-resistant pathogens is an alarming phenomenon, globally. To address this matter of urgency, researchers and pharmaceutical companies have to revive efforts to develop completely new classes of pharmaceuticals. Natural products have proved a fascinating resource in the continued search for new drug candidates. Among various natural sources, microorganisms represent a sustainable and reproductive source of bioactive compounds, where endophytes are considered a hidden component. Endophytes have fascinating potential for a source of new drug leads as they have capacity to synthesize organic compound of diverse structural features. Most of the promising natural products are available only in extremely small quantities, which necessitate substantial efforts to produce required amounts for pharmacological testing. In addition, many natural products have highly complex structures, complicating commercial production through chemical synthesis. The majority of such drug candidates remains pharmacologically undeveloped due to the perceived supply problem and anticipated higher production costs. Therefore, new methods and techniques such as metagenomics and metatranscriptomics are needed to facilitate production of such compounds for pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037–1050

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Banik JJ, Brady SF (2010) Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr Opin Microbiol 13:603–609

    Article  PubMed  CAS  Google Scholar 

  • Blainey PC (2013) The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev. doi:10.1111/1574-6976.12015

    PubMed  Google Scholar 

  • Budhiraja A, Nepali K, Sapra S et al (2013) Bioactive metabolites from an endophytic fungus of Aspergillus species isolated from seeds of Gloriosa superba Linn. Med Chem Res 22:323–329

    Article  CAS  Google Scholar 

  • Butler MS (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25:475–516

    Article  PubMed  CAS  Google Scholar 

  • Canel C, Moraes RM, Dayan FE et al (2000) Molecules of interest: podophyllotoxin. Phytochemistry 54:115–120

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Wu L, Boden R et al (2009) Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J 3:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    Article  PubMed  CAS  Google Scholar 

  • Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043

    Article  PubMed  CAS  Google Scholar 

  • Cueto M, Jensen PR, Kauffman C et al (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446

    Article  PubMed  CAS  Google Scholar 

  • Dunbar J, Ticknor LO, Kuske CR (2000) Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl Environ Microbiol 66:2943–2950

    Article  PubMed  CAS  Google Scholar 

  • Elsebai MF, Kehraus S, Gütschow M et al (2010) Spartinoxide, a new enantiomer of A82775C with inhibitory activity toward HLE from the marine-derived fungus Phaeosphaeria spartinae. Nat Prod Commun 5:1071–1076

    PubMed  CAS  Google Scholar 

  • Elsebai MF, Lindequist U, Gütschow M et al (2011a) Antimicrobial phenalenone derivatives from the marine-derived fungus Coniothyrium cereale. Org Biomol Chem 9:802–808

    Article  PubMed  CAS  Google Scholar 

  • Elsebai MF, Natzeem L, Mohamed IE et al (2011b) HLE-inhibitory alkaloids with a polyketide skeleton from the marine-derived fungus Coniothyrium cereale. J Nat Prod 74:2282–2285

    Article  PubMed  CAS  Google Scholar 

  • Elsebai MF, Rempel V, Schnakenburg G et al (2011c) Metabolites from the marine-derived fungus Auxarthron reticulatum: identification of a potent and selective cannabinoid CB1 receptor antagonist. Med Chem Lett 2:866–869

    Article  CAS  Google Scholar 

  • Elsebai MF, Nazir M, Marcourt L et al (2012) Novel polyketide skeletons from the marine alga-derived fungus Coniothyrium cereale. Eur J Org Chem 31:6197–6203

    Article  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Felczykowska A, Bloch SK, Nejman-Falenczyk B et al (2012) Metagenomic approach in the investigation of new bioactive compounds in the marine environment. Acta Biochim Pol 59:501–505

    PubMed  CAS  Google Scholar 

  • Giridharan P, Verekar SA, Khanna A et al (2012) Anticancer activity of sclerotiorin, isolated from an endophytic fungus Cephalotheca faveolata Yaguchi, Nishim. & Udagawa. Indian J Exp Biol 50:464–468

    PubMed  CAS  Google Scholar 

  • Hamilton-Miller JMT (2008) Development of the semi-synthetic penicillins and cephalosporins. Int J Antimicrob Agents 31:189–192

    Article  PubMed  CAS  Google Scholar 

  • Jang HB, Kim YK, Del Castillo CS et al (2012) RNA-Seq-based metatranscriptomic and microscopic investigation reveals novel metalloproteases of Neobodo sp. as potential virulence factors for soft tunic syndrome in Halocynthia roretzi. PloS One 7(12):e52379

    Article  PubMed  CAS  Google Scholar 

  • Jones MDM, Forn I, Gadelha C et al (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–206

    Article  PubMed  CAS  Google Scholar 

  • Kelecom A (2002) Secondary metabolites from marine microorganisms. Acad Bras Cienc 74:151–170

    Article  CAS  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  PubMed  CAS  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK et al (2011) Anti-cancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228

    Article  PubMed  CAS  Google Scholar 

  • Korkmaz B, Moreau T, Gauthier F (2008) Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie 90:227–242

    Article  PubMed  CAS  Google Scholar 

  • Laguerre G, Allard MR, Revoy F et al (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63

    PubMed  CAS  Google Scholar 

  • Lam KS (2007) New aspects of natural products in drug discovery. Trends Microbiol 15:279–289

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Zo YG, Kim SJ (1996) Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl Environ Microbiol 62:3112–3120

    PubMed  CAS  Google Scholar 

  • Li E, Jiang L, Guo L, Zhang H et al (2008) Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 1:7894–7899

    Article  Google Scholar 

  • Mayer AMS, Rodriguez AD, Berlinck RGS et al (2011) Marine pharmacology in 2007-8: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C 153:191–222

    Google Scholar 

  • McGettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol. doi:10.1016/j.cbpa.2012.12.008

    PubMed  Google Scholar 

  • Muth T, Benndorf D, Reichl U et al (2012) Searching for a needle in a stack of needles: challenges in meta-proteomics data analysis. Mol Biosyst. doi:10.1039/C2MB25415H

    Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Chem Biol 2:317–322

    CAS  Google Scholar 

  • Mygind PH, Fischer RL, Schnorr KM et al (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–980

    Article  PubMed  CAS  Google Scholar 

  • Overbye KM, Barrett JF (2005) Antibiotics: where did we go wrong. Drug Discov Today 10:45–52

    Article  PubMed  Google Scholar 

  • Parry R, Nishino S, Spain J (2011) Naturally-occurring nitro compounds. Nat Prod Rep 28:152–167

    Article  PubMed  CAS  Google Scholar 

  • Paterson I, Anderson EA (2005) The renaissance of natural products as drug candidates. Science 310:451–453

    Article  PubMed  Google Scholar 

  • Picart P, Pirttilä AM, Raventos D et al (2012) Identification of novel defensin-encoding genes of Picea glauca: isolation and characterization of Pgd2, a conserved spruce defensin with strong antifungal activity. BMC Plant Biol 12:1–14

    Article  Google Scholar 

  • Piel J (2006) Combinatorial biosynthesis in symbiotic bacteria. Nat Chem Biol 2:661–662

    Article  PubMed  CAS  Google Scholar 

  • Pirttilä AM, Frank AC (2011) Endophytes of forest trees, biology and applications. Springer, Berlin

    Book  Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    Article  PubMed  CAS  Google Scholar 

  • Saleem M, Ali MS, Hussain S et al (2007) Marine natural products of fungal origin. Nat Prod Rep 24:1142–1152

    Article  PubMed  CAS  Google Scholar 

  • Saleem M, Nazir M, Ali MS et al (2010) Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep 27:238–254

    Article  PubMed  CAS  Google Scholar 

  • Slavov N, Cvengroš J, Neudörfl JM et al (2010) Total synthesis of the marine antibiotic pestalone and its surprisingly facile conversion into pestalalactone and pestalachloride A. Angew Chem Int Ed 49:7588–7591

    Article  CAS  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072

    Article  PubMed  CAS  Google Scholar 

  • Tejesvi MV, Pirttilä AM (2011) Potential of tree endophytes as sources for new drug compounds. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications. Springer, New York, pp 295–312

    Chapter  Google Scholar 

  • Tejesvi MV, Prakash HS (2009) Phylogenetic tools for the identification of fungi. In: Sridhar KR (ed) Frontiers in fungal ecology, diversity and metabolites, 1st edn. I. K. International Pvt Ltd., New Delhi, pp 285–299

    Google Scholar 

  • Tejesvi MV, Kajula M, Mattila S et al (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers 47:97–107

    Article  Google Scholar 

  • Tiwari R, Awasthi A, Mall M et al (2013) Bacterial endophyte-mediated enhancement of in planta content of key terpenoid indole alkaloids and growth parameters of Catharanthus roseus. Ind Crop Prod 43:306–310

    Article  CAS  Google Scholar 

  • Vianna ME, Conrads G, Gomes BP et al (2009) T-RFLP-based mcrA gene analysis of methanogenic archaea in association with oral infections and evidence of a novel Methanobrevibacter phylotype. Oral Microbiol Immun 24:417–422

    Article  CAS  Google Scholar 

  • Zhang Y, Mu J, Feng Y et al (2009) Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy. Mar Drugs 7:97–112

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Mou Y, Shan T et al (2010) Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules 15:7961–7970

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

 This chapter is dedicated to Profs. Drs. Magda Nasr and Hassan-Elrady A. Saad, Faculty of Pharmacy, Mansoura University. The Egyptian Government is thanked for financial support to Dr. M. Elsebai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Pirttilä .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Elsebai, M.F., Tejesvi, M.V., Pirttilä, A.M. (2014). Endophytes as a Novel Source of Bioactive New Structures. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_10

Download citation

Publish with us

Policies and ethics