Skip to main content

Conclusion

  • Chapter
  • First Online:
Non-Linear Feedback Neural Networks

Part of the book series: Studies in Computational Intelligence ((SCI,volume 508))

Abstract

This book mainly deals with issues in the implementation of neural circuits in actual hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hashiesh, M.A., Mahmoud, S.A., Soliman, A.M.: Digitally controlled cmos balanced output transconductor based on novel current-division network and its applications. In: The 2004 47th Midwest Symposium on Circuits and Systems, MWSCAS’04, vol. 3, pp. 323–326 (2004)

    Google Scholar 

  2. Mahmoud, S.A.: Low voltage high current gain cmos digitally controlled fully differential ccii [variable gain amplifier application example]. In: IEEE International Symposium on Circuits and Systems, ISCAS, vol. 2, pp. 1000–1003 (2005)

    Google Scholar 

  3. Mahmoud, S.A., Hashiesh, M.A., Soliman, A.M.: Low-voltage digitally controlled fully differential current conveyor. IEEE Trans. Circuits Syst. I Regul. Pap 52(10). 2055–2064 (2005)

    Google Scholar 

  4. Ansari, M.S.: Multiphase sinusoidal oscillator with digital control. In: International Conference on Power, Control and Embedded Systems (ICPCES), pp. 1–5 (2010)

    Google Scholar 

  5. Tangsrirat, W., Prasertsom, D., Surakampontorn, W.: Low-voltage digitally controlled current differencing buffered amplifier and its application. AEU–Int. J. Electron. Commun. 63(4), 249–258 (2009)

    Google Scholar 

  6. Biolek, D.: CDTA—Building block for current-mode analog signal processing. In: Proceedings of ECCTD’03, vol. III, pp. 397–400. Krakow (2003)

    Google Scholar 

  7. Biolek, D., Hancioglu, E., Keskin, A.U.: High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. AEU Int. J. Electron. Commun. 62(2), 92–96 (2008)

    Article  Google Scholar 

  8. Uygur, A., Kuntman, H.: Seventh-order elliptic video filter with 0.1 dB pass band ripple employing CMOS CDTAs. AEU Int. J. Electron. Commun. 61(5), 320–328 (2007)

    Article  Google Scholar 

  9. Siripruchyanun, M., Jaikla, W.: Current-controlled current differencing transconductance amplifier and applications in continuous-time signal processing circuits. Analog Integr. Circ. Sig. Process 61, 247–257 (2009)

    Article  Google Scholar 

  10. Biolek, D., Senani, R., Biolkova, V., Kolka, Z.: Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17(4), 15–32 (2008)

    Google Scholar 

  11. Tomazou, C., Lidgey, F.J., Haigh, D.: Analogue IC design: the current-mode approach. In: IEE Circuits and Systems Series, Institution of Engineering and Technology (IET) (1992)

    Google Scholar 

  12. Gilbert, B.: Current mode, voltage mode, or free mode? A few sage suggestions. Analog Integr. Circ. Sig. Process 38(2), 83–101 (2004)

    Article  Google Scholar 

  13. Song, L., Elmasry, M.I., Vannelli, A.: Analog neural network building blocks based on current mode subthreshold operation. In: IEEE International Symposium on Circuits and Systems (ISCAS’93), vol. 4, pp. 2462–2465 (1993)

    Google Scholar 

  14. Wu, C.-Y., Lan, J.-F.: CMOS current-mode neural associative memory design with on-chip learning. IEEE Trans. Neural Networks 7(1), 167–181 (1996)

    Article  MathSciNet  Google Scholar 

  15. Al-Ruwaihi, K.M.: Current-mode programmable synapse circuits for analogue ulsi neural networks. Int. J. Electron. 86(2), 189–205 (1999)

    Article  Google Scholar 

  16. Balsi, M., Giuliani, G.: Current-mode programmable piecewise-linear neural synapses. Int. J. Circuit Theory Appl. 31(3), 265–275 (2003)

    Article  MATH  Google Scholar 

  17. Delgado-Restituto, M., Rodriguez-Vazquez, A.: Current-mode building blocks for CMOS-VLSI design of chaotic neural networks. In: IEEE World Congress on Computational Intelligence, vol. 3, pp. 1993–1997 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Samar Ansari .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Ansari, M.S. (2014). Conclusion. In: Non-Linear Feedback Neural Networks. Studies in Computational Intelligence, vol 508. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1563-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1563-9_7

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1562-2

  • Online ISBN: 978-81-322-1563-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics