Advertisement

OTA-Based Implementations of Mixed-Mode Neural Circuits

  • Mohd. Samar Ansari
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 508)

Abstract

A ‘mixed’-mode neural network is one in which the neuronal states are represented by voltages and the synaptic signals are conveyed by currents. This results in a lower complexity circuit, as compared to voltage-mode counterparts, since the synaptic resistances are not required to set the weights. The present chapter discusses Operational Transconductance Amplifier (OTA) based implementations of the various mixed-mode non-linear neural networks presented in the previous chapters. In most of the applications, the OTA has been used as a voltage comparator with current outputs.

Keywords

Current Output Operational Amplifier Output Stage Previous Chapter Circuit Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Parveen, T.: Textbook of Operational Transconductance Amplifier and Analog Integrated Circuits. I.K. International Publishing House Pvt Limited, New Delhi (2009)Google Scholar
  2. 2.
    Zheng, Y.: Operational transconductance amplifiers for gigahertz applications. Canadian Theses, Queen’s University (2008)Google Scholar
  3. 3.
    Ferri, G., Sansen, W.: A rail—to—rail constant-\(g_m\) low-voltage CMOS operational transconductance amplifier. IEEE J. Solid-State Circuits 32(10), 1563–1567 (1997)CrossRefGoogle Scholar
  4. 4.
    Chatterjeei, S., Tsividis, Y., Kinget, P.: A 0.5-V bulk-input fully differential operational transconductance amplifier. In: Solid-State Circuits Conference, ESSCIRC 2004, Proceeding of the 30th European, pp. 147–150. 2004Google Scholar
  5. 5.
    Yang, S.-H., Kim, K.-Y., Kim, Y.-H., You, Y., Cho, K.-R.: A novel CMOS operational transconductance amplifier based on a mobility compensation technique. IEEE Trans. Circuits Syst. II Express Briefs 52(1), 37–42 (2005)CrossRefGoogle Scholar
  6. 6.
    Chung, W.-S., Kim, K.H., Cha, H.W.: A linear operational transconductance amplifier for instrumentation applications. IEEE Trans. Instrum. Meas. 41(3), 441–443 (1992)CrossRefGoogle Scholar
  7. 7.
    Elwan, H., Gao, W., Sadkowski, R., Ismail, M.: CMOS low-voltage class-AB operational transconductance amplifier. Electron. Lett. 36(17), 1439–1440 (2000)CrossRefGoogle Scholar
  8. 8.
    Wu, P., Schaumann, R.: Tunable operational transconductance amplifier with extremely high linearity over very large input range. Electron. Lett. 27(14), 1254–1255 (1991)CrossRefGoogle Scholar
  9. 9.
    Sánchez-Sinencio, E., Silva-Martinez, J.: CMOS transconductance amplifiers, architectures and active filters: a tutorial. IEE Proc. Circuits Devices Syst. 147(1), 3–12 (2000)CrossRefGoogle Scholar
  10. 10.
    A. Yodtean, A., Thanachayanont, A.: Sub 1-V highly-linear low-power class-AB bulk-driven tunable CMOS transconductor. In: Analog Integrated Circuits and Signal Processing, pp. 1–15, 2013Google Scholar
  11. 11.
    Rahman, S.A., Jayadeva., Dutta Roy, S.C.: Neural network approach to graph colouring. Electron. Lett. 35(14), 1173–1175 (1999)Google Scholar
  12. 12.
    Ibrahim, M. A., Minaei, S., Kuntman, H.: A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. AEU - Int. J. Electron. Commun. 59(5), 311–318 (2005)Google Scholar
  13. 13.
    Singh, S.P., Hansom, J.V., Vlach, J.: A new floating resistor for CMOS technology. IEEE Trans. Circuits Syst. 36(9), 1217–1220 (1989)CrossRefGoogle Scholar
  14. 14.
    Sakurai S., Ismail, M.: A CMOS square-law programmable floating resistor. IEEE Int. Symp. Circuits Syst. ISCAS ’93, 2, 1184–1187 (1993)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Electronics EngineeringAligarh Muslim UniversityAligarhIndia

Personalised recommendations