ECG Acquisition in a Computer

  • Rajarshi Gupta
  • Madhuchhanda Mitra
  • Jitendranath Bera


Most of the modern electrocardiogram recording systems in a clinical setup use a desktop computer as the final data acquisition element.


Input Stage Serial Port National Electrical Manufacturer Association Serial Communication National Electrical Manufacturer Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Paper [25] is the contribution from Biomedical Signal acquisition and Processing Research Group at Department of Applied Physics, University of Calcutta, India.


  1. 1.
    Plonsey R, Barr RC. Bioelectricity: a quantitative approach. 3rd ed. NY, USA: Springer; 2007.Google Scholar
  2. 2.
    Schamroth L. An introduction to electrocardiography. 7th ed. Cambridge: Blackwell Science; 2008.Google Scholar
  3. 3.
    Hampton JR. ECG made easy. 7th ed. UK: Churchill Livingstone; 2008.Google Scholar
  4. 4.
    Huhta JH, Webster JG. 60 Hz interference in electrocardiography. IEEE Trans Biomed Eng. 1973;BME-20(2):91–101.Google Scholar
  5. 5.
    Spinelli EM, Mayosky MA, Areny RP. A practical approach to electrode-skin impedance unbalance measurement. IEEE Trans Biomed Eng. 2006;53(7):1451–3.CrossRefGoogle Scholar
  6. 6.
    Ider YZ, Saki MC, Giiger HA. Removal of power line interference in signal-averaged electrocardiography systems. IEEE Trans Biomed Eng. 1995;40(7):731–5.CrossRefGoogle Scholar
  7. 7.
    Friesen GM, Jannett TC, Jadallah MA, Yates SL, Quint SR, Nagle HT. A comparison of noise sensitivity of nine QRS detection algorithm. IEEE Trans Biomed Eng. 1990;37(1):85–98.CrossRefGoogle Scholar
  8. 8.
    Chaudhury S, Pawar TD, Duttagupta S. Ambulation analysis in wearable ECG. New York: Springer; 2009.Google Scholar
  9. 9.
    Prutchi D, Norris M. Design and development of medical electronic instrumentation: a practical perspective of the design, construction, and test of medical devices. New Jersey: Wiley Interscience; 2005.Google Scholar
  10. 10.
    Areny RP, Webster JG. AC instrumentation amplifier for bioimpedance measurements. IEEE Trans Biomed Eng. 1993;40(8):830–3.CrossRefGoogle Scholar
  11. 11.
    Spinelli EM, Areny RP, Myosky MA. AC coupled front end for biopotential measurements. IEEE Trans Biomed Eng. 2003;50(3):391–5.CrossRefGoogle Scholar
  12. 12.
    Spinelli EM, Martinez N, Myosky MA, Areny RP. A novel fully differential biopotential amplifier With DC suppression. IEEE Trans Biomed Eng. 2004;51(8):1444–8.CrossRefGoogle Scholar
  13. 13.
    Webster JG, ed. Measurement, sensors and instrumentation handbook. New York: CRC press LLC.Google Scholar
  14. 14.
    Steyaert M, Sansen W. A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J Solid-State Circuits. 1987;22(6):1163–8.CrossRefGoogle Scholar
  15. 15.
    Krabbe H. A high-performance monolithic instrumentation amplifier. IEEE international conference in solid-state circuits XIV, 17–19 Feb 1971. Pennsylvania, pp. 186–187.Google Scholar
  16. 16.
    Martins R, Selberherr S, Vaz F. A CMOS IC for portable EEG acquisition systems. IEEE Trans Instrum Meas. 1998;47(5):1191–6.CrossRefGoogle Scholar
  17. 17.
    Brokaw A, Timko M. An improved monolithic instrumentation amplifier. IEEE J Solid-State Circuits. 1975;10(6):417–23.CrossRefGoogle Scholar
  18. 18.
    Webster JG, ed. Medical instrumentation: application and design. 4th ed. New York: Wiley; 2010.Google Scholar
  19. 19.
    Wong A, Pun KP, Zhang YP, Choy CS. An ECG measurement IC circuit using driven right leg circuit. IEEE international symposium on circuits and systems 2006, 21–24 May 2006. Greece, pp. 345–348.Google Scholar
  20. 20.
    Medical electrical equipment–part 1: general requirements for basic safety and essential performance from international electrotechnical commission website.Google Scholar
  21. 21.
    Bronzino JD, ed. The biomedical engineering handbook. 2nd ed. New York: CRC Press LLC.Google Scholar
  22. 22.
    Data sheet of transformer-coupled hybrid isolation amplifier model 3656.Google Scholar
  23. 23.
    Clare Inc liner Optocouplers 110 data sheet.Google Scholar
  24. 24.
    van Rijn ACM, Peper A, Grimbergen CA. The isolation mode rejection ratio in bioelectric amplifiers’. IEEE Trans Biomed Eng. 1991;38(11):1154–7.CrossRefGoogle Scholar
  25. 25.
    Gupta R, Bera JN, Mitra M. Development of an embedded system and MATLAB-based GUI for online acquisition and analysis of ECG signal. Measurement (Elsevier). 2010;43(9):1119–26.CrossRefGoogle Scholar
  26. 26.
    Axelson J. Serial port complete: COM Ports, USB virtual COM ports, and ports for embedded systems. 2nd ed. Madison, WI: Lakeview Research LLC.Google Scholar
  27. 27.
    PhysioNet database.
  28. 28.
    Schwarzenberg GF, Zapf M, Ruiter NV. A MATLAB GUI for the analysis and exploration of signal and image of an ultrasound computer tomograph, in: first international conference on advances in computer-human interaction (ACHI-2008), 10–15 Feb 2008. Sent Luce, Martinique, pp. 53–58.Google Scholar
  29. 29.
    Chaibi S, Bouet R, Jung J, Lajnef T, Samet L, Bertrand O, KAchouri A, Jerbi K. Development of matlab-based graphical user interface (GUI) for detection of high frequency oscillations (HFOs) in epileptic patients. IEEE international conference on emerging signal processing applications (ESPA), 12–14 Jan 2012. Las Vegas, USA, pp. 56–62.Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Rajarshi Gupta
    • 1
  • Madhuchhanda Mitra
    • 1
  • Jitendranath Bera
    • 1
  1. 1.Department of Applied PhysicsUniversity of CalcuttaKolkataIndia

Personalised recommendations