Advertisement

ECG Signal Analysis

  • Rajarshi Gupta
  • Madhuchhanda Mitra
  • Jitendranath Bera
Chapter

Abstract

This chapter describes the basic steps for analysis of ECG signal using computer-based algorithms. Computerized analysis of ECG started in the early 1960s and considered as one of the first applications of digital computers in medicine.

Keywords

Independent Component Analysis Discrete Wavelet Transform Empirical Mode Decomposition Fiducial Point Power Line Interference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Papers [26, 27], [36], [67], and [77] are the contribution from Biomedical Signal acquisition and Processing research group at Department of Applied Physics, University of Calcutta, India.

References

  1. 1.
    Rangyyan RM. Biomedical signal anal: a case study approach. Singapore: Wiley; 2002.Google Scholar
  2. 2.
    Huhta JC, Webster JG. 60-Hz interference in electrocardiography. IEEE Tran in Biomed Eng BME-20. 1973;2:91–101.Google Scholar
  3. 3.
    Webster JG. Reducing motion artifacts and interference in biopotentials recording. IEEE tran in Biomed Eng BME-31. 1984;12:823–826.Google Scholar
  4. 4.
    Narwaria RP, Verma S, Singhal PK. Removal of baseline wander and power line interference from ECG signal—a survey approach. Int J Electron Eng. 2011;3(1):107–11.Google Scholar
  5. 5.
    Hirano K, Nishimura S, Mitra SK. Design of digital notch filters. IEEE Tran on Comm COM-22. 1974;7:964–974.Google Scholar
  6. 6.
    Bailey JJ, Berson AS, Garson A, Horan LG, Macfarlane PW, Mortara DW, Zywietz C. Recommendations for standardization and specifications in automated electrocardiography: Bandwidth and digital signal processing. A report for health professionals by ad hoc writing group of the committee on electrocardiography and cardiac electrophysiology of the council on clinical cardiology, American heart association. Circulation. 1990;81:730.CrossRefGoogle Scholar
  7. 7.
    Thakor NV, Moreau D. Design and analysis of quantized coefficient digital filters: application to biomedical signal processing with microprocessors. Med biol Eng Comput. 1987;25(1):18–25.CrossRefGoogle Scholar
  8. 8.
    Hamilton PS. A comparison of adaptive and nonadaptive filters for reduction of power line interference in the ECG. IEEE Tran on Biomed Eng. 1996;43(1):105–9.CrossRefGoogle Scholar
  9. 9.
    Ahlstrom ML, Tompkins WJ. Digital filters for real-time ECG signal processing using microprocessors. IEEE Tran on Biomed Eng BME-32. 1985;9:708–713.Google Scholar
  10. 10.
    Pei SC, Tseng CC. Elimination of AC interference in electrocardiogram using IIR notch filter with transient suppression. IEEE Tran Biomed Eng. 1995;42(11):1128–32.CrossRefGoogle Scholar
  11. 11.
    Ider YZ, Koyemen H. A new technique for line interference monitoring and reduction in biopotential amplifiers. IEEE Tran Biomed Eng. 1990;37(6):624–31.CrossRefGoogle Scholar
  12. 12.
    van Alste JA, Schilder TS. Removal of base-line wander and power-line interference from the ECG by an efficient FIR filter with a reduced number of taps. IEEE Tran Biomed Eng BME-32. 1985;12:1052–1060.Google Scholar
  13. 13.
    Thakor NV, Zhu YS. Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Tran Biomed Eng. 1991;38(8):785–794.Google Scholar
  14. 14.
    Jane R, Laguna P, Thakor NV, Caminal P. Adaptive baseline wander removal in the ECG: comparative analysis with cubic spline technique. In: Proceedings of computers in cardiology, 1992, 11–14 Oct 1992, pp 143–146.Google Scholar
  15. 15.
    Meyera CR, Keiser HN. Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Comput Biomed Res. 1977;10(5):459–70.CrossRefGoogle Scholar
  16. 16.
    Shusterman V, Shah SI, Beigel A, Anderson KP. Enhancing the precision of ECG baseline correction: selective filtering and removal of residual error. Comput Biomed Res. 2000;33(2):144–60.CrossRefGoogle Scholar
  17. 17.
    Almenar V, Albiol A. A new adaptive scheme for ECG enhancement. Signal Process. 1999;75(3):253–63.CrossRefMATHGoogle Scholar
  18. 18.
    Sun Y, Chan KL, Krishnan SM. ECG signal conditioning by morphological filtering. Comput Biol Med. 2002;32(6):465–479.Google Scholar
  19. 19.
    Widrow B, Glover JR, McCool JM, Kaunitz J, Williams CS, Hearn RH, Zeidler JR, Dong E, Goodlin RC. Adaptive noise canceling: principles and applications. Proc IEEE. 1975;63(12):1692–716.CrossRefGoogle Scholar
  20. 20.
    Mneimneh MA, Yaz EE, Johnson MT, Povinelli RJ. An adaptive kalman filter for removing baseline wandering in ECG signals. In: Proceeding of Computers in cardiology, 2006, 17–20 Sep, pp 253–256.Google Scholar
  21. 21.
    Romero I. PCA and ICA applied to noise reduction in multi-lead ECG. In: Proceedings of computing in cardiology, 2011;38, 18–21 Sep 2011 pp. 613–616.Google Scholar
  22. 22.
    Chawla MPS. PCA and ICA processing methods for removal of artifacts and noise in electrocardiograms: a survey and comparison. Appl Soft Comput. 2011;11(2):2216–2226.Google Scholar
  23. 23.
    Kotas M. Application of projection pursuit based robust principal component analysis to ECG enhancement. Biomed Signal Process Control. 2006;1(4):289–98.CrossRefGoogle Scholar
  24. 24.
    Farahabadi E, Farahabadi A, Rabbani H, Mahjoob MP, Dehnavi AM. Noise removal from electrocardiogram signal employing an artificial neural network in wavelet domain. In: Proceedings of the 9th international conference on information technology and applications in biomedicine (ITAB),2009, 5–7Nov 2009, pp. 1–4.Google Scholar
  25. 25.
    Sotos JM, Arnau JMB, Aranda AMT, Melendez CS. Removal of muscular and artefacts noise from the ECG by a neural network. In: Proceedings of 5th IEEE international conference on industrial informatics, 2007, 23–25 June 2007, pp. 687–692.Google Scholar
  26. 26.
    Pal S, Mitra M. Detection of ECG characteristic points using multiresolution wavelet analysis based selective coefficient method. Measurement. 2010;43(2):255–61.CrossRefGoogle Scholar
  27. 27.
    Banerjee S, Gupta R, Mitra M. Delineation of ECG characteristic features using multiresolution wavelet analysis method. Measurement. 2012;45(3):474–87.CrossRefGoogle Scholar
  28. 28.
    Tikkanen PE. Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal. Biol Cybern. 1999;80(4):259–67.CrossRefMATHGoogle Scholar
  29. 29.
    Donoho DL. Denoising by soft-thresholding. IEEE Tran Inf Theory. 1995;41(3):613–627.Google Scholar
  30. 30.
    Donoho DL, Johnstone LM. Ideal spatial adaptation by spatial shrinkage. Biometrika. 1994;425–455.Google Scholar
  31. 31.
    Cherkassky V, Kilts S. Myopotential denoising of ECG signals using wavelet thresholding methods. Neural Netw. 2001;14(8):1129–37.CrossRefGoogle Scholar
  32. 32.
    Kania M, Fereniec M, Maniewski R. Wavelet denoising for multi-lead high resolution ECG signals. Meas Sci Rev. 2007;7(2, 4):30–33.Google Scholar
  33. 33.
    Kirst M, Glauner B, Ottenbacher J. Using DWT for ECG motion artifact reduction with noise-correlating signals. In: Proceedings of 33rd annual international conference of the IEEE EMBS Boston, 2011, 30 Aug–3 Sep, pp. 4804-4807.Google Scholar
  34. 34.
    Chmelka L, Kozumplík J. Wavelet-based wiener filter for electrocardiogram signal denoising. In: Proceedings of computers in cardiology, 2005, 25–28 Sep 2005, pp. 771–774.Google Scholar
  35. 35.
    Velasco MB, Weng B, Barner KE. ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput Biol Med. 2008;38(1):1–13.CrossRefGoogle Scholar
  36. 36.
    Pal S, Mitra M. Empirical mode decomposition based ECG enhancement and QRS detection. Comput Biol Med. 2012;42(1):83–92.CrossRefGoogle Scholar
  37. 37.
    Kotas M. Robust projective filtering of time-warped ECG beats. Comput Methods Prog Biomed. 2008;92(2):161–72.CrossRefGoogle Scholar
  38. 38.
    Goldberger JG, Jason Ng, editors. Practical signal and image processing in clinical cardiography. USA: Springer; 2010. p. 43.Google Scholar
  39. 39.
    Kohler BU, Henning C, Orglmeister R. The principles of software QRS detection IEEE Eng Medicine Biol Magazine. 2002;21(1):42–57, Jan–Feb 2002.Google Scholar
  40. 40.
    Holsinger WP, Kempner KM, Miller MH. A QRS preprocessor based on digital differentiation. IEEE Tran Biomed Eng BME-18. 1971;3:212–217.Google Scholar
  41. 41.
    Ahlstrom ML, Tompkins WJ. Automated high-speed analysis of Holter tapes with microcomputers. IEEE Trans Biomed Eng. 1983;30:651–7.CrossRefGoogle Scholar
  42. 42.
    Okada M. A digital filter for the QRS complex detection. IEEE Tran Biomed Eng BME-26. 1979;12:700–703.Google Scholar
  43. 43.
    Ligtenburg A, Kunt M. A robust-digital QRS detection algorithm for arrhythmia monitoring. Comput Biomed Res. 1983;16(3):273–86.CrossRefGoogle Scholar
  44. 44.
    Pan J, Tompkins WJ. A real time QRS detection algorithm. IEEE Tran Biomed Eng BME-32. 1985;3:230–236.Google Scholar
  45. 45.
    Hamilton PS, Tompkins WJ. Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database IEEE Tran Biomed Eng BME-33. 1986;12:1157–1165. Google Scholar
  46. 46.
    Azreno NM, Deng ZD, Poon CS. Analysis of first-derivative based QRS detection algorithms. IEEE Tran Biomed Eng. 2008;55(2):478–84.CrossRefGoogle Scholar
  47. 47.
    Borjesson PO, Pahlm O, Sörnmo L, Nygards ME. Adaptive QRS detection based on maximum a posteriori estimation. IEEE Tran Biomed Eng BME-29. 1982;5:341–351.Google Scholar
  48. 48.
    Sörnmo L, Pahlm O, Nygards ME. Adaptive QRS detection: a study of performance. IEEE Tran Biomed Eng BME-32. 1985;6:392–401.Google Scholar
  49. 49.
    Trahanias PE. An approach to QRS detection using mathematical morphology. IEEE Tran Biome Eng. 1993;40(2):201–5.CrossRefGoogle Scholar
  50. 50.
    Ghaffari A, Golbayani H, Ghasemi M. A new mathematical based QRS detector using continuous wavelet transform. Comput Elect Eng. 2008;34(2):81–91.CrossRefMATHGoogle Scholar
  51. 51.
    Islam Md S, Alajlan N. A morphology alignment method for resampled heartbeat signals. Biomed Signal Proc Control. 2013;8(3):315–24.CrossRefGoogle Scholar
  52. 52.
    Suppappola S, Sun Y. Nonlinear transforms of ECG signals for digital QRS detection: a quantitative analysis. IEEE Tran Biome Eng. 1994;41(4):397–400.CrossRefGoogle Scholar
  53. 53.
    Benitez D, Gaydecki PA, Zaidi A, Fitzpatrick AP. The use of Hilbert transform for ECG signal analysis. Comput Biol Med. 2001;31(5):399–406.CrossRefGoogle Scholar
  54. 54.
    Benitez DS, Gaydecki PA, Zaidi A, Fitzpatrick AP. A new QRS detection algorithm based on the Hilbert transform. In: Proceedings of computers in cardiology, 2000, 24–27 Sep 2000, pp. 379–382.Google Scholar
  55. 55.
    Kadambe S, Murray R, Bartels GB. Wavelet transform-based QRS complex detector. IEEE Tran Biome Eng. 1999;46(7):838–48.CrossRefGoogle Scholar
  56. 56.
    Zhang F, Lian Y. Novel QRS detection by CWT for ECG sensor. In: Proceedings of IEEE biomedical circuits and systems conference (BIOCAS), 2007, 27–30 Nov. 2007, pp. 211–214.Google Scholar
  57. 57.
    Bahoura M, Hassani M, Hubin M. DSP implementation of wavelet transform for real time ECC wave forms detection and heart rate analysis. Comput methods Prog Biomed. 1997;52(1):35–44.Google Scholar
  58. 58.
    Zhu K, Noakes PD, Green ADP. ECG monitoring with artificial neural networks. In: Proceedings of 2nd international conference on artificial neural networks, 1991, 18–20 Nov 1991, Colchester, pp. 205–209.Google Scholar
  59. 59.
    Xue Q, Hue YH, Tompkins WJ. Neural-network-based adaptive matched filtering for QRS detection. IEEE Tran Biomed Eng. 1992;39(4):317–29.CrossRefGoogle Scholar
  60. 60.
    Behrad A, Faez K. New method for QRS-wave recognition in ECG using MART neural network. In: Proceedings of the 7th Australian and New Zealand intelligent information systems conference, 2001, 18–21 Nov 2001, pp. 291–296.Google Scholar
  61. 61.
    Poli R, Cagnoni S, Valli G. Genetic design of optimum linear and nonlinear QRS detectors. IEEE Tran Biomed Eng. 1995;42(11):1137–1141.Google Scholar
  62. 62.
    Karpagachelvi S, Arthanari M, Sivakumar M. ECG feature extraction techniques-a survey approach. Int J Comput Sci Inf Secur. 2010;8(1):76–80.Google Scholar
  63. 63.
    Vaneghi FM, Oladazimi M, Shiman F, Kordi A, Safari MJ, Ibrahim F. A comparative approach to ECG feature extraction methods. In: Proceedings of 3rd international conference on intelligent systems modeling and simulation, 2012,08–10 Feb, Malaysia, pp. 252–256.Google Scholar
  64. 64.
    Milliken JA, Wartak J, Skoulikidis AP, Lywood DW. Use of computers in the interpretations of electrocardiograms. Can Med Assoc J. 1969;101(7):39–43.Google Scholar
  65. 65.
    Murray TH. The design, development, and implementation of a microprocessor-based ECG analysis system. Behav Res Methods Instrum. 1982;14(2):281–9.CrossRefGoogle Scholar
  66. 66.
    Mazomenos EB, Chen T, Acharyya A, Bhattacharya A, Rosengarten J, Maharatna K. A time-domain morphology and gradient based algorithm for ECG feature extraction. In: Proceedings of IEEE international conference on industrial technology (ICIT), 2012, 19–21 March 2012, pp. 117–122.Google Scholar
  67. 67.
    Chatterjee HK, Gupta R, Mitra M. A statistical approach for determination of time plane features from digitized ECG. Comput Biol Med. 2011;41(5):278–84.CrossRefGoogle Scholar
  68. 68.
    Olivas ES, Sober MM, Maravilla JC, Guerrero-Mart′ınez JF, Gasco JC, Lopez JE. Application of adaptive signal processing for determining the limits of P and T waves in an ECG. IEEE Tran Biomed Eng. 1998;45(8):1077–80.CrossRefGoogle Scholar
  69. 69.
    Chazal P, O’Dwyer M, Reilly RB. Automatic classification of heart beats using ECG morphology and heart beat interval features. IEEE Tran Biomed Eng. 2004;51(7):1196–206.CrossRefGoogle Scholar
  70. 70.
    Chazal P, Reilly RB. A patient- adapting heart beat classifier using ECG morphology and heartbeat interval features. IEEE Tran Biomed Eng. 2006;53(12):2535–43.CrossRefGoogle Scholar
  71. 71.
    Tadejko P, Rakowski W. Mathematical morphology based ECG feature extraction for the purpose of heart beat classification. In: Proceedings of 6th international conference on computer information systems and industrial management applications (CISIM), 2007, 28–30 June 2007, Poland, pp. 322–327.Google Scholar
  72. 72.
    Li C, Zheng C, Tai C. Detection of ECG characteristic points using wavelet transform. IEEE Tran Biomed Eng. 1995;42(1):21–8.CrossRefGoogle Scholar
  73. 73.
    Saxena SC, Kumar V, Hamde ST. Feature extraction from ECG signals using wavelet transforms for disease diagnosis. Int J Syst Sci. 2003;33(13):1073–85.CrossRefGoogle Scholar
  74. 74.
    Martinez JP, Almeida R, Olmos S, Rocha AP, Laguna P. A wavelet-based ECG delineation: evaluation of standard databases. IEEE Tran Biomed Eng. 2004;51(4):570–81.CrossRefGoogle Scholar
  75. 75.
    Sahambi JS, Tendon SN, Bhatt RKP. Using wavelet transforms for ECG characterization an online digital processing system. IEEE Eng Med Biol Mag. 1997;16(1):77–83.CrossRefGoogle Scholar
  76. 76.
    Benitez D, Gaydecki PA, Zaidi A, Fitzpatrick AP. The use of the Hilbert transform in ECG signal analysis. Comput Biol Med. 2001;31:399–406.CrossRefGoogle Scholar
  77. 77.
    Mukhopadhyay SK, Mitra M, Mitra S. ECG feature extraction using differentiation, Hilbert transform and slope reversal approach. J Med Eng Tech. 2012;36(7):372–86.CrossRefGoogle Scholar
  78. 78.
    Martis RJ, Chakraborty C, Roy AK. An integrated ECG feature extraction scheme using PCA and wavelet transform. In: Proceedings of annual IEEE India conference (INDICON), 2009, 18–20 Dec, Gujarat, pp. 1–4.Google Scholar
  79. 79.
    Lee GG, Hu JY, Chen CF, Lin HH. Gabor feature extraction for electrocardiogram signals. In: Proceedings of IEEE biomedical circuits and systems conference (BioCAS), 2012, 28–30 Nov, Taiwan, pp. 304–307.Google Scholar
  80. 80.
    Ghongade R, Ghatol AA. Performance analysis of feature extraction schemes for artificial neural network based ECG classification. In: Proceedings of international conference on computational intelligence and multimedia applications, 2007, 13–15 Dec 2007, Tamilnadu, pp. 486–490.Google Scholar
  81. 81.
    Hildebrand FB (1974) Introduction to Numerical Analysis, 2nd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi.Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Rajarshi Gupta
    • 1
  • Madhuchhanda Mitra
    • 1
  • Jitendranath Bera
    • 1
  1. 1.Department of Applied PhysicsUniversity of CalcuttaKolkataIndia

Personalised recommendations