Skip to main content

Recent Advances in Stem Cell Research

  • Chapter
  • First Online:
Advances in Biotechnology

Abstract

Stem cells are totipotent progenitor cells which are capable of self-renewal and differentiation into multilineage cell types. The stem cells divide unlimitedly; therefore these are ideal targets for in vitro manipulation. Researchers have been studying the biology of stem cells to find new ways of treating various diseases. They provide nearly limitless potential for medical applications due to having ability of producing multilineage cell types. Although early researches have focused on hematopoietic stem cells (HSCs), these have also been found to be present in various other tissues. This chapter focuses on the stem cell technology and the potential of stem cells in treating various diseases. Also, the current researches and the clinical status of treatments based on stem cells are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albarenque SM, Zwacka RM, Mohr A (2011) Both human and mouse mesenchymal stem cells promote breast cancer metastasis. Stem Cell Res 7:163–171

    Article  PubMed  CAS  Google Scholar 

  • Arinzeh TL (2005) Mesenchymal stem cells for bone repair: preclinical studies and potential orthopedic applications. Foot Ankle Clin 10:651–665

    Article  PubMed  Google Scholar 

  • Arnaoutova I, George J, Kleinman HK, Benton G (2012) Basement membrane matrix (BME) has multiple uses with stem cells. Stem Cell Rev 8:163–169

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Ye Z, Zhou BY, Mali P, Zhou C, Cheng L (2007) Promoting human embryonic stem cell renewal or differentiation by modulating Wnt signal and culture conditions. Cell Res 17:62–72

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (2005) Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11:1198–1211

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Emery SE, Pei M (2009) Coculture of synovium-derived stem cells and nucleus pulposus cells in serum-free defined medium with supplementation of transforming growth factor-beta1: a potential application of tissue-specific stem cells in disc regeneration. Spine (Phila Pa 1976) 34:1272–1280

    Google Scholar 

  • di Bonzo LV, Ferrero I, Cravanzola C, Mareschi K, Rustichell D, Novo E, Sanavio F, Cannito S, Zamara E, Bertero M, Davit A, Francica S, Novelli F, Colombatto S, Fagioli F, Parola M (2008) Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut 57:223–231

    Article  PubMed  Google Scholar 

  • Dreyfus PA, Chretien F, Chazaud B, Kirova Y, Caramelle P, Garcia L, Butler-Browne G, Gherardi RK (2004) Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am J Pathol 164:773–779

    Article  PubMed  Google Scholar 

  • Floss T, Wurst W (2002) Functional genomics by gene-trapping in ES cells. In: Turksen K (ed) Embryonic stem cells methods and protocols. pp 347–379

    Google Scholar 

  • Gao J, Yao JQ, Caplan AI (2007) Stem cells for tissue engineering of articular cartilage. Proc Inst Mech Eng H 221:441–450

    PubMed  CAS  Google Scholar 

  • Gonzalez-Rey E, Anderson P, González MA, Rico L, Büscher D, Delgado M (2009) Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58:929–939

    Article  PubMed  CAS  Google Scholar 

  • Hochedlinger K, Yamada Y, Beard C et al (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477

    Article  PubMed  CAS  Google Scholar 

  • Hussain MA, Theise ND (2004) Stem-cell therapy for diabetes mellitus. www.thelancet.com. Accessed on July 2010

  • Hwang NS, Elisseeff J (2009) Application of stem cells for articular cartilage regeneration. J Knee Surg 22:60–71

    Article  PubMed  Google Scholar 

  • Hwang NS, Varghese S, Elisseeff J (2007) Cartilage tissue engineering: directed differentiation of embryonic stem cells in three-dimensional hydrogel culture. Methods Mol Biol 407:351–373

    Article  PubMed  CAS  Google Scholar 

  • Science Daily. Jan 8, 2009

    Google Scholar 

  • Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YR, Fang SC, Yang VW, Lee OK (2008) Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 134:2111–2121

    Article  PubMed  Google Scholar 

  • Labat MLA, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ, Visvade JE (2010) Control of mammary stem cell function by steroid hormone signaling. Nature 465:768–802

    Google Scholar 

  • Li TZ, Kim JH, Cho HH, Lee HS, Kim KS, Lee SW, Suh H (2010) Therapeutic potential of bone-marrow-derived mesenchymal stem cells differentiated with growth-factor-free coculture method in liver-injured rats. Tissue Eng Part A 16:2649–2659

    Article  PubMed  CAS  Google Scholar 

  • Lindroos B, Suuronen R, Miettinen S (2010) The potential of adipose stem cells in regenerative medicine. Stem Cell Rev Rep. doi 10.1007/s12015-010-9193-7

  • Mali P, Ye Z, Hommond H et al (2008) Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cell 26:1998–2005

    Article  CAS  Google Scholar 

  • McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, Murawski K, Kingham E, Oreffo ROC, Dalby MD (2011) Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 10:637–644

    Article  PubMed  CAS  Google Scholar 

  • Meisel HJ, Siodla V, Ganey T, Minkus Y, Hutton WC, Alasevic OJ (2007) Clinical experience in cell-based therapeutics: disc chondrocyte transplantation—a treatment for degenerated or damaged intervertebral disc. Biomol Eng 24:5–21

    Article  PubMed  CAS  Google Scholar 

  • Murrell W, Sanford E, Anderberg L, Cavanagh B, Mackay-Sim A (2009) Olfactory stem cells can be induced to express chondrogenic phenotype in a rat intervertebral disc injury model. Spine J 9:585–594

    Article  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  PubMed  CAS  Google Scholar 

  • Park IH, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  PubMed  CAS  Google Scholar 

  • Poulsom R, Alison MR, Forbes SJ, Wright NA (2002) Adult stem cell plasticity. J Pathol 197:441–456 Stem cells

    Article  PubMed  Google Scholar 

  • Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG (2000) Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6:278–282

    Article  PubMed  CAS  Google Scholar 

  • Rhee YH, Ko JY, Chang MY, Yi SH, Kim D, Kim CH, Shim JW, Jo AY, Kim BW, Lee H, Lee SH, Suh W, Park CH, Koh HC, Lee YS, Lanza R, Kim KS, Lee SH (2011) Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest 121(6):2326–2335

    Article  PubMed  CAS  Google Scholar 

  • Richardson SM, Hoyland JA, Mobasheri R, Csaki C, Shakibaei M, Mobasheri A (2010) Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol 222:23–32

    Article  PubMed  CAS  Google Scholar 

  • Rob Waters (2008) Testicle stem cells become bone, muscle in German experiment. http://www.bloomberg.com/apps/news?pid=newsarchive&sid=aNmiXs8SPp4w&refer=home

  • Shackleton M, Vaillant FO, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  PubMed  CAS  Google Scholar 

  • Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977

    Article  PubMed  CAS  Google Scholar 

  • Theiss HD, Vallastera M, Rischplera C, Kriega L, Zarubaa MM, Brunnera S, Vancheva Y, Fischera R, Gröbnera M, Hubera B, Wollenweber T, Assmann G, Mueller-Hoecker J, Hacker M, Franza WM (2011) Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis. Stem Cell Res 7:244–255

    Article  PubMed  CAS  Google Scholar 

  • Ton-That H, Kaestner KH, Shields JM et al (1997) Expression of the gut-enriched Kruppel-like factor gene during development and intestinal tumorigenesis. FEBS Lett 419:239–243

    Article  PubMed  CAS  Google Scholar 

  • Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353

    Article  PubMed  CAS  Google Scholar 

  • Vadalà G, Sobajima S, Lee JY, Huard J, Denaro V, Kang JD, Gilbertson LG (2008) In vitro interaction between muscle-derived stem cells and nucleus pulposus cells. Spine J 8:804–809

    Article  PubMed  Google Scholar 

  • Vinatier C, Bouffi C, Merceron C, Gordeladze J, Brondello JM, Jorgensen C, Weiss P, Guicheux J, Noël D (2009) Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther 4:318–329

    Article  PubMed  CAS  Google Scholar 

  • Wernig M, Zhao JP, Pruszak J et al (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105:5856–5861

    Article  PubMed  CAS  Google Scholar 

  • Wilschut KJ, Tola HTAV, Arkesteijn GJA, Haagsman HP, Roelen BAJ (2011) Alpha 6 integrin is important for myogenic stem cell differentiation. Stem Cell Res 7:112–123

    Article  PubMed  CAS  Google Scholar 

  • Wollert KC (2008) Cardiovascular and renal-cell therapy for acute myocardial infarction. Curr Opin Pharmacol 8:202–210

    Article  PubMed  CAS  Google Scholar 

  • Xian CJ, Foster BK (2006) Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther 1:213–229

    Article  PubMed  CAS  Google Scholar 

  • Xu YQ, Liu ZC (2008) Therapeutic potential of adult bone marrow stem cells in liver disease and delivery approaches. Stem Cell Rev 4:101–112

    Article  PubMed  Google Scholar 

  • Yagi K, Kojima M, Oyagi S, Ikeda E, Hirose M, Isoda K, Kawase M, Kondoh M, Ohgushi H (2008) Application of mesenchymal stem cells to liver regenerative medicine. Yakugaku Zasshi 128:3–9

    Article  PubMed  CAS  Google Scholar 

  • Zaehres H, Scholer HR (2007) Induction of pluripotency: from mouse to human. Cell 131:834–835

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Kulshreshtha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Kulshreshtha, S., Bhatnagar, P. (2014). Recent Advances in Stem Cell Research. In: Ravi, I., Baunthiyal, M., Saxena, J. (eds) Advances in Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1554-7_9

Download citation

Publish with us

Policies and ethics