DNA Microarray



DNA microarray is a technology that has revolutionized the functional genomics with a wide array of applications. It is an arrangement of a large number of known genes or corresponding cDNA probes, for a given physiological condition of any living being; that are placed precisely as dots on a glass slide or chip or coated on beads. It works on the principle of Southern hybridization wherein DNA is hybridized with DNA to confirm the expression of a gene. The only difference is, in microarrays probes are placed on solid surface and test DNA is in the hybridization solution, which is just opposite to Southern hybridization where DNA to be diagnosed is placed on nylon or nitrocellulose membrane and probe is in the hybridization solution. DNA microarray helps in screening of thousands of genes in one go to understand their expression in a given physiological condition, when hybridized with the test DNA. During hybridization, fluorescent dyes attached to probes produce emissions of specific color based on complete partial and no binding of DNA to the probes. After hybridization these emissions can be observed and recorded under a confocal laser microscope and further analyzed with the help of image analysis software to understand set of genes up or down regulated in the test DNA and to determine fluorescence intensities that allow the quantitative comparison between the two test DNAs for all genes on the array. This technique is useful in gene expression profiling, comparative genomic hybridization, checking GeneID, SNP detection, alternative splicing detection, fusion gene detection and genome tilling to empirically detect expression of transcripts, or alternative splice forms. It has been widely applied in studies related to cancer biology, microbiology, plant science, environmental science, etc.


Microarray Experiment Single Nucleotide Polymorphism cDNA Microarray Oligonucleotide Microarrays ssDNA Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adomas A, Heller G, Olson A, Osborne J, Karlsson M, Nahalkova J, Van Zyl L, Sederoff R, Stenlid J, Finlay R, Asiegbu FO (2008) Comparative analysis of transcript abundance in Pinus sylvestris after challenge with a saprotrophic, pathogenic or mutualistic fungus. Tree Physiol 28(6):885–897PubMedGoogle Scholar
  2. Aharoni A, Keizer LCP, Bouwmeester HJ, Sun ZK, Alvarez Huerta M, Verhoeven HA, Blaas J, van Houwelingen A, de Vos RCH, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O’Connell AP (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–661PubMedGoogle Scholar
  3. Aharoni A, Vorst O (2001) Reports on the use of DNA microarrays in plants. Plant Mol Biol 48:99–118Google Scholar
  4. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JG, Sabet H, Tran T, Yu X, Powell JI, Yang LM, Marti GE, Moore T, Hudson J, Lu LS, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511PubMedGoogle Scholar
  5. Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J (2000) Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles. Biochem Biophys Res Commun 277:305–310PubMedGoogle Scholar
  6. Armstrong B, Stewart M, Mazumder A (2000) Suspension arrays for high throughput, multiplexed single nucleotide polymorphism genotyping. Cytometry 40:102–108PubMedGoogle Scholar
  7. Augenlicht et al (1987) Cancer Res 47:6017–6021Google Scholar
  8. Azugenlicht et al (1991) Proc Nat Acad Sci 88: 3286–3289Google Scholar
  9. Augenlicht, Kobrin (1982) Cancer Research 42: 1088–109Google Scholar
  10. Bammler T, Beyer RP, Consortium, Members of the Toxicogenomics Research, Kerr X, Jing LX, Lapidus S, Lasarev DA, Paules RS, Li JL et al (2005) Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods 2(5):351–356Google Scholar
  11. Bavykin SG, Akowski JP, Zakhariev VM, Barsky VE, Perov AN, Mirzabekov AD (2001) Portable system for microbial sample preparation and oligonucleotide microarray analysis. Appl Environ Microbiol 67:922–928PubMedGoogle Scholar
  12. Bayani J, Brenton JD, Macgregor PF, Beheshti B, Albert M, Nallainathan D et al (2002) Parallel analysis of sporadic primary ovarian carcinomas by spectral karyotyping, comparative genomic hybridization and expression microarrays. Cancer Res 62:3466–3476PubMedGoogle Scholar
  13. Belcher CE, Drenkow J, Kehoe B, Gingeras TR, McNamara N, Lemjabbar H, Basbaum C, Relman DA (2000) The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies. Proc Natl Acad Sci USA 97:13847–13852PubMedGoogle Scholar
  14. Ben-Gal I, Shani A, Gohr A, Grau J, Arviv S, Shmilovici A, Posch S, Grosse I (2005) Identification of transcription factor binding sites with variable-order bayesian networks. Bioinformatics 21(11):2657–2666PubMedGoogle Scholar
  15. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P et al (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 98:13790–13795PubMedGoogle Scholar
  16. Bibikova M, Fan JB (2009) GoldenGate assay for DNA methylation profiling. Methods Mol Biol 507:149–163PubMedGoogle Scholar
  17. Bibikova M, Talantov D, Chudin E, Yeakley JM, Chen J, Doucet D, Wickham E, Atkins D, Barker D, Chee M, Wang Y, Fan JB (2004) Quantitative gene expression profiling in formalin-fixed, paraffin-embedded tissues using universal bead arrays. Am J Pathol 165:1799–1807PubMedGoogle Scholar
  18. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M et al (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540PubMedGoogle Scholar
  19. Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman MA, Deyholes M, Fischer R, Galbraith DW, Hasegawa PM, Jenks M, Kawasaki S, Koiwa H, Kore-eda S, Lee BH, Michalowski CB, Misawa E, Nomura M, Ozturk N, Postier B, Prade R, Song CP, Tanaka Y, Wang H, Zhu JK (2001) A genomics approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311Google Scholar
  20. Boonham N, Walsh K, Smith P, Madagan K, Graham I, Barker I (2003) Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis. J Virol Methods 108:181–187PubMedGoogle Scholar
  21. Chen J, Iannone MA, Li MS, Taylor JD, Rivers P, Nelsen AJ, Slentz KKA, Roses A, Weiner MP (2000) A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Res 10:549–557PubMedGoogle Scholar
  22. Cheung ST, Chen X, Guan XY, Wong SY, Tai LS, Ng IO, So S, Fan ST (2002) Identify metastasis-associated genes in hepatocellular carcinoma through clonality delineation for multinodular tumor. Cancer Res 62:4711–4721PubMedGoogle Scholar
  23. Cheung VG, Morley M, Aguilar F, Massimi A, Kucherlapati R, Childs G (1999) Making and reading microarrays. Nat Genet 21:15–19PubMedGoogle Scholar
  24. Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney J, Reuber TL, Stammers M, Federspiel N, Theologis A, Wei HY, Hubbell E, Au M, Chung EY, Lashkari D, Lemieux B, Dean C, Lipshutz RJ, Ausubel FM, Davis RW, Oefner PJ (1999) Genomewide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203–207PubMedGoogle Scholar
  25. Chou CC, Chen CH, Lee TT, Peck K (2004) Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression. Nucleic Acids Res 32:e99PubMedGoogle Scholar
  26. Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nature genetics supplement 32: 490. doi: 10.1038/ng1031. PMID12454643
  27. Cohen P, Bouaboula M, Bellis M, Baron V, Jbilo O, Chazel CP, Galiegue S, Hadibi EH, Casellas P (2000) Monitoring cellular responses to Listeria monocytogenes with oligonucleotide arrays. J Biol Chem 275:11181–11190PubMedGoogle Scholar
  28. Coombes BK, Mahony JB (2001) cDNA array analysis of altered gene expression in human endothelial cells in response to Chlamydia pneumoniae infection. Infect Immun 69:1420–1427PubMedGoogle Scholar
  29. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826PubMedGoogle Scholar
  30. Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363:71–82PubMedGoogle Scholar
  31. Ehrenreich A (2006) DNA microarray technology for the microbiologist: an overview. Appl Microbiol Biotechnol 73:255–273PubMedGoogle Scholar
  32. Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Garcia EW, Lebruska LL, Laurent M, Shen R, Barker D (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73PubMedGoogle Scholar
  33. Fan JB, Hu SX, Craumer WC, Barker DL (2005) BeadArray-based solutions for enabling the promise of pharmacogenomics. Biotechniques 39:583–588PubMedGoogle Scholar
  34. Fan JB, Yeakley JM, Bibikova M, Chudin E, Wickham E, Chen J, Doucet D, Rigault P, Zhang B, Shen R, McBride C, Li HR, Fu XD, Oliphant A, Barker DL, Chee MS (2004) A versatile assay for high-throughput gene expression profiling on universal array matrices. Genome Res 14:878–885PubMedGoogle Scholar
  35. Fessehaie A, de Boer SH, Lévesque CA (2003) An oligonucleotide array for the identification and differentiation of bacteria pathogenic on potato. Phytopathology 93:262–269PubMedGoogle Scholar
  36. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773PubMedGoogle Scholar
  37. Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Gengelbach MP et al (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 98:13784–13789PubMedGoogle Scholar
  38. Gill RT, DeLisa MP, Valdes JJ, Bentley WE (2001) Genomic analysis of high-cell density recombinant Escherichia coli fermentation and A cell conditioning B for improved recombinant protein yield. Biotechnol Bioeng 72:85–95PubMedGoogle Scholar
  39. Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581PubMedGoogle Scholar
  40. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537PubMedGoogle Scholar
  41. Gunderson KL (2009) Whole-genome genotyping on bead arrays. Methods Mol Biol 529:197–213PubMedGoogle Scholar
  42. Gunderson KL, Kruglyak S, Graige MS, Garcia F, Kermani BG, Zhao C, Che D, Dickinson T, Wickham E, Bierle J, Doucet D, Milewski M, Yang R, Siegmund C, Haas J, Zhou L, Oliphant A, Fan JB, Barnard S, Chee MS (2004) Decoding randomly ordered DNA arrays. Genome Res 14:870–877PubMedGoogle Scholar
  43. Hacia JG, Brody LC, Chee MS, Fodor SP, Collins FS (1996) Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two color fluorescence analysis. Nat Genet 14:441–447PubMedGoogle Scholar
  44. Hacia JG, Fan JB, Ryder O, Jin L, Edgemon K, Ghandour G, Mayer RA, Sun B, Hsie L, Robbins CM, Brody LC, Wang D, Lander ES, Lipshutz R, Fodor SP, Collins FS (1999) Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nat Genet 22(2):164–167PubMedGoogle Scholar
  45. Hager J (2006) Making and using spotted DNA microarrays in an academic core laboratory. Methods Enzymol 410:135–168PubMedGoogle Scholar
  46. Harkin DP, Bean JM, Miklos D, Song YH, Truong VB et al (1999) Induction of GADD 45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97:575–586PubMedGoogle Scholar
  47. Harmer SL, Hogenesch LB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113PubMedGoogle Scholar
  48. Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806PubMedGoogle Scholar
  49. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host–microbial relationships in the intestine. Science 291:881–884PubMedGoogle Scholar
  50. Horan PK, Wheeless LL Jr (1977) Quantitative single cell analysis and sorting. Science 198:149–157PubMedGoogle Scholar
  51. Iannone MA, Taylor JD, Chen J, Li MS, Rivers P, Kesler KAS, Weiner MP (2000) Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry 39:131–140PubMedGoogle Scholar
  52. Ichikawa JK, Norris A, Bangera MG, Geiss GK, van’t Wout AB, Bumgarner RE, Lory S (2000) Interaction of Pseudomonas aeruginosa with epithelial cells: identification of differentially regulated genes by expression microarray analysis of human cDNAs. Proc Natl Acad Sci USA 97:9659–9664PubMedGoogle Scholar
  53. Jain N, Thatte J, Braciale T, Ley K, O’Connell M, Lee JK (2003) Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 19(15):1945–1951PubMedGoogle Scholar
  54. Johnson SC, Marshall DJ, Harms G, Miller CM, Sherrill CB, Beaty EL, Lederer SA, Roesch EB, Madsen G, Hoffman GL, Laessig RH, Kopish GJ, Baker MW, Benner SA, Farrell PM, Prudent JR (2004) Multiplexed genetic analysis using an expanded genetic alphabet. Clin Chem 50:2019–2027PubMedGoogle Scholar
  55. Kato-Maeda M, Rhee JT, Gingeras TR, Salamon H, Drenkow J, Smittipat N, Small PM (2001) Comparing genomes within the species Mycobacterium tuberculosis. Genome Res 11:547–554PubMedGoogle Scholar
  56. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–906PubMedGoogle Scholar
  57. Kehoe DM, Villand P, Somerville SC (1999) DNA microarrays for studies of higher plants and other photosynthetic organisms. Trends Plant Sci 4:38–41PubMedGoogle Scholar
  58. Kudoh K, Ramanna M, Ravatn R, Elkahloun AG, Bittner ML, Meltzer PS et al (2000) Monitoring the expression profiles of doxorubicin-induced and doxorubicin-resistant cancer cells by cDNA microarray. Cancer Res 60:4161–4166PubMedGoogle Scholar
  59. Kuhn K, Baker SC, Chudin E, Lieu MH, Oeser S, Bennett H, Rigault P, Barker D, McDaniel TK, Chee MS (2004) A novel, high-performance random array platform for quantitative gene expression profiling. Genome Res 14:2347–2356PubMedGoogle Scholar
  60. Kulesh DA, Clive DR, Zarlenga DS, Greene JJ (1987) Identification of interferon-modulated proliferation-related cDNA sequences. Proc Natl Acad Sci USA 84(23):8453–8457PubMedGoogle Scholar
  61. Lashkari DA, DeRisi JL, McCusker JH, Namath AF, Gentile C, Hwang SY, Brown PO, Davis RW (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci USA 94(24):13057–13062. doi: 10.1073/pnas.94.24.13057. PMC 24262. PMID 9371799Google Scholar
  62. Lévesque CA, Harlton CE, de Cock AWAM (1998) Identification of some oomycetes by reverse dot blot hybridization. Phytopathology 88:213–222PubMedGoogle Scholar
  63. Lievens B, Brouwer M, Vanachter ACRC, Lévesque CA, Cammue BPA, Thomma BPHJ (2003) Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. FEMS Microbiol Lett 223:113–122PubMedGoogle Scholar
  64. Lievens B, Brouwer M, Vanachter ACRC, Lévesque CA, Cammue BPA, Thomma BPHJ (2005) Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environ Microbiol 7:1698–1710PubMedGoogle Scholar
  65. Lievens B, Claes L, Vanachter ACRC, Cammue BPA, Thomma BPHJ (2006) Detecting single nucleotide polymorphisms using DNA arrays for plant pathogen diagnosis. FEMS Microbiol Lett 255:129–139PubMedGoogle Scholar
  66. Lievens B, Thomma BPHJ (2005) Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practice. Phytopathology 95:1374–1380PubMedGoogle Scholar
  67. Lievens B, Thomma BPHJ (2007) Quantification in multiplex format as a challenging goal for plant pathogen molecular diagnostic assays. Pest Technol (Global Science Books) 17–25Google Scholar
  68. Macgregor PF, Squire JA (2002) Application of microarrays to the analysis of gene expression in cancer. Clin Chem 48:1170–1177PubMedGoogle Scholar
  69. Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410PubMedGoogle Scholar
  70. Maskos U, Southern EM (1992) Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesized in situ. Nucleic Acids Res 20(7):1679–1684PubMedGoogle Scholar
  71. McGonigle B, Keeler SJ, Lan SMC, Koeppe MK, O’Keefe DP (2000) A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol 124:1105–1120PubMedGoogle Scholar
  72. McHugh RS, Ratnoff WD, Gilmartin R, Sell KW, Selvaraj P (1998) Detection of a soluble form of B7–1 (CD80) in synovial fluid from patients with arthritis using monoclonal antibodies against distinct epitopes of human B7–1. Clin Immunol Immunopathol 87:50–59PubMedGoogle Scholar
  73. Miller MB, Tang YW (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22(4):611–633PubMedGoogle Scholar
  74. Monni O, Barlund M, Mousses S, Kononen J, Sauter G, Heiskanen M et al (2001) Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer. Proc Natl Acad Sci USA 98:5711–5716PubMedGoogle Scholar
  75. Moran G, Stokes C, Thewes S, Hube B, Coleman DC, Sullivan D (2004) Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology 150(10):3363–3382PubMedGoogle Scholar
  76. Mousses S, Bubendorf L, Wagner U, Hostetter G, Kononen J, Conelison R et al (2002) Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res 62:1256–1260PubMedGoogle Scholar
  77. Nicolaisen M, Justesen AF, Thrane U, Skouboe P, Holmstrom K (2005) An oligonucleotide microarray for the identification and differentiation of trichothecene producing and non-producing Fusarium species occurring on cereal grain. J Microbiol Methods 62:57–69PubMedGoogle Scholar
  78. Nouzová M, Neumann P, Navrátilová A, Galbraith DW, Macas J (2001) Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Mol Biol 45:229–244PubMedGoogle Scholar
  79. Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K, Pitas A, Richmond T, Gorski T, Berg JP, Ballin J, McCormick M, Norton J, Pollock T, Sumwalt T, Butcher L, Porter D, Molla M, Hall C, Blattner F, Sussman MR, Wallace RL, Cerrina F, Green RD (2002) Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res 12(11):1749–1755PubMedGoogle Scholar
  80. Oh MK, Liao JC (2000a) DNA microarray detection of metabolic responses to protein overproduction in Escherichia coli. Metab Eng 2:201–209PubMedGoogle Scholar
  81. Oh MK, Liao JC (2000b) Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog 16:278–286PubMedGoogle Scholar
  82. Oliphant A, Barker DL, Stuelpnagel JR, Chee MS (2002) BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. BioTechniques (Suppl) 56–58:60–61Google Scholar
  83. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP (1994) http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=43922 Light-generated oligonucleotide arrays for rapid DNA sequence analysis. PNAS 91(11):5022–5026. Google Scholar
  84. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumors. Nature 406:747–752. Google Scholar
  85. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120PubMedGoogle Scholar
  86. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23(1):41–46Google Scholar
  87. Priness I, Maimon O, Ben-Gal I (2007) Evaluation of gene-expression clustering by mutual information distance measures. BMC Bioinform 8(1):111Google Scholar
  88. Ramdas L, Cogdell DE, Jia JY, Taylor EE, Dunmire VR, Hu L, Hamilton SR, Zhang W (2004) Improving signal intensities for genes with low-expression on oligonucleotide microarrays. BMC Genomics 5:35PubMedGoogle Scholar
  89. Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719PubMedGoogle Scholar
  90. Risch NJ (2000) Searching for genetic determinants in new millennium. Nature 405:847–856PubMedGoogle Scholar
  91. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P et al (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24:227–235PubMedGoogle Scholar
  92. Ruan Y, Gilmore J, Conner T (1998) Towards Arabidopsis genome analysis: Monitoring expression profiles of 1,400 genes using cDNA microarrays. Plant J 15:821–833PubMedGoogle Scholar
  93. Salama N, Guillemin K, McDaniel TK, Sherlock G, Tompkins L, Falkow S (2000) A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci USA 97:14668–14673PubMedGoogle Scholar
  94. Schaffer R, Landgraf J, Amador MP, Wisman E (2000) Monitoring genome-wide expression in plants. Curr Opin Biotechnol 11:162–167PubMedGoogle Scholar
  95. Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian regulated genes in Arabidopsis. Plant Cell 13:113–123PubMedGoogle Scholar
  96. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470PubMedGoogle Scholar
  97. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW (1996) Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Nat Acad Sci USA 93:10614–10619PubMedGoogle Scholar
  98. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660PubMedGoogle Scholar
  99. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L et al (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24:236–244PubMedGoogle Scholar
  100. Scillian JJ, McHugh TM, Busch MP, Tam M, Fulwyler MJ, Chien DY, Vyas GN (1989) Early detection of antibodies against rDNA-produced HIV proteins with a flow cytometric assay. Blood 73:2041–2048PubMedGoogle Scholar
  101. Seki M, Narusaka M, Abe H, Kasuga M, Shinozaki KY, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72PubMedGoogle Scholar
  102. Shalon D, Smith SJ, Brown PO (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 6(7):639–645PubMedGoogle Scholar
  103. Singhal H, Bautista DS, Tonkin KS, O’Malley FP, Tuck AB, Chambers AF et al (1997) Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res 3:605–611PubMedGoogle Scholar
  104. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874PubMedGoogle Scholar
  105. Sosnowski RG, Tu E, Butler WF, O’Connell JP, Heller MJ (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc Natl Acad Sci USA 94:1119–1123PubMedGoogle Scholar
  106. Spiegelman JI, Mindrinos MN, Fankhauser C, Richards D, Lutes J, Chory J, Oefner PJ (2000) Cloning of the arabidopsis RSF1 gene by using a mapping strategy based on high-density DNA arrays and denaturing high-performance liquid chromatography. Plant Cell 12:2485–2498PubMedGoogle Scholar
  107. Spiro A, Lowe M, Brown D (2000) A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry. Appl Environ Microbiol 66:4258–4265PubMedGoogle Scholar
  108. Streib FE, Dehmer M (2008) Analysis of microarray data a network-based approach. Wiley, New York. ISBN 3-527-31822-4Google Scholar
  109. Suzuki I, Kanesaki Y, Mikami K, Kanehisa M, Murata N (2001) Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol 40:235–244PubMedGoogle Scholar
  110. Tambong JT, de Cock AWAM, Tinker NA, Lévesque CA (2006) Oligonucleotide array for identification and detection of Pythium species. Appl Environ Microbiol 72:2691–2706PubMedGoogle Scholar
  111. Tang T, François N, Glatigny A, Agier N, Mucchielli MH, Aggerbeck L, Delacroix H (2007a) Expression ratio evaluation in two-colour microarray experiments is significantly improved by correcting image misalignment. Bioinformatics 23(20):2686–2691PubMedGoogle Scholar
  112. Tang BM, McLean AS, Dawes IW, Huang SJ, Lin RC (2007b) The use of gene-expression profiling to identify candidate genes in human sepsis. Am J Respir Crit Care Med 176:676–684PubMedGoogle Scholar
  113. Tao H, Gonzalez R, Martinez A, Rodriguez M, Ingram LO, Preston JF, Shanmugam KT (2001) Engineering a homoethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacteriol 183:2979–2988PubMedGoogle Scholar
  114. Taylor JD, Briley D, Nguyen Q, Long K, Iannone MA, Li MS, Ye F, Afshari A, Lai E, Wagner M, Chen J, Weiner MP (2001) Flow cytometric platform for high-throughput single nucleotide polymorphism analysis. Biotechniques 30(661–666):668–669Google Scholar
  115. Tomiuk S, Hofmann K (2001) Microarray probe selection strategies. Brief Bioinform 2:329–340PubMedGoogle Scholar
  116. Troesch A, Nguyen H, Miyada CG, Desvarenne S, Gingeras TR, Kaplan PM, Cros P, Mabilat C (1999) Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays. J Clin Microbiol 37:49–55PubMedGoogle Scholar
  117. Uehara T, Kushida A, Momota Y (1999) Rapid and sensitive identification of Pratylenchus spp. using reverse dot blot hybridization. Nematology 1:549–555Google Scholar
  118. Vacha SJ (2003) Ten pitfalls of microarray analysis. Technical note 72 dna. Agilent Technologies, Inc. http://www.chem.agilent.com/scripts/LiteraturePDF.asp?iWHID=32461
  119. Wang R, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1509PubMedGoogle Scholar
  120. Wang WW, Spurdle AB, Kolachana P, Bove B, Modan B, Ebbers SM, Suthers G, Tucker MA, Kaufman DJ, Doody MM et al (2001) A single nucleotide polymorphism in the 5′ translated region of RAD 51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol Biomarkers Prev 10:955–960PubMedGoogle Scholar
  121. Wei C, Li J, Bumgarner RE (2004) Sample size for detecting differentially expressed genes in microarray experiments. BMC Genomics 5(1):87PubMedGoogle Scholar
  122. Weiszhausz DDD, Warrington J, Tanimoto EY, Miyada CG (2006) The Affymetrix GeneChip platform: an overview. Methods Enzymol 410:3–28Google Scholar
  123. Wen WH, Bernstein L, Lescallett J, Beazer-Barclay Y, Sullivan-Halley J, White M, Press MF (2000) Comparison of TP53 mutations identified by oligonucleotide microarray and conventional DNA sequence analysis. Cancer Res 60:2716–2722PubMedGoogle Scholar
  124. Wilson M, DeRisi J, Kristensen HH, Imboden P, Rane S, Brown PO, Schoolnik GK (1999) Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci USA 96:12833–12838PubMedGoogle Scholar
  125. Wisman E, Ohlrogge J (2000) Arabidopsis microarray service facilities. Plant Physiol 124:1468–1471PubMedGoogle Scholar
  126. Wouters L, Gõhlmann HW, Bijnens L, Kass SU, Molenberghs G, Lewi PJ (2003) Graphical exploration of gene expression data: a comparative study of three multivariate methods. Biometrics 59(4):1131–1139PubMedGoogle Scholar
  127. Ye RW, Wang T, Bedzyk L, Croker KM (2001) Applications of DNA microarrays in microbial systems. J Microbiol Methods 47:257–272PubMedGoogle Scholar
  128. Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH, Levine AJ (2000) Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 14:981–993PubMedGoogle Scholar
  129. Zhu T, Wang X (2000) Large-scale profiling of the Arabidopsis transcriptome. Plant Physiol 124:1472–1476PubMedGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Plant Pathology SectionCollege of AgricultureAkolaIndia

Personalised recommendations