Advertisement

Applications of Machine Olfaction

  • Himanshu K. Patel
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

In recent years, electronic noses (E-nose) have been commonly used in a range of fields such as quality control of foods and beverages, public safety, air protection, and medical applications. A key advance in information and gas sensor technology could improve the diagnostic power of future bio-electronic noses and facilitate global supervision models of disease control and management. This chapter presents a review of E-nose applications in various industries and discusses case studies related to the development of the E-nose system for disease diagnosis.

Keywords

Nitrogen Oxide Blood Alcohol Concentration Electronic Nose Cocoa Bean Breath Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O. Özgür, B. Karlık, An Overview of Metal Oxide Semiconducting Sensors in Electronic Nose Applications, International Burch University, Department of Information TechnologyGoogle Scholar
  2. 2.
    A.D. Wilson et al., Applications and advances in electronic-nose technologies. Sensors 9, 5099–5148 (2009). doi: 10.3390/s90705099 CrossRefGoogle Scholar
  3. 3.
    P. Russell, Sensory analysis. Milk Ind. Int. 97, 11–12 (1995)Google Scholar
  4. 4.
    D. Sivalingam, J.B. Balaguru Rayappan, Development of E-nose prototype for raw milk quality discrimination. Milchwissenschaft 67(4), 381 (2012)Google Scholar
  5. 5.
    S. Ampuero et al., The electronic nose applied to dairy products: A review. Sens. Actuators B 94, 1–12 (2003)CrossRefGoogle Scholar
  6. 6.
    K.M. Horváth, Z.S. Seregely, I. Dalmadi, E. Andrassy, J. Farkas, Estimation of bacteriological spoilage of pork cutlets by electronic nose. Acta Microbiol. Immunol. Hung. 54(2), 179–194 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Ghasemi-Varnamkhasti et al., Meat quality assessment by electronic nose (machine olfaction technology). Sensors 9, 6058–6083 (2009). doi: 10.3390/s90806058 CrossRefGoogle Scholar
  8. 8.
    H. GholamHosseini, D. Luo, H. Liu, G. Xu, Intelligent processing of E-nose information for fish freshness assessment. 3rd international conference on “intelligent sensors, sensor networks and information”, 2007. ISSNIP 2007Google Scholar
  9. 9.
    K.-T. Tang et al., Development of a portable electronic nose system for the detection and classification of fruity odours. Sensors 10, 9179–9193 (2010). doi: 10.3390/s101009179 CrossRefGoogle Scholar
  10. 10.
    M. Mamat et al., An electronic nose for reliable measurement and correct classification of beverages. Sensors 11, 6435–6453 (2011). doi: 10.3390/s110606435 CrossRefGoogle Scholar
  11. 11.
    V.O. Olunloyo, T.A. Ibidapo, R. R. Dinrifo, Neural network-based electronic nose for cocoa beans quality assessment. Agric. Eng. Int. CIGR J. 13(4) (2011)Google Scholar
  12. 12.
    F. ČAČIĆ, L. PRIMORAC et al. Application of electronic nose in honey geographical origin characterization. J. Central Eur. Agric. 10(1) (2009)Google Scholar
  13. 13.
    N. Bhattacharyya, S. Seth, B. Tudu, P. Tamuly, A. Jana, D. Ghosh, R. Bandyopadhyay, M. Bhuyan, Monitoring of black tea fermentation process using electronic nose. J. Food Eng. 80, 1146–1156 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Linehan, On the application of a consumer preference-based method for designing products to wine fermentation monitoring devices. Chem. Eng. Comm. 198:255–272 (2011). Taylor & Francis Group, LLC,ISSN: 0098-6445 print = 1563-5201 online, doi: 10.1080/00986445.2010.499833
  15. 15.
    A. D. Wilson “Future Applications of Electronic-Nose Technologies in Healthcare and Biomedicine, Wide Spectra of Quality Control”, Dr. Isin Akyar (Ed.), ISBN: 978-953-307-683-6, In Tech (2011)Google Scholar
  16. 16.
    M. Trincavelli, S. Coradeschi, A. Loutfi, B. S¨oderquist, P. Thunberg Member, IEEE, Direct identification of bacteria in blood culture samples using an electronic nose. IEEE Trans. Biomedical Eng. 57(12), 2884–2890 (2010)Google Scholar
  17. 17.
    S.Y. Lai, O.F. Deffenderfer, W. Hanson, M.P. Phillips, E.R. Thaler, Identification of upper respiratory bacterial pathogens with the electronic nose. Laryngoscope 112, 975–979 (2002)CrossRefGoogle Scholar
  18. 18.
    M. L. Humphreys, R. Orme, N. Sahgal, C. Kendall,N. Magan, N. Stone Electronic nose analysis of bronchoalveolar lavage fluid for the diagnosis of ventilator-associated pneumonia. Intensive Care Society’s (ICS) State of the art meeting, December (2007), London, UKGoogle Scholar
  19. 19.
    S. Aathithan, J.C. Plant, A.N. Chaudry, G.L. French, Diagnosis of bacteriuria by detection of volatile organic compounds in urine using an automated headspace analyzer with multiple conducting polymer sensors. J. Clin. Microbiol. 39, 2590–2593 (2001)CrossRefGoogle Scholar
  20. 20.
    A.K. Pavlou, N. Magan, C. McNulty, J. Jones, D. Sharp, J. Brown, A.P. Turner, Use of an electronic nose system for diagnoses of urinary tract infections. Biosens. Bioelectron. 17, 893–899 (2002)CrossRefGoogle Scholar
  21. 21.
    A.K. Pavlou, N. Magan, J.M. Jones, J. Brown, P. Klatser, A.P. Turner, Detection of mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens. Bioelectron. 20, 538–544 (2004)CrossRefGoogle Scholar
  22. 22.
    R. Fend et al., Monitoring haemodialysis using electronic nose and chemometrics. Biosens. Bioelectron. 19(12), 15 (2004)CrossRefGoogle Scholar
  23. 23.
    R. F. Machado, Detection of lung cancer by sensor array analyses of exhaled breath. Am J Respir Crit Care Med 171: 1286–1291 (2005). doi: 10.1164/rccm.200409-1184O on March 4, 2005Google Scholar
  24. 24.
    R. Blatt, A. Bonarini, E. Calabro, M. Della Torre, M. Matteucci, U. Pastorino, Lung cancer identification by an electronic nose based on an array of MOS sensors. Neural Networks, IJCNN (2007), pp. 1423–1428Google Scholar
  25. 25.
    D. Guo, D. Zhang, N. Li, L. Zhang, J. Yang, A novel breath analysis system based on electronic olfaction. IEEE Trans. Biomed. Eng. 57(11), 2753–2763 (2010)CrossRefGoogle Scholar
  26. 26.
    Arend Kolk et al., Electronic-nose technology in diagnosis of TB patients using sputum samples. J. Clin. Microbiol. (2010). doi: 10.1128/JCM.00569-10 Google Scholar
  27. 27.
    N. Charaklias, H. Raja, M.L. Humphreys, N. Magan, C.A. Kendall, The future of early disease detection: Applications of E-nose technology in otolaryngology. J. Laryngol. Otol. 124(8), 823–827 (2010)CrossRefGoogle Scholar
  28. 28.
    M. T. Momol, M. O. Balaban, F. Korel, A. Odabasia, E. A. Momel, G. Folkes, J. B. Jones, Discrimination of plant pathogenic bacteria using an electronic nose, Online. Plant health Progress, (2004)Google Scholar
  29. 29.
    A.C. Bastos, N. Magan, Soil volatile fingerprints: Use for discrimination between soil types under different environmental conditions. Sens. Actuators B 125, 556–562 (2007)CrossRefGoogle Scholar
  30. 30.
    Alphus D. Wilson, Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 13, 2295–2348 (2013). doi: 10.3390/s130202295 CrossRefGoogle Scholar
  31. 31.
    A. Catarina Bastos, N. Magan, Potential of an electronic nose for the early detection and differentiation between Streptomyces in potable water. Sens Actuators B 116, 151–155 (2006)CrossRefGoogle Scholar
  32. 32.
    W. Bourgeois, R.M. Stuetz, Measuring wastewater quality using a sensor array: prospects for real-time monitoring. Water Sci. Tech. 41(12), 107–112 (2000)Google Scholar
  33. 33.
    S. Zampolli et al., An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sens. Actuators B 101, 39–46 (2004)CrossRefGoogle Scholar
  34. 34.
    F.D. Francesco et al., An electronic nose for odour annoyance assessment. Atmos. Environ. 35, 1225–1234 (2001)CrossRefGoogle Scholar
  35. 35.
    K. C. Persaud, P. Wareham, A. M. Pisanelli, Emmanuel scorsone, ‘electronic nose’- new condition monitoring devices for environmental applications. Chem. Senses 30 (suppl 1): i252–i253 (2005)Google Scholar
  36. 36.
    J.E. Staples, The First Quantitatively Validated Electronic Nose for Environmental Testing of Air, Water, and Soil (ACS National, March, 2000), pp. 26–30Google Scholar
  37. 37.
    M. Bonnefille et. al. Prospective experiments of E-nose for cosmetic applications: recognition of sweat odours, agro-industrial chemistry laboratory, FranceGoogle Scholar
  38. 38.
    G.W. Watson, D.S. McGuire, Detection of explosives in soil and water with an Electronic Nose (American Chemical Society Meeting, Ontario, California, 1999), pp. 5–7. OctoberGoogle Scholar
  39. 39.
    M.C. Burl et al., Mining the detector responses of a conducting polymer composite-based electronic nose. First SIAM Int. Conference on Data Mining, (2000)Google Scholar
  40. 40.
    M. A. Ryan et. al., Monitoring space shuttle air quality using the jet propulsion laboratory electronic nose. IEEE Sens J 4(3) (2004)Google Scholar
  41. 41.
    L. Zhu et al., Flavor analysis in a pharmaceutical oral solution formulation using an electronic-nose. J. Pharm. Biomed. Anal. 34, 453–461 (2004)CrossRefGoogle Scholar
  42. 42.
    D.H. Yates, Role of exhaled nitric oxide in asthma. Immunol. Cell Biol. 79(2), 178–190 (2001)MathSciNetCrossRefGoogle Scholar
  43. 43.
    K. Alving, E. Weitzberg, J.M. Lundberg, Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 6(9), 1368–1370 (1993)Google Scholar
  44. 44.
    W.Q. Cao, Y.X. Duan, Breath analysis: Potential for clinical diagnosis and exposure assessment. Clin. Chem. 52(5), 800–811 (2006)MathSciNetCrossRefGoogle Scholar
  45. 45.
    L.J. Dupont, M.G. Demedts, G.M. Verleden, Prospective evaluation of the validity of exhaled nitric oxide for the diagnosis of asthma. Chest 123(3), 751–756 (2003)CrossRefGoogle Scholar
  46. 46.
  47. 47.
  48. 48.
    Department of forensic science, “Breath test operator instructional manual”, (2005)Google Scholar
  49. 49.
    NBS Special Publication 480–41Google Scholar
  50. 50.
    H. Moskowitz et al., Police officers’ detection of breath odours from alcohol ingestion. Accid. Anal. Prev. 31, 175–180 (1999)CrossRefGoogle Scholar
  51. 51.
    D. Tinwin, Breath alcohol testers: prevents road accidents. AU J.T. 10(2): 75–80 (2006)Google Scholar
  52. 52.
    Dr Gambert, Breath analysis with electrochemical sensors, GmBH, Germany. http://www. it-wismar.de, IGAMED-workshop, (2007)
  53. 53.
    L. Wang, Tailored synthesis and characterization of selective metabolite-detecting nanoprobes for handheld breath analysis (Stony Brook University, December, Dissertation, 2008)Google Scholar
  54. 54.
    B. Hök, H. Pettersson, A.K. Andersson, S. Haasl, P. Åkerlund, Breath analyzer for alcolocks and screening devices. IEEE Sens. J. 10, 10–15 (2010)CrossRefGoogle Scholar
  55. 55.
    http://www.hwsensor.com (HANWEI Electronics Co., Ltd,)

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Electrical EngineeringInstitute of Technology, Nirma UniversityAhmedabadIndia

Personalised recommendations