Sensor Used in E-nose

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


“Electronic noses” are devices which consist of electronic-chemical sensors with specificity capable of recognizing simple or complex gas mixtures. The recent advances in sensor devices have allowed the development of new devices for various applications in many technological fields. This chapter describes the basic sensor design, technology, and mechanism implemented in the development of E-nose sensor and main characteristics of the sensors. The current state-of-the-art of sensors used in the development of E-nose sensor analysis system is also discussed.


Surface Plasmon Resonance Surface Acoustic Wave Quartz Crystal Microbalance Capacitive Sensor Smart Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Nef, How we smell: the molecular and cellular bases of olfaction. Physiology 13, 1–5 (1998)Google Scholar
  2. 2.
    J.W. Gardner, P.N. Bartlett, Electronic noses principles and applications (Oxford University Press, Oxford, 1999)Google Scholar
  3. 3.
    K. Fooladsaz1 et al., Dopamine determination with a biosensor based on catalase and modified carbon paste electrode with zinc oxide nano-particles. Int. J. Electrochem. Sci. 7, 9892–9908 (2012)Google Scholar
  4. 4.
    A.K.H. Cheng, D. Sen, H. Yu, Design and testing of aptamer-based electrochemical biosensors for small molecules and proteins. Bioelectrochemistry 77, 1 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Largueze, K.E. Kirat, S. Morandat, Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina. Colloids Surf. 79, 33 (2010)CrossRefGoogle Scholar
  6. 6.
    O.A. Sadik, S.K. Mwilu, A. Aluoch, Smart electrochemical biosensors: from advanced materials to ultrasensitive devices. Electrochim. Acta 55, 4287–4295 (2010)CrossRefGoogle Scholar
  7. 7.
    A.P.F. Turner, Biosensors—sense and sensitivity. Science 290(5495), 1315–1317 (2000)CrossRefGoogle Scholar
  8. 8.
    M.K. Beissenhirtz, J. Kafka, D. Schäfer, M. Wolny, F. Lisdat, Electrochemical quartz crystal microbalance studies on cytochrome c/polyelectrolyte multilayer assemblies on gold electrodes. Electroanalysis 17(21), 1931–1937 (2005)CrossRefGoogle Scholar
  9. 9.
    Y. Xiao, F. Patolsky, E. Katz, J.F. Hainfeld, I. Willner, “Plugging into Enzymes”: nano wiring of redox enzymes by a gold nano particle. Science 299, 1877 (2003)CrossRefGoogle Scholar
  10. 10.
    M.A. Arnold, M.E. Meyerhoff, Recent advances in the development and analytical application of biosensing probes. Rev. Anal. Chem. 20, 149 (1988)Google Scholar
  11. 11.
    Y. Mendelson, Optical sensors, in Encyclopedia of Medical Devices and Instrumentation, vol. 5, ed. by J.G. Webster (2006), p. 160Google Scholar
  12. 12.
    S. Ismail, Z.A. Ahmad, A. Berenov, Z. Lockman, Effect of applied voltage and fluoride ion content on the formation of zirconia nanotube arrays by anodic oxidation of zirconium. Corros. Sci. 53, 1156–1164 (2011)CrossRefGoogle Scholar
  13. 13.
    L.D. Mello, L.T. Kubota, Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem. 77, 237–256 (2002)CrossRefGoogle Scholar
  14. 14.
    A. Rasooly, K.E. Herold, Biosensors for the analysis of food- and waterborne pathogens and their toxins. J. AOAC Int. 89 (2006)Google Scholar
  15. 15.
    W.J. Kauer, J.S.Dickinson et al., Rapid analyte recognition in a device based on optical sensors and the olfactory system. Anat. Chem. 68, 2191–2202Google Scholar
  16. 16.
    J. Ito, T. Nakamoto, H. Uematsu, Discrimination of halitosis substance by using QCM sensor array and preconcentrator. Sens. Actuators, B 99, 431 (2004)CrossRefGoogle Scholar
  17. 17.
    K. Persaud, G. Dodd, Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881), 352–355 (1982)Google Scholar
  18. 18.
    E. Schaller, J.O. Bosset, F. Escher, Food Science Technology. Electronic noses and their application to food. Lebensm.-Wiss. Technol. 31, 305 (1998)CrossRefGoogle Scholar
  19. 19.
    B.C. Munoz, G. Steinthal, S. Sunshine, Conductive polymer-carbon black composites-based sensor arrays for use in an electronic nose. Sens. Rev. 19(4), 300–305 (1999)CrossRefGoogle Scholar
  20. 20.
    I. Lundstrom, S. Shivaraman, C. Svensson, L. Lundkvist, A hydrogen-sensitive MOS field-effect transistor. Appl. Phys. Lett. 26(2) (1975)Google Scholar
  21. 21.
    S.K. Jha, R.D.S. Yadava, Development of surface acoustic wave electronic nose, Defense Sci. J. 60(4), 364–376 (2010)Google Scholar
  22. 22.
    I. French, D. George, T. Kretz, F. Templier, H. Lifka, Flexible displays and electronics made in AM-LCD facilities by the EPLaR process. SID-symposium digest of technical papers, vol. 38, pp. 1680–1683 1 May 2007Google Scholar
  23. 23.
    E. Zampetti et al., Flexible sensorial system based on capacitive chemical sensors integrated with readout circuits fully fabricated on ultra thin substrate. Sens. Actuators, B 155, 768–774 (2011)Google Scholar
  24. 24.
    T. Kinkeldei et al., An electronic nose on flexible substrates integrated into a smart textile. Sens. Actuators, B 174, 81–86 (2012)CrossRefGoogle Scholar
  25. 25.
    Giménez et al., PAMPA III Electronic Nose: Control Electronics Design. J. Argent. Chem. Soc. 93(1-3), 115–122 (2005)Google Scholar
  26. 26.
    F. Spinelli, M. Noferini, G. Costa, Near infrared spectroscopy (NIRs): perspective of fire blight detection in asymptomatic plant material, in Proceeding of 10 th International Workshop on Fire Blight, Acta Horticulture, vol. 704 (2006), pp. 87–90Google Scholar
  27. 27.
    S. Sankaran, R. Ehsani, Visible-near infrared spectroscopy based citrus greening detection: Evaluation of spectral feature extraction techniques. Crop Prot. 30, 1508–1513 (2011)Google Scholar
  28. 28.
    K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford, A review of gas sensors employed in electronic nose applications. Sens. Rev. 24(2), 181–198 (2004)CrossRefGoogle Scholar
  29. 29.
    H. Troy Nagle, S.S. Schiffman, R. Gutierrez-Osuna, The how and why of electronic noses. IEEE Spectr. 35(9), 22–34 (1998)Google Scholar
  30. 30.
    D. Zook, U. Bonne, T. Samad, Sensors in control systems. Control Syst. Robotics Autom. 21 (Encyclopedia of life support system (EOLSS))Google Scholar
  31. 31.
    P. Hauptmann, R. Borngraeber, J. Schroeder, J. Auge, Artificial electronic tongue in comparison to the electronic nose—state of the art and trends, in Proceedings of the 54th Annual IEEE International, Frequency Control Symposium, USA (2000), pp. 22–29Google Scholar
  32. 32.
    A.D. Wilson, M. Baietto, Applications and advances in electronic-nose technologies. Sensors 9, 5099–5148 (2009). doi: 10.3390/s90705099 CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Electrical EngineeringInstitute of Technology, Nirma UniversityAhmedabadIndia

Personalised recommendations