Skip to main content

Cyclic Nucleotide-Gated Channels: Essential Signaling Components in Plants for Fertilization and Immunity Responses

  • Chapter
  • First Online:
Plant signaling: Understanding the molecular crosstalk
  • 2451 Accesses

Abstract

The Cyclic Nucleotide-Gated Channels (CNGCs) in plants are responsible for conducting mono and divalent cations such as Ca2+, Pb2+, Na+, and K+. The CNGCs have been identified in different plant species, namely, Arabidopsis thaliana where 20 have been genetically identified. They express during different developmental stages of the plant organ, tissue, or cell indicating the specificity in their function. The CNGCs have been implicated in diverse responses in plants from stress tolerance (both biotic and abiotic) to transpiration and fertilization. These responses in plants are due to the presence of complex signaling network of which CNGCs are a part. Thus far CNGCs were implicated in the hormone-mediated pathways (GA, IAA, ABA, JA) leading to developmental responses, NO-mediated pathways leading to plant defense and immunity responses, and cyclic nucleotides monophosphates (cNMPs) and Calmodulin-mediated pathways leading to regulation of cation conduction into the cell. The cNMPs and calcium acts as the secondary messenger in these signaling pathways transducing the signal from the environment into the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali R, Zielinski R, Berkowitz GA (2006) Expression of plant cyclic nucleotide-gated cation channels in yeast. J Exp Bot 57:125–138

    PubMed  CAS  Google Scholar 

  • Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, vonBodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis cyclic nucleotide gated channel 2 and innate immunity. Plant Cell 19:1081–1095

    PubMed  CAS  Google Scholar 

  • Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  CAS  Google Scholar 

  • Aravind L, Ponting CP (1997) The GAF domain: an evolutionary link between diverse photo transducing proteins. Trends Biochem Sci 22:458–459

    PubMed  CAS  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    PubMed  CAS  Google Scholar 

  • Arazi T, Kaplan B, Fromm H (2000) A high affinity calmodulin binding site in tobacco plasma membrane channel protein coincides with a characteristic element of cyclic nucleotide binding domains. Plant Mol Biol 42:591–601

    PubMed  CAS  Google Scholar 

  • Atkinson MM, Midland SL, Sims JJ, Keen NT (1996) Syringolide 1 triggers Ca2+ influx, K+ efflux, and extracellular alkalization in soybean cells carrying the disease-resistance gene Rpg4. Plant Physiol 112:297–302

    PubMed  CAS  Google Scholar 

  • Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379

    PubMed  CAS  Google Scholar 

  • Barnes SA, Quaggio RB, Chua NH (1995) Phytochrome signal-transduction: characterization of pathways and isolation of mutants. Philos Trans R Soc Lond B Biol Sci 350:67–74

    PubMed  CAS  Google Scholar 

  • Baxter J, Moeder W, Urquhart W, Shahinas D, Chin K, Christendat D, Kang HG, Angelova M, Kato N, Yoshioka K (2008) Identification of a functionally essential amino acid for Arabidopsis cyclic nucleotide gated ion channels using the chimeric AtCNGC11/12 gene. Plant J 56:457–469

    PubMed  CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigmand a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    PubMed  CAS  Google Scholar 

  • Biel M (2009) Cyclic nucleotide regulated cation channels. J Biol Chem 284:9017–9021

    PubMed  CAS  Google Scholar 

  • Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H (2006) Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol 140:1151–1168

    PubMed  CAS  Google Scholar 

  • Borsics T, Webb D, Andeme-Ondzighi C, Staehelin LA, Christopher DA (2007) The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta 255:563–573

    Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H, Chua N-H (1994) Cyclic-GMP and calcium mediate phytochrome transduction. Cell 77:73–81

    PubMed  CAS  Google Scholar 

  • Bridges D, Fraser ME, Moorhead GB (2005) Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes. BMC Bioinformatics 6:6–18

    PubMed  Google Scholar 

  • Camacho L, Malhó R (2003) Endo-exocytosis in the pollen tube apex is differentially regulated by Ca2+ and GTPases. J Exp Bot 54:83–92

    PubMed  CAS  Google Scholar 

  • Chaiwongsar S, Strohm AK, Roe JR, Godiwalla RY, Chan CW (2009) A cyclic nucleotide-gated channel is necessary for optimum fertility in high-calcium environments. New Phytol 183(1):76–87

    PubMed  CAS  Google Scholar 

  • Chan CW, Schorrak LM, Smith RK Jr, Bent AF, Sussman MR (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol 132:728–731

    PubMed  CAS  Google Scholar 

  • Chan CWM, Wohlbach DJ, Rodesch MJ, Sussman MR (2008) Transcriptional changes in response to growth of Arabidopsis in high external calcium. FEBS Lett 582:967–976

    PubMed  CAS  Google Scholar 

  • Chang F, Yan A, Zhao L-N, Wu W-H, Yang Z (2007) A putative calcium-permeable cyclic nucleotide-gated channel, CNGC18, regulates polarized pollen tube growth. J Int Plant Biol 49(8):1261–1270

    CAS  Google Scholar 

  • Chin K, Moeder W, Yoshioka K (2009) Biological roles of cyclic-nucleotide-gated ion channels in plants: what we know and don’t know about this 20 member ion channel family. Bot Bot 87:668–677

    CAS  Google Scholar 

  • Christopher DA, Borsics T, Yuen CYL, Ullmer W, Andème-Ondzighi C, Andres MA, Kang B-H, Staehelin LA (2007) The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biol 7:48

    PubMed  Google Scholar 

  • Clough SJ, Fengler KA, Yu I-C, Lippok B, Smith RK, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide gated ion channel. Proc Natl Acad Sci U S A 97:9323–9328

    PubMed  CAS  Google Scholar 

  • Cooke CJ, Smith CJ, Walton TJ, Newton RP (1994) Evidence that cyclic AMP is involved in the hypersensitive response of Medicago sativa to a fungal elicitor. Phytochemistry 35:889–895

    CAS  Google Scholar 

  • Cukkemane A, Seifert R, Kaupp UB (2011) Cooperative and uncooperative cyclic-nucleotide-gated ion channels. Trends Biochem Sci 36:55–64

    PubMed  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    PubMed  CAS  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    PubMed  CAS  Google Scholar 

  • Demidchik V et al (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53:67–107

    PubMed  CAS  Google Scholar 

  • Dietrich P, Anschütz U, Kugler A, Becker D (2010) Physiology and biophysics of plant ligand-gated ion channels. Plant Biol (Suppl 1):80–93

    Google Scholar 

  • Doke N, Miura Y, Sanchez LM, Park HJ, Noritake T, Yoshioka H, Kawakita K (1996) The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence. Gene 179:45–51

    PubMed  CAS  Google Scholar 

  • Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320

    PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:10328–10333

    PubMed  CAS  Google Scholar 

  • Ehsan H, Reichheld JP, Roef L, Witters E, Lardon F, Van Bockstaele D, Van Montagu M, Inze D, Van Onckelen H (1998) Effect of indomethacin on cell cycle dependent cyclic AMP fluxes in tobacco BY-2 cells. FEBS Lett 422:165–169

    PubMed  CAS  Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    PubMed  CAS  Google Scholar 

  • Frietsch S, Wang Y-F, Sladek C, Poulsen LR, Schroeder JI, Romanowsky SM, Harper JF (2007) A cyclic nucleotide-gated channel essential for polarized tip growth of pollen. Proc Natl Acad Sci U S A 104:14531–14536

    PubMed  CAS  Google Scholar 

  • Gaynard F, Ceruttie M, Horeau C, Lemaille G, Urbach S, Ravellac M, Devauchelle G, Sentenac H, Thibaud JP (1996) The Baculovirus insect cell system as an alternative to Xenopus Oocytes. First characterization of the AKT1 K + channel from Arabidopsis thaliana. J Biol Chem 271:22863–22870

    Google Scholar 

  • Ge LL, Tian HQ, Russell SD (2007) Calcium function and distribution during fertilization in Angiosperms. Am J Bot 94(6):1046–1060

    PubMed  CAS  Google Scholar 

  • Genger RK, Jurkowski GI, McDowell JM, Lu H, Jung HW, Greenberg JT, Bent AF (2008) Signaling pathways that regulate the enhanced disease resistance of Arabidopsis ‘defense, no death’ mutants. Mol Plant Microbe Interact 10:1285–1296

    Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    PubMed  CAS  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJ (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800

    PubMed  CAS  Google Scholar 

  • Grunwald ME et al (1998) Identification of a domain on the β-subunit of the rod cGMP-gated cation channel that mediates inhibition by calcium–calmodulin. J Biol Chem 273:9148–9157

    PubMed  CAS  Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z (2008) The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol Plant 134:499–507

    PubMed  CAS  Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsic T, Rengel Z (2010) The cyclic nucleotide gated channel AtCNGC10 transports Ca2+ and Mg2+ in Arabidopsis. Physiol Plant 139:303–312

    PubMed  CAS  Google Scholar 

  • Hampton CR, Broadley MR, White PJ (2005) Short review: the mechanisms of radio caesium uptake by Arabidopsis roots. Nukleonika 50:S3–S8

    CAS  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    PubMed  CAS  Google Scholar 

  • Holdaway-Clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium is delayed. Plant Cell 9:1999–2010

    PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    PubMed  CAS  Google Scholar 

  • Hua BG, Mercier RW, Leng Q, Berkowitz GA (2003a) Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiol 132:1353–1361

    PubMed  CAS  Google Scholar 

  • Hua BG, Mercier RW, Zielinski RE, Berkowitz GA (2003b) Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 41:945–954

    CAS  Google Scholar 

  • Isner JC, Nühse T, Maathuis FJM (2012) The cyclic nucleotide cGMP is involved in plant hormone signalling and alters phosphorylation of Arabidopsis thaliana root proteins. J Exp Bot 1–7 doi: 10.1093/jxb/ers045

  • Jurkowski GI, Smith RK Jr, Yu IC, Ham JH, Sharma SB, Klessig DF, Fengler KA, Bent AF (2004) Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol Plant Microbe Interact 17:511–520

    PubMed  CAS  Google Scholar 

  • Kaplan B, Sherman T, Fromm H (2007) Cyclic nucleotide-gated channels in plants. FEBS Lett 581:2237–2246

    PubMed  CAS  Google Scholar 

  • Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    PubMed  CAS  Google Scholar 

  • Köhler C, Neuhaus G (2000) Characterisation of calmodulin binding to a cyclic nucleotide gated ion channels from Arabidopsis thaliana. FEBS Lett 471:133–136

    PubMed  Google Scholar 

  • Köhler C, Merkle T, Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104

    PubMed  Google Scholar 

  • Kugler A, Köhler B, Palme K, Wolff P, Dietrich P (2009) Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol 9:140

    PubMed  Google Scholar 

  • Kurosaki F (1997) Role of inward K+ channel located at carrot plasma membrane in signal cross talking if c AMP with Ca 2+ cascade. FEBS Lett 408:115–119

    PubMed  CAS  Google Scholar 

  • Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K (2005) Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen- activated protein kinase activation in rice. Plant J 42:798–809

    PubMed  CAS  Google Scholar 

  • Lemtiri-Chlieh F, Berkowitz GA (2004) Cyclic adenosine monophosphate regulates calcium channels in the plasma membrane of Arabidopsis leaf guard and mesophyll cells. J Biol Chem 279:35306–35312

    PubMed  CAS  Google Scholar 

  • Leng Q, Mercier RW, Yao W, Berkowitz GA (1999) Cloning and first functional characterisation of a plant cyclic nucleotide gated channel. Plant Physiol 121:753–761

    PubMed  CAS  Google Scholar 

  • Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide gated ion channels. Plant Physiol 128:400–410

    PubMed  CAS  Google Scholar 

  • Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol 6:427–437

    PubMed  CAS  Google Scholar 

  • Li W, Luan S, Schrieber SL, Assmann SM (1994) Cyclic AMP stimulates K+ channel activity in mesophyll cells of Vicia faba. Plant Physiol 106:957–961

    PubMed  CAS  Google Scholar 

  • Li X, Borsics T, Harrington HM, Christopher DA (2005) Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cGMP in E. coli. Funct Plant Biol 32:643–653

    Google Scholar 

  • Liu M et al (1994) Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266:1348–1354

    PubMed  CAS  Google Scholar 

  • Ludidi N, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494

    PubMed  CAS  Google Scholar 

  • Ma W, Ali R, Berkowitz GA (2006) Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 44:494–505

    PubMed  CAS  Google Scholar 

  • Ma W, Qi Z, Smigel A, Walker RK, Verma R, Berkowitz GA (2009) Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci U S A 106:20995–21000

    PubMed  CAS  Google Scholar 

  • Ma W, Yoshioka K, Gehring CA, Berkowitz GA (2010) The function of cyclic nucleotide gated channels in biotic stress. In: Demidchik V, Maathuis FJM (eds) Ion channels and plant stress responses. Springer, Berlin, pp 159–174

    Google Scholar 

  • Maathuis FJ (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45:700–711

    PubMed  CAS  Google Scholar 

  • Maathuis FJ, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    PubMed  CAS  Google Scholar 

  • Malhó R, Trewavas AJ (1996) Localised apical increases of cytosolic free calcium control pollen tube growth and reorientation. Plant Cell 8:1935–1949

    PubMed  Google Scholar 

  • Malhó R, Camacho L, Moutinho A (2000) Signalling pathways in pollen tube growth and reorientation. Ann Bot 85(A):59–68

    Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    PubMed  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    PubMed  CAS  Google Scholar 

  • Messerli M, Robinson KR (1997) Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci 110:1269–1278

    PubMed  CAS  Google Scholar 

  • Moeder W, Urquhart W, Ung H, Yoshioka K (2011) The role of cyclic nucleotide-gated ion channels in plant immunity. Mol Plant 4(3):442–452

    PubMed  CAS  Google Scholar 

  • Mosher S, Moeder W, Nishimura N, JikumaruY JS-H, Urquhart W, Klessig DF, Kim S-K, Nambara E, Yoshioka K (2010) The lesion mimic mutant cpr22 shows alterations in abscisic acid signaling and abscisic acid insensitivity in a salicylic acid-dependent manner. Plant Physiol 152:1901–1913

    PubMed  CAS  Google Scholar 

  • Moutinho A, Hussey PJ, Trewavas AJ, Malhó R (2001) cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci U S A 98:10481–10486

    PubMed  CAS  Google Scholar 

  • Newton RP, Smith CJ (2004) Cyclic nucleotides. Phytochemistry 65:2423–2437

    PubMed  CAS  Google Scholar 

  • Ogasawara Y et al (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    PubMed  CAS  Google Scholar 

  • Ohmori M, Okamoto S (2004) Photoresponsive cAMP signal transduction in cyanobacteria. Photochem Photobiol Sci 3:503–511

    PubMed  CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    PubMed  CAS  Google Scholar 

  • Penson SP, Schuurink RC, Fath A, Gubler F, Jacobsen JV, Jones RL (1996) cGMP is required for gibberellic acid-induced gene expression in barley aleurone. Plant Cell 8:2325–2333

    PubMed  CAS  Google Scholar 

  • Pieterse CM, van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trends Plant Sci 4:52–58

    PubMed  Google Scholar 

  • Prado AM, Porterfield M, Feijó JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2714

    PubMed  CAS  Google Scholar 

  • Reddy VS, Ali GS, Reddy ASN (2002) Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J Biol Chem 277:9840–9852

    PubMed  CAS  Google Scholar 

  • Rehman RU, Rato C, Tunc-Ozdemir M, Malho R, Harper JF (2010) Cyclic nucleotide -gated channels CNGC7 and CNGC8 are required for pollen tube growth and fertilization. In: XXI international congress on sexual plant reproduction, Bristol, United Kingdom, 2–6 Aug 2010

    Google Scholar 

  • Romeis T, Piedras P, Zhang S, Klessig DF, Hirt H, Jones JD (1999) Rapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11:273–287

    PubMed  CAS  Google Scholar 

  • Rostoks N, Schmierer D, Mudie S, Drader T, Brueggeman R, Caldwell DG, Waugh R, Kleinhofs A (2006) Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol Genet Genomics 275:159–168

    PubMed  CAS  Google Scholar 

  • Roy SJ, Holdaway-Clarke TL, Hackett GR, Kunkel JG, Lord EM, Hepler PK (1999) Uncoupling secretion and tip growth in lily pollen tubes: evidence for the role of calcium in exocytosis. Plant J 19:379–386

    PubMed  CAS  Google Scholar 

  • Roy SJ, Gilliham M, Berger B et al (2008) Investigating glutamate-like receptor gene co-expression in Arabidopsis thaliana. Plant Cell Environ 31:861–871

    PubMed  CAS  Google Scholar 

  • Rubio JC, Gomez-Gallego F, Santiago C, Garcia-Consuegra I, Perez M, Barriopedro MI, Andreu AL, Martin MA, Arenas J, Lucia A (2007) Genotype modulators of clinical severity in McArdle disease. Neurosci Lett 422:217–222

    PubMed  CAS  Google Scholar 

  • Sasabe M, Takeuchi K, Kamoun S, Ichinose Y, Govers F, Toyoda K, Shiraishi T, Yamada T (2000) Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur J Biochem 267:5005–5013

    PubMed  CAS  Google Scholar 

  • Schuurink RC, Shartzer SF, Fath A, Jones RL (1998) Characterisation of a calmodulin binding transporter from the plasma membrane of barley aleurone. Proc Natl Acad Sci U S A 95:1944–1949

    PubMed  CAS  Google Scholar 

  • Shuster MJ, Camardo JS, Siegelbaum SA, Kandel ER (1985) Cyclic AMP-dependent protein kinase closes the serotonin-insensitive K+ channels of Aplysia sensory neurones in cell-free membrane patches. Nature 313:392–395

    PubMed  CAS  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104:18842–18847

    PubMed  CAS  Google Scholar 

  • Sunkar R, Kaplan B, Bouchem N, Arazi T, Dolev D, Talke IN, Maathuis FJM, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confers lead tolerance. Plant J 24:533–542

    PubMed  CAS  Google Scholar 

  • Takeuchi H, Higashiyama T (2011) Attraction of tip-growing pollen tubes by the female gametophyte. Curr Opin Plant Biol 14:614–621

    PubMed  CAS  Google Scholar 

  • Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signaling? Trends Plant Sci 8:286–293

    PubMed  CAS  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491

    PubMed  CAS  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    PubMed  CAS  Google Scholar 

  • Trewavas AJ, Malhó R (1997) Signal perception and transduction the origin of the phenotype. Plant Cell 7:1181–1195

    Google Scholar 

  • Tsuruhara A, Tezuka T (2001) Relationship between the self-incompatibility and cAMP level in Lilium longiflorum. Plant Cell Physiol 42:1234–1238

    PubMed  CAS  Google Scholar 

  • Tunc-Ozdemir M, Rato C, Brown E, Rogers S, Mooneyham A et al (2013) Cyclic nucleotide gated channels 7 and 8 are essential for male reproductive fertility. PLoS One 8(2):e55277. doi:10.1371/journal.pone.0055277

    PubMed  CAS  Google Scholar 

  • Ungerer N, Mücke N, Broecker J, Keller S, Frings S, Möhrlen F (2011) Distinct binding properties distinguish LQ-type calmodulin binding domains in cyclic nucleotide gated channels. Biochemisrty 50:3221–3228

    CAS  Google Scholar 

  • Urquhart (2010) Characterization of AtCNGC11/12-induced cell death and the role of AtCNGC11 and AtCNGC12 in Ca2+ dependent signaling pathways, Doctoral thesis. University of Toronto

    Google Scholar 

  • Urquhart W, Gunawardena AH, Moeder W, Ali R, Berkowitz GA, Yoshioka K (2007) The chimeric cyclic nucleotide-gated ion channel ATCNGC11⁄12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Mol Biol 65:747–761

    PubMed  CAS  Google Scholar 

  • Urquhart W, Chin K, Ung H, Moeder W, Yoshioka K (2011) The cyclic nucleotide-gated channels AtCNGC11 and 12 are involved in multiple Ca2+ dependent physiological responses and act in a synergistic manner. J Exp Bot 62(10):3671–3682

    PubMed  CAS  Google Scholar 

  • Véry A-A, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175

    PubMed  Google Scholar 

  • Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12:2534–2545

    PubMed  CAS  Google Scholar 

  • Vlot AC, Klessig DF, Park SW (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

    PubMed  CAS  Google Scholar 

  • Volotovski ID, Sokolovsky SG, Molchan OV, Knight MR (1998) Second messengers mediate increases in cytosolic calcium in tobacco protoplasts. Plant Physiol 117:1023–1030

    PubMed  CAS  Google Scholar 

  • Ward JM, Mäser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82

    PubMed  CAS  Google Scholar 

  • White PJ et al (2002) Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim Biophys Acta 1564:299–309

    PubMed  CAS  Google Scholar 

  • Wu Y, Hiratsuka K, Neuhaus G, Chua NH (1996) Calcium and cGMP target distinct phytochrome-responsive elements. Plant J 10:1149–1154

    PubMed  CAS  Google Scholar 

  • Xu H, Heath MC (1998) Role of calcium in signal transduction during the hypersensitive response caused by basidiospore derived infection of the cowpea rust fungus. Plant Cell 10:585–598

    PubMed  CAS  Google Scholar 

  • Yokota E, Takahara K, Shimmen T (1998) Actin-bundling protein isolated from pollen tubes of lily: biochemical and immunocytochemical characterization. Plant Physiol 116:1421–1429

    PubMed  CAS  Google Scholar 

  • Yoshioka K, Kachroo P, Tsui F, Sharma SB, Shah J, Klessig DF (2001) Environmentally-sensitive, SA-dependent defense response in the cpr22 mutant of Arabidopsis. Plant J 26:447–459

    PubMed  CAS  Google Scholar 

  • Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF (2006) The chimeric Arabidopsis cyclic nucleotide-gated ion channel 11/12 activates multiple pathogen resistance responses. Plant Cell 18:747–763

    PubMed  CAS  Google Scholar 

  • Yu IC, Parker J, Bent AF (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci U S A 95:7819–7824

    PubMed  CAS  Google Scholar 

  • Yu IC, Fengler KA, Clough SJ, Bent AF (2000) Identification of Arabidopsis mutants exhibiting an altered hypersensitive response in gene-for-gene disease resistance. Mol Plant Microbe Interact 13:227–286

    Google Scholar 

  • Zagotta WN, Siegelbaum SA (1996) Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci 19:235–263

    PubMed  CAS  Google Scholar 

  • Zelman AK, Dawe A, Gehring C, Berkowitz GA (2012) Evolutionary and structural perspectives of plant cyclic nucleotide gated cation channels. Front Plant Sci 3:1–13

    Google Scholar 

  • Zhang J, Zhou J-M (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3:783–793

    PubMed  CAS  Google Scholar 

  • Zhong H et al (2002) The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 420:193–198

    PubMed  CAS  Google Scholar 

  • Zhorov BS, Tikhonov DB (2004) Potassium, sodium, calcium and glutamate-gated channels: pore architecture and ligand action. J Neurochem 88:782–799

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The Author is thankful to Prof. Rui Malho, University of Lisbon, for his critical and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiaz Ul Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Rehman, R.U. (2014). Cyclic Nucleotide-Gated Channels: Essential Signaling Components in Plants for Fertilization and Immunity Responses. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_9

Download citation

Publish with us

Policies and ethics