Skip to main content

Sugar Signaling in Plant Growth and Development

  • Chapter
  • First Online:
Plant signaling: Understanding the molecular crosstalk

Abstract

Sugars are the primary energy sources produced by green plants via the life-sustaining process of photosynthesis. The metabolic role of sugars as energy compounds and essential metabolites in living organisms has long been recognized. However, genetic and molecular (mutational) studies during the last decade have highlighted the role of sugars as signaling molecules in controlling diverse aspects of plant growth and development. The review focuses on specific signaling roles of various sugars particularly hexoses (glucose and fructose), sucrose, trehalose, and small glycans. Moreover, the sugar-specific regulations of various genes and the diverse signaling cascades involved have been discussed. The role of hexokinase–kinase-dependent and hexokinase-independent signals (like G proteins) in sugar signal transduction pathways has also been documented. The evidences generated from the analyses of sugar-insensitive mutants and hormone-insensitive mutants have also demonstrated a complex interplay of factors regulating the common signaling capabilities of sugar/hormone interactions. Characterization of sugar-signaling mutants in Arabidopsis has unraveled a complex signaling network that links sugar responses to two plant stress hormones, abscisic acid and ethylene, in opposite ways. Similar cross talk between sugar and other plant hormones in their signaling capabilities has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araki T, Komeda Y (1993) Flowering in darkness in Arabidopsis thaliana. Plant J 4:801–811

    Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen T, Leon P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin 5 and gin 6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugars. Genes Dev 14:2085–2086

    PubMed  CAS  Google Scholar 

  • Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    PubMed  CAS  Google Scholar 

  • Baier M, Hemmann G, Holman R, Corke F, Card R, Smith C, Rook F, Bevan MW (2004) Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses. Plant Physiol 134:81–91

    PubMed  CAS  Google Scholar 

  • Balibrea-Lara ME, Gonzalez-Garcia MC, Fatima T, Ehness R, Lee TK, Proels R, Tanner W, Roitsch T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287

    PubMed  CAS  Google Scholar 

  • Barna B, Smigocki AC, Baker JC (2008) Transgenic production of cytokinin suppresses bacterially induced hypersensitive response symptoms and increases antioxidative enzyme levels in Nicotiana spp. Phytopathology 98:1242–1247

    PubMed  CAS  Google Scholar 

  • Birch ANE, Roberson WM, Geoghegan IE, Mc-Gavin WJ, Alpheyt JW, Porter EA (1993) DMDP – a plant-derived sugar analogue with systemic activity against plant parasitic nematodes. Nematologica 39:521–535

    Google Scholar 

  • Birch ANE, Shepherd T, Hancock R, Goszcz K (2009) Understanding sugar sensing in induced plant defences and stress tolerance. In: Proceedings of the 25th meeting of the international society of chemical ecology, Neuchatel, Switzerland, pp 23–27

    Google Scholar 

  • Bolouri-Moghaddam MR, Van den Ende W (2012) Sugars and plant innate immunity. J Exp Bot 63:3989–3998

    PubMed  CAS  Google Scholar 

  • Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277:2022–2037

    PubMed  CAS  Google Scholar 

  • Borchert S, Harborth J, Schunemann D, Hoferichter P, Heldt HW (1993) Studies of the enzymatic capacities and transport properties of pea root plastids. Plant Physiol 10:303–312

    Google Scholar 

  • Borisjuk L, Walenta S, Weber H, Mueller-Klieser W, Wobus U (1998) High-resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes: glucose as a possible developmental trigger. Plant J 15:583–591

    CAS  Google Scholar 

  • Borisjuk L, Walenta S, Rolletschek H, Mueller-Klieser W, Wobus U, Weber H (2002) Spatial analysis of plant metabolism: sucrose imaging within Vicia faba cotyledons reveals specific developmental patterns. Plant J 29:521–530

    PubMed  CAS  Google Scholar 

  • Bossi F, Cordoba E, Dupre P, Mendoza MS, Roman CS, Leon P (2009) The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling. Plant J 59:359–374

    PubMed  CAS  Google Scholar 

  • Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G (2010) A domain swap approach reveals a role of the plant wall associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 107:9452–9457

    PubMed  CAS  Google Scholar 

  • Buttner M (2010) The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biol 12:35–41

    PubMed  Google Scholar 

  • Cabib E, Leloir LF (1958) The biosynthesis of trehalose phosphate. J Biol Chem 231:259–275

    PubMed  CAS  Google Scholar 

  • Carvalho RF, Carvalho SD, Duque P (2010) The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis. Plant Physiol 154:772–783

    PubMed  CAS  Google Scholar 

  • Chen JG, Jones AM (2004) AtRGS1 function in Arabidopsis thaliana. Methods Enzymol 389:338–350

    PubMed  CAS  Google Scholar 

  • Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP (2003) A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301:1728–1731

    PubMed  CAS  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    PubMed  CAS  Google Scholar 

  • Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci U S A 95:4784–4788

    PubMed  CAS  Google Scholar 

  • Cho YH, Yoo SD (2011) Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet 7:1–10

    Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    PubMed  CAS  Google Scholar 

  • Choi MS, Kim MC, Yoo JH, Moon BC, Koo SC, Park BO, Lee JH, Koo YD, Han HJ, Lee SY, Chung WS, Lim CO, Cho MJ (2005) Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.). J Biol Chem 280:40820–40831

    PubMed  CAS  Google Scholar 

  • Ciereszko I, Kleczkowski LA (2002) Glucose and mannose regulate the expression of a major sucrose synthase gene in Arabidopsis via hexokinase-dependent mechanisms. Plant Physiol Biochem 40:907–911

    CAS  Google Scholar 

  • Ciereszko I, Johansson H, Kleczkowski LA (2001) Sucrose and light activation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis. Biochem J 354:67–72

    PubMed  CAS  Google Scholar 

  • Contento AL, Kim S-J, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol 135:2330–2347

    PubMed  CAS  Google Scholar 

  • Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206:131–137

    PubMed  CAS  Google Scholar 

  • Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol 125:61–64

    PubMed  CAS  Google Scholar 

  • Cotelle V, Meek SE, Provan F, Milne FC, Morrice N, MacKintosh C (2000) 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO J 19:2869–2876

    PubMed  CAS  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    PubMed  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    PubMed  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    PubMed  CAS  Google Scholar 

  • De Coninck B, Le Roy K, Francis I, Clerens S, Vergauwen R, Halliday AM, Smith SM, Van Laere A, Van den Ende W (2005) Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant Cell Environ 28:432–443

    Google Scholar 

  • Delatte TL, Sedijani P, Kondou Y, Matsui M, de Jong GJ, Somsen GW, Wiese-Klinkenberg A, Primavesi LF, Paul MJ, Schluepmann H (2011) Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway. Plant Physiol 157:160–174

    PubMed  CAS  Google Scholar 

  • Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defence response pathways by OGs and flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445

    PubMed  CAS  Google Scholar 

  • Derridj S, Elad Y, Birch ANE (2009) Sugar signaling and a new way for vegetable and fruit induced resistance against insects, pathogens and nematodes. In: IOBC/WPRS working group “Induced resistance in plants against insects and diseases”, Granada, Spain, pp 12–16

    Google Scholar 

  • Eastmond PJ, van Dijken AJ, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JD, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235

    PubMed  CAS  Google Scholar 

  • Eckardt NA (2003) The function of SUT2/SUC3 sucrose transporters: the debate continues. Plant Cell 15:1259–1262

    Google Scholar 

  • Ehneb R, Roitsch T (1997) Coordinated induction of extracellular invertase and glucose transporters in Chenopodium rubrum by cytokinins. Plant J 11:539–548

    Google Scholar 

  • Ehness R, Ecker M, Godt DE, Roitsch T (1997) Glucose and stress independently regulate source and sink metabolism and defence mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell 9:1825–1841

    PubMed  CAS  Google Scholar 

  • Etzler ME, Esko JD (2009) Free glycans as signaling molecules. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Eveland AL, Jackson DP (2012) Sugars, signalling and plant development. J Exp Bot 63:3367–3377

    PubMed  CAS  Google Scholar 

  • Finkelstein RR (1994) Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 5:765–771

    Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054

    PubMed  CAS  Google Scholar 

  • Finkler A, Ashery-Padan R, Fromm H (2007) CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS Lett 581:3893–3898

    PubMed  CAS  Google Scholar 

  • Finnie C, Borch J, Collinge DB (1999) 14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant Mol Biol 40:545–554

    PubMed  CAS  Google Scholar 

  • Fu H, Kim SY, Park WD (1995) High-level tuber expression and sucrose-inducibility of a potato Sus4 sucrose synthase gene require 5′ and 3′ flanking sequences and the leader intron. Plant Cell 7:1387–1394

    PubMed  CAS  Google Scholar 

  • Fukumoto T, Kano A, Ohtani K, Yamasaki-Kokudo Y, Hosotani K, Saito M, Shirakawa C, Tajima S, Izumori K, Ohara T, Shigematsu Y, Tanaka K, Ishida Y, Nishizawa Y, Tada Y, Ichimura K, Gomi K, Akimitsu K (2011) Rare sugar d-allose suppresses gibberellin signaling through hexokinase-dependent pathway in Oryza sativa L. Planta 234:1083–1095

    PubMed  CAS  Google Scholar 

  • Galina A, Reis M, Albuquerque M, Puyou A, Puyou MT, Meis L (1995) Different properties of the mitochondrial and cytosolic hexokinase in maize roots. Biochem J 309:105–112

    PubMed  CAS  Google Scholar 

  • Galina A, Logullo C, Souza EF, Rezende GL, da-Silva WS (1999) Sugar phosphorylation modulates ADP inhibition of maize mitochondrial hexokinase. Physiol Plant 105:17–23

    CAS  Google Scholar 

  • Gao JJ, Shen XF, Zhang Z, Peng RH, Xiong AS, Xu J, Zhu B, Zheng JL, Yao QH (2011) The myb transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic Arabidopsis. Plant Cell Tiss Org Cult 106:235–242

    CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    PubMed  CAS  Google Scholar 

  • Gazzarrini S, McCourt P (2001) Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol 4:387–391

    PubMed  CAS  Google Scholar 

  • Geiger M, Stitt M, Geigenberger P (1998) Metabolism in slices from growing potato tubers responds differently to addition of sucrose and glucose. Planta 206:234–244

    CAS  Google Scholar 

  • German MA, Dai N, Matsevitz T, Hanael R, Petreikov M, Bernstein N, Loffe M, Shahak Y, Schaffer AA, Granot D (2003) Suppression of fructokinase encoded by LeFRK2 in tomato stem inhibits growth and causes wilting of young leaves. Plant J 34:837–846

    PubMed  CAS  Google Scholar 

  • Gómez-Ariza J, Campo S, Rufat M, Estopà M, Messeguer J, San Segundo B, Coca M (2007) Sucrose-mediated priming of plant defence responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Mol Plant Microbe Interact 20:832–842

    PubMed  Google Scholar 

  • Gonzali S, Novi G, Loreti E, Paolicchi F, Poggi A, Alpi A, Perata P (2005) A turanose-insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana. Plant J 44:633–645

    PubMed  CAS  Google Scholar 

  • Granot D, David-Schwartz R, Kelly G (2013) Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci 4:44. doi:10.3389/fpls.2013.00044

    PubMed  CAS  Google Scholar 

  • Grierson C, Du J-S, Zabala MT, Beggs K, Smith C, Holdsworth M, Bevan M (1994) Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant J 5:815–826

    PubMed  CAS  Google Scholar 

  • Grigston JC, Osuna D, Scheible WR, Liu C, Stitt M, Jones AM (2008) d-Glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1. FEBS Lett 582:3577–3584

    PubMed  CAS  Google Scholar 

  • Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30(5):761–776

    PubMed  CAS  Google Scholar 

  • Habibur Rahman Pramanik M, Imai R (2005) Functional identification of a trehalose-6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    PubMed  Google Scholar 

  • Halford NG, Hardie DG (1998) SNF1-related protein kinases: global regulators of carbon Metabolism in plants? Plant Mol Biol 37:735–748

    PubMed  CAS  Google Scholar 

  • Halford NG, Hey SJ (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signaling in plants. Biochem J 419:247–259

    PubMed  CAS  Google Scholar 

  • Halford NG, Vicente-Carbajosa J, Sabelli PA, Shewrv PR, Hannappel U, Kreis M (1992) Molecular analyses of a barley multigene family homologous to the yeast protein kinase gene SNFI. Plant J 2:791–797

    PubMed  CAS  Google Scholar 

  • Hanson J, Hanssen M, Wiese A, Hendriks MM, Smeekens S (2008) The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. Plant J 2008(53):935–949

    Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    PubMed  CAS  Google Scholar 

  • He Y, Tang W, Swain JD, Green AL, Jack TP, Gan S (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126:707–716

    PubMed  CAS  Google Scholar 

  • Herbers K, Meuwly P, Frommer W, Métraux JP, Sonnewald U (1996a) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8:793–803

    PubMed  CAS  Google Scholar 

  • Herbers K, Meuwly P, Metraux JP, Sonnewald U (1996b) Salicylic acid independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Lett 397:239–244

    PubMed  CAS  Google Scholar 

  • Hohmann S, Winderickx J, Winde JHD, Valckx D, Cobbaert P, Luyten K, Meirsman CD, Ramos J, Thevelein JM (1999) Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Microbiology 145:703–714

    PubMed  CAS  Google Scholar 

  • Hooks MA, Bode K, Couée I (1995) Regulation of acyl-CoA oxidases in maize seedlings. Phytochemistry 40:657–660

    CAS  Google Scholar 

  • Huang J, Taylor JP, Chen JG, Uhrig JF, Schnell DJ, Nakagawa T, Korth KL, Jones AM (2006) The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 18:1226–1238

    PubMed  CAS  Google Scholar 

  • Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S (2000) The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J 23:577–585

    PubMed  CAS  Google Scholar 

  • Ishiguro S, Nakamura K (1992) The nuclear factor SP8BF binds to the 5′-upstream regions of three different genes coding for major proteins of sweet potato tuberous roots. Plant Mol Biol 14:97–108

    Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5ʹ upstream regions of genes coding for sporamin and α-amylase from sweet potato. Mol Gen Genet 28:563–571

    Google Scholar 

  • Jang JC, Sheen J (1997) Sugar sensing in higher plants. Trends Plant Sci 2:208–214

    Google Scholar 

  • Johnson R, Ryan CA (1990) Wound-inducible potato inhibitor II genes: enhancement of expression by sucrose. Plant Mol Biol 14:527–536

    PubMed  CAS  Google Scholar 

  • Johnston M (1999) Feasting, fasting and fermenting. Trends Genet 15:29–33

    PubMed  CAS  Google Scholar 

  • Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, Hardie DG, Thomas M (2009) SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signaling in Arabidopsis thaliana. Plant J 59:316–328

    PubMed  CAS  Google Scholar 

  • Kanayama Y, Granot D, Dai N, Petreikov M, Schaffer A, Powell A, Bennett AB (1998) Tomato fructokinases exhibit differential expression and substrate regulation. Plant Physiol 117:85–90

    PubMed  CAS  Google Scholar 

  • Kano A, Hosotani K, Gomi K, Yamasaki-Kokudo Y, Shirakawa C, Fukumoto T, Ohtani K, Tajima S, Izumori K, Tanaka K, Ishida Y, Nishizawa Y, Ichimura K, Tada Y, Akimitsu K (2011) d-Psicose induces upregulation of defence-related genes and resistance in rice against bacterial blight. J Plant Physiol 168:1852–1857

    PubMed  CAS  Google Scholar 

  • Keller F, Pharr DM (1996) Metabolism of carbohydrates in sinks and sources: galactosyl-sucrose oligosaccharides. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops: source–sink relationships. Marcel Dekker, New York, pp 157–183

    Google Scholar 

  • Kempa S, Rozhon W, Samaj J, Erban A, Baluska F, Becker T, Haselmayer J, Schleiff E, Kopka J, Hirt H, Jonak C (2007) A plastid-localized glycogen synthase kinase 3 modulates stress tolerance and carbohydrate metabolism. Plant J 49:1076–1090

    PubMed  CAS  Google Scholar 

  • Kieffer M, Neve J, Kepinski S (2010) Defining auxin response contexts in plant development. Curr Opin Plant Biol 13:12–20

    PubMed  CAS  Google Scholar 

  • Kim SY, May GD, Park WD (1994) Nuclear protein factors binding to a class I patatin promoter region are tuber-specific and sucrose-inducible. Plant Mol Biol 26:603–615

    PubMed  CAS  Google Scholar 

  • Kim DJ, Smith SM, Leaver CJ (1997) A cDNA encoding a putative SPF1-type DNA-binding protein from cucumber. Gene 185:265–269

    PubMed  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    PubMed  CAS  Google Scholar 

  • Kohorn BD, Kohorn SL, Todorova T, Baptiste G, Stansky K, McCullough M (2012) A dominant allele of Arabidopsis pectin binding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations. Mol Plant 5:841–851

    PubMed  CAS  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719

    PubMed  CAS  Google Scholar 

  • Kwon YR, Oh JE, Noh HN, Hong SW, Bhoo SH, Lee HJ (2011) The ethylene signaling pathway has a negative impact on sucrose induced anthocyanin accumulation in Arabidopsis. J Plant Res 124:193–200

    PubMed  CAS  Google Scholar 

  • Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11:707–726

    PubMed  CAS  Google Scholar 

  • Laurie S, McKibbin RS, Halford NG (2003) Antisense SNF1-related (SnRK1) protein kinase gene represses transient activity of an α-amylase (α-Amy2) gene promoter in cultured wheat embryos. J Exp Bot 54:739–747

    PubMed  CAS  Google Scholar 

  • Le Clere S, Schmelz EA, Chourey PS (2010) Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol 153:306–318

    Google Scholar 

  • Lemaire K, Van de Velde S, Van Dijck P, Thevelein JM (2004) Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol Cell 16:293–299

    PubMed  CAS  Google Scholar 

  • Leon P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    PubMed  CAS  Google Scholar 

  • Leyman B, VanDijck P, Thevelein JM (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci 6:510–513

    PubMed  CAS  Google Scholar 

  • Li YC, Shi JX, Weiss D, GoldSchmidt EE (2003) Sugars regulate sucrose transporter gene expression in citrus. Biochem Biophys Res Commun 306:402–407

    CAS  Google Scholar 

  • Li Y, Smith C, Corke F, Zheng L, Merali Z, Ryden P, Derbyshire P, Waldron K, Bevan MW (2007) Signaling from an altered cell wall to the nucleus mediates sugar-responsive growth and development in Arabidopsis thaliana. Plant Cell 19:2500–2515

    PubMed  CAS  Google Scholar 

  • Li P, Wind JJ, Shi X, Zhang H, Hanson J, Smeekens SC, Teng S (2011) Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain. Proc Natl Acad Sci U S A 108:3436–3441

    PubMed  CAS  Google Scholar 

  • Liu XJ, Prat S, Willmitzer L, Frommer WB (1990) Cis regulatory elements directing tuber-specific and sucrose-inducible expression of a chimeric class I patatin promoter/GUS-gene fusion. Mol Gen Genet 223:401–406

    PubMed  CAS  Google Scholar 

  • Loreti E, de Bellis L, Alpi A, Perata P (2001) Why and how do plant cells sense sugars? Ann Bot 88:803–812

    CAS  Google Scholar 

  • Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perat P (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016

    PubMed  CAS  Google Scholar 

  • Lu CA, Lim EK, Yu SM (1998) Sugar response sequence in the promoter of a rice a-amylase gene serves as a transcriptional enhancer. J Biol Chem 273:10120–10131

    PubMed  CAS  Google Scholar 

  • Lu CA, Lin CC, Lee KW, Chen JL, Huang LF, Ho SL, Liu HJ, Hsing Y, Yu SM (2007) The SnRK1 protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. Plant Cell 19:2484–2499

    PubMed  CAS  Google Scholar 

  • Lunn JE (2007) Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34:550–563

    CAS  Google Scholar 

  • Lunn JE, Feil R, Hendriks JH, Gibon Y, Morcuende R, Osuna D, Scheible WR, Carillo P, Hajirezaei MR, Stitt M (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADP glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    PubMed  CAS  Google Scholar 

  • MacKintosh C, MacKintosh RW (1994) Inhibitors of protein kinases and phosphatases. Trends Biochem Sci 19:444–448

    PubMed  CAS  Google Scholar 

  • Martínez-Barajas E, Delatte T, Schluepmann H, de Jong GJ, Somsen GW, Nunes C, Primavesi LF, Coello P, Mitchell RAC, Paul MJ (2011) Wheat grain development is characterized by remarkable trehalose-6-phosphate accumulation pregrain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity. Plant Physiol 156:373–381

    PubMed  Google Scholar 

  • Martinez-Noel G, Tognetti J, Nagaraj V, Wiemken A, Pontis H (2006) Calcium is essential for fructan synthesis induction mediated by sucrose in wheat. Planta 225:183–191

    PubMed  CAS  Google Scholar 

  • McKibbin RS, Muttucumaru N, Paul MJ, Powers SJ, Burrell MM, Coates S, Purcell PC, Tiessen A, Geigenberger P, Halford NG (2006) Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator SnRK1. Plant Biotechnol J 4:409–418

    PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    PubMed  CAS  Google Scholar 

  • Miao H, Wei J, Zhao Y, Yan H, Sun YB, Huang J, Wang Q (2013) Glucose signalling positively regulates aliphatic glucosinolate biosynthesis. J Exp Bot 64:1097–1109

    PubMed  CAS  Google Scholar 

  • Mishra BS, Singh M, Aggarwal P, Laxmi A (2009) Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One 4:e4502

    PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    PubMed  CAS  Google Scholar 

  • Moorhead G, Douglas P, Cotelle V, Harthill J, Morrice N, Meek S, Deiting U, Stitt M, Scarabel M, Aitken A, MacKintosh C (1999) Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. Plant J 18:1–12

    PubMed  CAS  Google Scholar 

  • Moreno F, Ahuatzi D, Riera A, Palomino CA, Herrero P (2005) Glucose sensing through the Hxk2-dependent signalling pathway. Biochem Soc Trans 33:265–268

    PubMed  CAS  Google Scholar 

  • Noh YS, Amasino RM (1999) Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus. Plant Mol Biol 41:195–206

    PubMed  CAS  Google Scholar 

  • Odanaka S, Bennett AB, Kanayama Y (2002) Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato. Plant Physiol 129:1119–1126

    PubMed  CAS  Google Scholar 

  • ÓHara LM, Paul MJ, Wingler A (2013) How do sugars regulate plant growth and development? New insight into the role of trehalose-6-Phosphate. Mol Plant 6(2):261–274. doi:10.1093/mp/sss120

    Google Scholar 

  • Ohto M, Nakamura K (1995) Sugar-induced increase of calcium dependent protein kinases associated with the plasma membrane in leaf tissues of tobacco. Plant Physiol 109:973–981

    PubMed  CAS  Google Scholar 

  • Ohto M, Nakamura-Kito K, Nakamura K (1992) Induction of expression of genes coding for sporamin and α-amylase by polygalacturonic acid in leaf-petiole cuttings of sweet potato. Plant Physiol 99:422–427

    PubMed  CAS  Google Scholar 

  • Ohto M, Hayashi K, lsobe M, Nakamura K (1995) Involvement of Ca2+ signalling in the sugar-inducible expression of genes coding for sporamin and β-amylase of sweet potato. Plant J 7:297–307

    CAS  Google Scholar 

  • Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol 127:252–261

    PubMed  CAS  Google Scholar 

  • Ortega-Martinez O, Pernas M, Carol RJ, Dolan L (2007) Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science 317:507–510

    PubMed  CAS  Google Scholar 

  • Palenchar PM, Kouranov A, Lejay LV, Coruzzi GM (2004) Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants. Genome Biol 5:R91

    PubMed  Google Scholar 

  • Paul M, Pellny T, Goddijn O (2001) Enhancing photosynthesis with sugar signals. Trends Plant Sci 6:197–200

    PubMed  CAS  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    PubMed  CAS  Google Scholar 

  • Pego JV, Smeekens SC (2000) Plant fructokinases: a sweet family get-together. Trends Plant Sci 5:531–536

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    PubMed  CAS  Google Scholar 

  • Polge C, Thomas M (2007) SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci 12:20–28

    PubMed  CAS  Google Scholar 

  • Ponnu J, Wahl V, Schmid M (2011) Trehalose-6-phosphate: connecting plant metabolism and development. Front Plant Sci. doi:10.3389/fpls.2011.00070

  • Price J, Laxmi A, Martin SKS, Jang JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    PubMed  CAS  Google Scholar 

  • Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–1814

    PubMed  CAS  Google Scholar 

  • Rahmani F, Hummel M, Schuurmans J, Wiese-Klinkenberg A, Smeekens S, Hanson J (2009) Sucrose control of translation mediated by a uORF encoded peptide. Plant Physiol 150:1356–1367

    PubMed  CAS  Google Scholar 

  • Ramon M, Rolland F, Thevelein JM, Van Dijck P, Leyman B (2007) ABI4 mediates the effects of exogenous trehalose on Arabidopsis growth and starch breakdown. Plant Mol Biol 63:195–206

    PubMed  CAS  Google Scholar 

  • Ramon M, DeSmet I, Vandesteene L, Naudts M, Leyman B, Van Dijck P, Rolland F, Beeckman T, Thevelein JM (2009) Extensive expression regulation and lack of heterologous enzymatic activity of the class II trehalose metabolism proteins from Arabidopsis thaliana. Plant Cell Environ 32:1015–1032

    PubMed  CAS  Google Scholar 

  • Reinbothe S, Mollenhauer B, Reinbothe C (1994) JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6:1197–1209

    PubMed  CAS  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    PubMed  CAS  Google Scholar 

  • Riou-Khamlichi C, Menges M, Healy JM, Murray JA (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis d-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    PubMed  CAS  Google Scholar 

  • Ritchie SM, Swanson SJ, Gilroy S (2002) From common signalling components to cell specific responses: insights from the cereal aleurone. Physiol Plant 115:342–351

    PubMed  CAS  Google Scholar 

  • Roldan M, Gomez-Mena C, Ruiz-Garcia L, Salinas J, Martinez-Zapater JM (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J 20:581–590

    PubMed  CAS  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317

    PubMed  CAS  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205

    PubMed  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    PubMed  CAS  Google Scholar 

  • Romero C, Belles JM, Vaya JL, Serrano R, Cilianez-Macia A (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297

    PubMed  CAS  Google Scholar 

  • Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P, Smeekens S (1998) Sucrose-specific signaling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J 15:253–263

    PubMed  CAS  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonta R, González JA, Hilal M, Prado FE (2009) Soluble sugars-metabolism, sensing and abiotic stress. A complex network in the life of plants. Plant Signal Behav 4:388–393

    PubMed  CAS  Google Scholar 

  • Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev 12:198–207

    PubMed  CAS  Google Scholar 

  • Ryu JY, Song JY, Lee JM, Jeong SW, Chow WS, Choi SB, Pogson BJ, Park YI (2004) Glucose-induced expression of carotenoid biosynthesis genes in the dark is mediated by cytosolic pH in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 279:25320–25325

    PubMed  CAS  Google Scholar 

  • Sadka A, DeWald DB, May GD, Park WD, Mullet JE (1994) Phosphate modulates transcription of soybean VspB and other sugar-inducible genes. Plant Cell 6:737–749

    PubMed  CAS  Google Scholar 

  • Sakakibara H, Suzuki M, Takei K, Deji A, Taniguchi M, Sugiyama T (1998) A response-regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant J 14:337–344

    PubMed  CAS  Google Scholar 

  • Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230

    PubMed  CAS  Google Scholar 

  • Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100:6849–6854

    PubMed  CAS  Google Scholar 

  • Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiol 135:879–890

    PubMed  CAS  Google Scholar 

  • Sehnke PC, DeLille JM, Ferl RJ (2002) Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14:S339–S354

    PubMed  CAS  Google Scholar 

  • Shan X, Zhang Y, Peng W, Wang Z, Xie D (2009) Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J Exp Bot 60:3849–3860

    PubMed  CAS  Google Scholar 

  • Sheen J (1990) Metabolic repression of transcription in higher plants. Plant Cell 2:1027–1038

    PubMed  CAS  Google Scholar 

  • Sheen J (1999) C4 gene expression. Annu Rev Plant Physiol Plant Mol Biol 50:187–217

    PubMed  CAS  Google Scholar 

  • Sheen J, Zhou L, Jang JC (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2:410–418

    PubMed  CAS  Google Scholar 

  • Shima S, Matsui H, Tahara S, Imai R (2007) Biochemical characterization of rice trehalose- 6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J 274:1192–1201

    PubMed  CAS  Google Scholar 

  • Smeekens S (1998) Sugar regulation of gene expression in plants. Curr Opin Plant Biol 1:230–234

    PubMed  CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    PubMed  CAS  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    PubMed  CAS  Google Scholar 

  • Sulmon C, Gouesbet G, Couée I, El Amrani A (2004) Sugar induced tolerance to atrazine in Arabidopsis seedlings: interacting effects of atrazine and soluble sugars on psbA mRNA and D1 protein levels. Plant Sci 167:913–923

    CAS  Google Scholar 

  • Takeda S, Mano S, Ohto M, Nakamura N (1994) Inhibitors of protein phosphatases 1 and 2A block the sugar-inducible gene expression in plants. Plant Physiol 106:567–574

    PubMed  CAS  Google Scholar 

  • Teng S, Rognoni S, Bentsink L, Smeekens S (2008) The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signalling pathway and enhances sugar sensitivity by stimulating ABI4 expression. Plant J 55:372–381

    PubMed  CAS  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    PubMed  CAS  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    PubMed  Google Scholar 

  • Vaughn MW, Harrington GN, Bush DR (2002) Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem. Proc Natl Acad Sci U S A 99:10876–10880

    PubMed  CAS  Google Scholar 

  • Vitrac X, Larronde F, Krisa S, Decendit A, Deffieux G, Merillon JM (2000) Sugar sensing and Ca2+ calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry 53:659–665

    PubMed  CAS  Google Scholar 

  • Vogel G, Aeschbacher RA, Müller J, Boller T, Wiemken A (1998) Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J 13:673–683

    PubMed  CAS  Google Scholar 

  • Wang N, Nobel PS (1998) Phloem transport of fructans in the crassulacean acid metabolism species Agave deserti. Plant Physiol 116:709–714

    PubMed  CAS  Google Scholar 

  • Weber H, Heim U, Golombek S, Borisjuk L, Manteuffel R, Wobus U (1998) Expression of a yeast-derived invertase in developing cotyledons of Vicia narbonensis alters the carbohydrate state and affects storage functions. Plant J 16:163–172

    PubMed  CAS  Google Scholar 

  • Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schutze K, Wang X, Chaban C, Hanson J, Teige M, Harter K, Vicente-Carbajosa J, Smeekens S, Dröge-Laser W (2009) Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol Biol 69:107–119

    PubMed  CAS  Google Scholar 

  • Wiese A, Groner F, Sonnewald U, Deppner H, Lerchl J, Hebbeker U, Flugge U, Weber A (1999) Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Lett 461:13–18

    PubMed  CAS  Google Scholar 

  • Wiese A, Elzinga N, Wobbes B, Smeekens S (2004) A conserved upstream open reading frame mediates sucrose-induced repression of translation. Plant Cell 16:1717–1729

    PubMed  CAS  Google Scholar 

  • Wind J, Smeekens S, Hanson J (2010) Sucrose: metabolite and signaling molecule. Phytochemistry 71:1610–1614

    PubMed  CAS  Google Scholar 

  • Wingler A, Delatte TL, O’Hara LE, Primavesi LF, Jhurreea D, Paul MJ, Schluepmann H (2012) Trehalose-6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol 158:1241–1251

    PubMed  CAS  Google Scholar 

  • Xiang L, Le Roy K, Bolouri-Moghaddam MR, Vanhaecke M, Lammens W, Rolland F, Van den Ende W (2011) Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana. J Exp Bot 62:3849–3862

    PubMed  CAS  Google Scholar 

  • Xiao W, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44:451–461

    PubMed  CAS  Google Scholar 

  • Xu J, Avigne WT, McCarty DR, Koch KE (1996) A similar dichotomy of sugar modulation and developmental expression affects both paths of sucrose metabolism: evidence from a maize invertase gene family. Plant Cell 8:1209–1220

    PubMed  CAS  Google Scholar 

  • Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–525

    PubMed  CAS  Google Scholar 

  • Zang B, Li H, Li W, Deng XW, Wang X (2011) Analysis of trehalose-6-phosphatesynthase (TPS) gene family suggests the formation of TPS complexes in rice. Plant Mol Biol 76:507–522

    PubMed  CAS  Google Scholar 

  • Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of Snf1-related protein kinase (SnRK1) activity and regulation of metabolic pathways by trehalose 6-phosphate. Plant Physiol 149:1860–1871

    PubMed  CAS  Google Scholar 

  • Zhou L, Jang JC, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci U S A 95:10294–10299

    PubMed  CAS  Google Scholar 

  • Zuther E, Kwart M, Willmitzer L, Heyer AG (2004) Expression of a yeast-derived invertase in companion cells results in long-distance transport of a trisaccharide in an apoplastic loader and influences sucrose transport. Planta 218:759–766

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inayatullah Tahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Shahri, W., Ahmad, S.S., Tahir, I. (2014). Sugar Signaling in Plant Growth and Development. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_5

Download citation

Publish with us

Policies and ethics