Skip to main content

Plant Rab GTPases in Membrane Trafficking and Signalling

  • Chapter
  • First Online:

Abstract

In the eukaryotic systems the membrane trafficking inside the cells is indispensible. The membrane trafficking is a highly regulated process in which various molecular machineries are involved. It involves the vesicle formation, tethering, and finally fusion. According to the phylogenetic analysis, these processes are highly conserved among various organisms. This suggests the acquisition of common ancestral lineages by eukaryotes. In addition, to the similarity in components of trafficking in eukaryotes, each organism has also acquired various specific regulatory molecules which ascertain the diversification to membrane trafficking. In this review we summarize the progress in recent times about the plant-specific Rab GTPases in membrane trafficking events. Rab GTPases are a diverse group which are involved in various processes of membrane trafficking. Further, there are some reports which suggest Rab GTPases’ role in signalling pathways involving light, hormones, biotic, and abiotic stresses. Despite these there is still some inhibition among the scientific community to ascribe the latter roles to Rab GTPases with certainty even though the membrane trafficking events are integrated with signalling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbal P, Pradal M, Muniz L, Sauvage FX, Chatelet P, Ueda T, Tesniere C (2008) Molecular characterization and expression analysis of the Rab GTPase family in Vitis vinifera reveal the specific expression of a VvRabA protein. J Exp Bot 59:2403–2416

    PubMed  CAS  Google Scholar 

  • Agarwal PK, Jain P, Jha B, Reddy MK, Sopory SK (2008) Constitutive over-expression of a stress-inducible small GTP binding protein PgRab7 from Pennisetum glaucum enhances abiotic stress tolerance in transgenic tobacco. Plant Cell Rep 27:105–115

    PubMed  CAS  Google Scholar 

  • Agarwal P, Reddy MK, Sopory SK, Agarwal PK (2009) Plant rabs: characterization, functional diversity, and role in stress tolerance. Plant Mol Biol Rep 27:417–430

    CAS  Google Scholar 

  • Alvim Kamei CL, Boruc J, Vandepoele K, Van den Daele H, Maes S, Russinova E, Inze D, De Veylder L (2008) The PRA1 gene family in Arabidopsis. Plant Physiol 147:1735–1749

    PubMed  Google Scholar 

  • Anai T, Hasegawa K, Watanabe Y, Uchimiya H, Ishizaki R, Matsui M (1991) Isolation and analysis of cDNAs encoding small GTP binding proteins of Arabidopsis thaliana. Gene 108:259–264

    PubMed  CAS  Google Scholar 

  • Anai T, Matsui M, Nomura N, Ishizaki R, Uchimiya H (1994) In vitro mutation analysis of Arabidopsis thaliana small GTP-binding proteins and detection of GAP-like activities in plant cells. FEBS Lett 346:175–180

    PubMed  CAS  Google Scholar 

  • Aspuria ET, Anai T, Fujii N, Ueda T, Miyoshi M, Matsui M, Uchimiya H (1995) Phenotypic instability of transgenic tobacco plants and their progenies expressing Arabidopsis thaliana small GTP-binding protein genes. Mol Gen Genet 246:509–513

    PubMed  CAS  Google Scholar 

  • Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L et al (2004) The PEN1 Sano the timely assembly of papillae. Mol Biol Cell 15:5118–5129

    PubMed  CAS  Google Scholar 

  • Banks JA et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963

    PubMed  CAS  Google Scholar 

  • Batoko H, Zheng HQ, Hawes C, Moore I (2000) A rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2218

    PubMed  CAS  Google Scholar 

  • Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL, Maule AJ (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301–311

    PubMed  CAS  Google Scholar 

  • Bednarek SY, Reynolds TL, Schroeder M, Grabowski R, Hengst L, Gallwitz D, Raikhel NV (1994) A small GTP-binding protein from Arabidopsis thaliana functionally complements the yeast YPT6 null mutant. Plant Physiol 104:591–596

    PubMed  CAS  Google Scholar 

  • Behnia R, Munro S (2005) Organelle identity and the signposts for membrane traffic. Nature 438:597–604

    PubMed  CAS  Google Scholar 

  • Biermann B, Randall SK, Crowell DN (1996) Identification and isoprenylation of plant GTP-binding proteins. Plant Mol Biol 31:1021–1028

    PubMed  CAS  Google Scholar 

  • Bischoff F, Molendijk A, Rajendrakumar CSV, Palme K (1999) GTP-binding proteins in plants. Cell Mol Life Sci 55:233–256

    PubMed  CAS  Google Scholar 

  • Bogdanove AJ, Martin GB (2000) AvrPto-dependent Pto-interacting proteins and AvrPto interacting proteins in tomato. Proc Natl Acad Sci U S A 97:8836–8840

    PubMed  CAS  Google Scholar 

  • Boguski MS, McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366:643–654

    PubMed  CAS  Google Scholar 

  • Bolte S, Schiene K, Dietz KJ (2000) Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. Plant Mol Biol 42:923–936

    PubMed  CAS  Google Scholar 

  • Bolte S, Brown S, Satiat-Jeunemaitre B (2004) The N-myristoylated Rab GTPase m-Rabmc is involved in post-Golgi trafficking events to the lytic vacuole in plant cells. J Cell Sci 117(Pt6):943–954

    PubMed  CAS  Google Scholar 

  • Borg S, Brandstrup B, Jensen TJ, Poulsen C (1997) Identification of new protein species among 33 different small GTP-binding proteins encoded by cDNAs from Lotus japonicus, and expression of corresponding mRNAs in developing root nodules. Plant J 11:237–250

    PubMed  CAS  Google Scholar 

  • Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, Esquerré-Tugayé MT, Pont-Lezica R (2005) Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 5:212–221

    PubMed  CAS  Google Scholar 

  • Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intra cellular destination of a transport vesicle. Dev Cell 12:671–682

    PubMed  CAS  Google Scholar 

  • Camacho L, Smertenko AP, Perez-Gomez J, Hussey PJ, Moore I (2009) Arabidopsis Rab-E GTPases exhibit a novel interaction with a plasma-membrane phosphatidylinositol-4-phosphate 5-kinase. J Cell Sci 122:4383–4392

    PubMed  CAS  Google Scholar 

  • Carroll KS, Hanna J, Simon I, Krise J, Barbero P, Pfeffer SR (2001) Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science 292:1373–1376

    PubMed  CAS  Google Scholar 

  • Cavalli V, Vilbois F, Corti M, Marcote MJ, Tamura K, Karin M, Arkinstall S, Gruenberg J (2001) The stress-induced MAP kinasep38 regulates endocytic trafficking via the GDI: Rab5 complex. Mol Cell 7:421–432

    PubMed  CAS  Google Scholar 

  • Cheon CI, Lee NG, Siddique AB, Bal AK, Verma DP (1993) Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 12:4125–4135

    PubMed  CAS  Google Scholar 

  • Cheung AY, Chen CY-H, Glaven RH, de Graaf BHJ, Vidali L, Hepler PK, Wu H-M (2002) Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant Cell 14:945–962

    PubMed  CAS  Google Scholar 

  • Chivasa S, Ndimba BK, Simon WJ, Robertson D, Yu X-L, Knox JP, Bolwell P, Slabas AR (2002) Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23(1754):1765

    Google Scholar 

  • Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–123

    PubMed  CAS  Google Scholar 

  • Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, Zerial M (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1:249–252

    PubMed  CAS  Google Scholar 

  • Covitz PA, Smith LS, Long SR (1998) Expressed sequence tags from a root-hair enriched Medicago truncatula cDNA library. Plant Physiol 117:1325–1332

    PubMed  CAS  Google Scholar 

  • Covitz ML, Schmitz AJ, Thole JM, Bonner HK, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein PI-4Kinase-b1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172:991–998

    Google Scholar 

  • Czernic P, Huang HC, Marco Y (1996) Characterization of hsr201 and hsr515, two tobacco genes preferentially expressed during the hypersensitive reaction provoked by phytopathogenic bacteria. Plant Mol Biol 31:255–265

    PubMed  CAS  Google Scholar 

  • De Graaf BH, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu HM (2005) Rab11 GTPase-regulated membrane trafficking is crucial for tip focused pollen tube growth in tobacco. Plant Cell 17:2564–2579

    PubMed  Google Scholar 

  • Di Sansebastiano GP, Rehman RU, Neuhaus JM (2007) Rat β-glucuronidase as a reporter protein for the analysis of the plant secretory pathway. Plant Biosyst 141:230–238

    Google Scholar 

  • Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A, Janoueix- Lerosey I, Goud B (1998) Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279:580–585

    PubMed  CAS  Google Scholar 

  • Elias M (2010) Patterns and processes in the evolution of the eukaryotic endomembrane system. Mol Membr Biol 27:469–489

    PubMed  CAS  Google Scholar 

  • Elias M, Brighouse A, Castello CG, Field MC, Dacks JB (2012) Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci 125:2500–2508

    PubMed  CAS  Google Scholar 

  • Fernandez MGS, Becraft PW, Yin Y, Lubberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci 14(8):454–461

    Google Scholar 

  • Figueroa C, Taylor J, Vojtek AB (2001) Prenylated Rab acceptor protein is a receptor for prenylated small GTPases. J Biol Chem 276:28219–28225

    PubMed  CAS  Google Scholar 

  • Fujimoto M, Ueda T (2012) Conserved and plant-unique mechanisms regulating plant post-Golgi traffic. Front Plant Sci: Plant Traffic Transp 3(197):2

    Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    PubMed  CAS  Google Scholar 

  • Gonçalves S, Cairney J, Rodríguez MP, Cánovas F, Oliveira M, Miguel C (2007) PpRab1, a Rab GTPase from maritime pine is differentially expressed during embryogenesis. Mol Genet Genomics 278:273–282

    PubMed  Google Scholar 

  • Gorvin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Google Scholar 

  • Grebe M, Xu J, Mobius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 19:1378–1387

    Google Scholar 

  • Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103:11821–11827

    PubMed  CAS  Google Scholar 

  • Guo W, Roth D, Walch-Solimena C, Novick P (1999) The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 15:1071–1080

    Google Scholar 

  • Hala M, Elias M, Zarsky V (2005) A specific feature of the angiosperm rab escort protein (REP) and evolution of the REP/GDI superfamily. J Mol Biol 348:1299–1313

    PubMed  CAS  Google Scholar 

  • Heo JB, Rho HS, Kim SW, Hwang SM, Kwon HJ, Nahm MY, Bang WY, Bahk JD (2005) OsGAP1 functions as a positive regulator of OsRab11 mediated TGN to PM or vacuole trafficking. Plant Cell Physiol 46:2005–2018

    PubMed  CAS  Google Scholar 

  • Heras B, Drobak BK (2002) PARF-1: an Arabidopsis thaliana FYVE-domain protein displaying a novel eukaryotic domain structure and phosphoinositide affinity. J Exp Bot 53:565–567

    PubMed  CAS  Google Scholar 

  • Hoepfner S, Severin F, Cabezas A, Habermann B, Runge A, Gillooly D, Stenmark H, Zerial M (2005) Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121:437–450

    PubMed  CAS  Google Scholar 

  • Inaba T, Nagano Y, Nagasaki T, Sasaki Y (2002) Distinct localization of two closely related Ypt3/Rab11 proteins on the trafficking pathway in higher plants. J Biol Chem 277:9183–9188

    PubMed  CAS  Google Scholar 

  • Ischebeck T, Stenzel I, Hellman I (2008) Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell 20:3312–3330

    PubMed  CAS  Google Scholar 

  • Jedd G, Richardson C, Litt R, Segev N (1995) The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway. J Cell Biol 131:583–590

    PubMed  CAS  Google Scholar 

  • Jensen RB, La Cour T, Albrethsen J, Nielsen M, Skriver K (2001) FYVE zinc-finger proteins in the plant model Arabidopsis thaliana: identification of PtdIns3P-binding residues by comparison of classic and variant FYVE domains. Biochem J 1:165–173

    Google Scholar 

  • Johnson KL, Jones BJ, Schultz CJ, Bacic A (2003) Non-enzymatic cell wall (glyco) proteins. In: Rose JKC (ed) Annual plant reviews, vol 8. Blackwell Publishing Ltd., Oxford, pp 111–154

    Google Scholar 

  • Kahn RA, Der CJ, Bokoch GM (1992) The ras superfamily of GTP-binding proteins: guidelines on nomenclature. FASEB J 6:2512–2513

    PubMed  CAS  Google Scholar 

  • Kamada L, Yamauchi S, Youssefian S, Sano H (1992) Transgenic tobacco plants expressing rgp1, a gene encoding a ras-related GTP-binding protein from rice, show distinct morphological characteristics. Plant J 2:799–807

    CAS  Google Scholar 

  • Kang H, Seo S, Orudgev E, Youssefian S, Ishizuka K, Ohashi Y (1994) Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic-acid in response to wounding, and increases resistance to tobacco mosaic-virus infection. Proc Natl Acad Sci U S A 91:10556–10560

    Google Scholar 

  • Kang JG, Yun J, Kim DH, Chung KS, Fujioka S, Kim JI, Dae HW, Yoshida S, Takatsuto S, Song PS, Park CM (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105:625–636

    PubMed  CAS  Google Scholar 

  • Kotzer AM, Brandizzi F, Neumann U, Paris N, Moore I, Hawes C (2004) AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. J Cell Sci 117:6377–6389

    PubMed  CAS  Google Scholar 

  • Kusano H, Testerink C, Vermeer JE, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T (2008) The Arabidopsis phosphatidylinositol phosphate 5-kinasePIP5K3 is a key regulator of root hair tip growth. Plant Cell 20:367–380

    PubMed  CAS  Google Scholar 

  • Kwon HK, Yokoyama R, Nishitani K (2005) A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts or Arabidopsis suspension-cultured cells. Plant Cell Physiol 46:843–857

    PubMed  CAS  Google Scholar 

  • Lapierre LA, Kumar R, Hales C, Navarre J, Bhartur SG, Burnette JO, Provance DW, Mercer JA, Bahler M, Goldenring JR (2001) Myosin Vb is associated with plasma membrane recycling systems. Mol Biol Cell 12:1843–1857

    PubMed  CAS  Google Scholar 

  • Lee Y, Kim YW, Jeon BW, Park KY, Suh SJ, Seo J, Kwak JM, Martinoia E, Hwang I, Lee Y (2007) Phosphatidylinositol 4,5-bisphosphate is important for stomatal opening. Plant J 52:803–816

    PubMed  CAS  Google Scholar 

  • Leyman B, Geelen D, Quintero FJ, Blatt MR (1999a) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283:537–540

    PubMed  CAS  Google Scholar 

  • Leyman B, Geelen D, Blatt MR (1999b) Localization and control of expression of NtSyr1, a tobacco SNARE protein. Plant J 24:369–381

    Google Scholar 

  • Leyman B, Geelen D, Blatt MR (2000) Localization and control of expression of NtSyr1, a tobacco SNARE protein. Plant J 24:369–381

    PubMed  CAS  Google Scholar 

  • Loraine AE, Yalovsky S, Fabry S, Gruissem W (1996) Tomato Rab1A homologs as molecular tools for studying Rab geranylgeranyl transferase in plant cells. Plant Physiol 110:1337–1347

    PubMed  CAS  Google Scholar 

  • Lou Y, Gou JY, Xue HW (2007) PIP5K9, an Arabidopsis phosphatidylinositol monophosphate kinase, interacts with a cytosolic invertase to negatively regulate sugar mediated root growth. Plant Cell 19:163–181

    PubMed  CAS  Google Scholar 

  • Lu C, Zainal Z, Tucker GA, Lycett GW (2001) Developmental abnormalities and reduced fruit softening in tomato plants expressing an antisense Rab11GTPase gene. Plant Cell 13:1819–1833

    PubMed  CAS  Google Scholar 

  • Lycett G (2008) The role of Rab GTPases in cell wall metabolism. J Exp Bot 59:4061–4074

    PubMed  CAS  Google Scholar 

  • Magee AI, Seabra MC (2003) Are prenyl groups on proteins sticky fingers or greasy handles? Biochem J 376:e3–e4

    Google Scholar 

  • Markgraf DF, Peplowska K, Ungerman C (2007) Rab cascades and tethering factors in the endomembrane system. FEBS Lett 581:2125–2130

    PubMed  CAS  Google Scholar 

  • Matsuda N, Ueda T, Sasaki Y, Nakano A (2000) Overexpression of PRA2, a Rab/Ypt-family small GTPase from pea Pisum sativum, aggravates the growth defect of yeast ypt mutants. Cell Struct Funct 25:11–20

    PubMed  CAS  Google Scholar 

  • Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118–128

    PubMed  CAS  Google Scholar 

  • Meschini EP, Blanco FA, Zanetti ME, Beker MP, Küster H, Pühler A, Aguilar OM (2008) Host genes involved in nodulation preference in common bean (Phaseolus vulgaris)–Rhizobium etli symbiosis revealed by suppressive subtractive hybridisation. Mol Plant Microbe Interact 21:459–468

    PubMed  CAS  Google Scholar 

  • Meyerowitz EM (1999) Plants, animals and the logic of development. Trends Cell Biol 9:M65–M68

    PubMed  CAS  Google Scholar 

  • Meyerowitz EM (2002) Plants compared to animals: the broadest comparative study of development. Science 295:1482–1485

    PubMed  CAS  Google Scholar 

  • Mikami K, Katagiri T, Iuchi S, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J 15:563–568

    PubMed  CAS  Google Scholar 

  • Moore I, Diefenthal T, Zarsky V, Schell J, Palme K (1997) A homolog of the mammalian GTPase Rab2 is present in Arabidopsis and is expressed predominantly in pollen grains and seedlings. Proc Natl Acad Sci U S A 94:762–767

    PubMed  CAS  Google Scholar 

  • Moyer BD, Allan BB, Balch WE (2001) Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis-Golgi tethering. Traffic 2:268–276

    PubMed  CAS  Google Scholar 

  • Nahm MY, Kim SW, Yun D, Lee SY, Cho MJ, Bahk JD (2003) Molecular and biochemical analyses of OsRab7, a rice Rab7homolog. Plant Cell Physiol 44:1341–1349

    PubMed  CAS  Google Scholar 

  • Nielsen E, Severin F, Backer JM, Hyman AA, Zerial M (1999) Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1:376–382

    PubMed  CAS  Google Scholar 

  • Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, Wilm M, Hoflack B, Zerial M (2000) Rebenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 151:601–612

    PubMed  CAS  Google Scholar 

  • Nielsen E, Cheung AY, Ueda T (2008) The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol 147:1516–1526

    PubMed  CAS  Google Scholar 

  • Novick P, Brennwald P (1993) Friends and family: the role of the Rab GTPases in vesicular traffic. Cell 75:597–601

    PubMed  CAS  Google Scholar 

  • Nühse TS, Boller T, Peck SC (2003) A plasma membrane syntaxin is phosphorylated in response to the bacterial elicitor flagellin. J Biol Chem 278:45248–45254

    PubMed  Google Scholar 

  • O’Mahony PJ, Oliver MJ (1999) Characterization of a desiccation- responsive small GTP binding protein (Rab2) from the desiccation-tolerant grass Sporobolus stapfianus. Plant Mol Biol 39:809–821

    PubMed  Google Scholar 

  • Olkkonen VM, Stenmark H (1997) Role of Rab GTPases in membrane traffic. Int Rev Cytol 176:1–85

    PubMed  CAS  Google Scholar 

  • Ortiz D, Medkova M, Walch-Solimena C, Nivick P (2002) Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J Cell Biol 157:1005–1015

    PubMed  CAS  Google Scholar 

  • Otomo A, Hadano S, Okada T, Mizumura H, Kunita R, Nishijima H, Showguchi-Miyata J, Yanagisawa Y, Kohiki E, Suga E, Yasuda M, Osuga H, Nishimoto T, Narumiya S, Ikeda JE (2003) ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Hum Mol Genet 12:1671–1687

    PubMed  CAS  Google Scholar 

  • Park S, Sugimoto N, Larson MD, Baudry R, van Nocker S (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol 141:811–824

    PubMed  CAS  Google Scholar 

  • Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313:889–901

    PubMed  CAS  Google Scholar 

  • Pereira-Leal JB, Hume AN, Seabra MC (2001) Prenylation of Rab GTPases: molecular mechanisms and involvement in genetic disease. FEBS Lett 498:197–200

    PubMed  CAS  Google Scholar 

  • Pfeffer SR (2007) Unsolved mysteries in membrane traffic. Annu Rev Biochem 76:629–645

    PubMed  CAS  Google Scholar 

  • Pina C, Pinto F, Feijo JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–775

    PubMed  CAS  Google Scholar 

  • Preuss ML, Serna J, Falbel TG, Bednarek SY, Nielsen E (2004) The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell 16:1589–1603

    PubMed  CAS  Google Scholar 

  • Preuss ML, Schmitz AJ, Thole JM, Bonner HKS, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein PI-4Kb1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172:991–998

    PubMed  CAS  Google Scholar 

  • Quartacci MF, Forli M, Rascio N, Dalla Vecchia F, Bochicchio A, Navari- Izzo F (1997) Desiccation-tolerant Sporobolus stapfianus: lipid composition and cellular ultrastructure during dehydration and rehydration. J Exp Bot 48:1269–1279

    CAS  Google Scholar 

  • Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates R, Chappell J (2001) Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum). Arch Biochem Biophys 393:222–235

    PubMed  CAS  Google Scholar 

  • Rehman RU, Stigliano E, Lycett G, Sticher L, Franchesca S, Dalessandro G, Di Sansebastiano GP (2008) Tomato Rab11a characterization evidenced a difference between SYP121 dependent and SYP122-dependent exocytosis. Plant Cell Physiol 49(5):751–766

    PubMed  CAS  Google Scholar 

  • Rutherford S, Moore I (2002) The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol 5:518–528

    PubMed  CAS  Google Scholar 

  • Saito C, Ueda T (2009) Chapter 4: Functions of RAB and SNARE proteins in plant life. Int Rev Cell Mol Biol 274:183–233

    PubMed  CAS  Google Scholar 

  • Salminen A, Novick PJ (1987) A ras-like protein is required for a post- Golgi event in yeast secretion. Cell 49:527–538

    PubMed  CAS  Google Scholar 

  • Sano H, Seo S, Orudgev E, Youssefian S, Ishizuka K, Ohashi Y (1994) Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic-acid in response to wounding, and increases resistance to tobacco mosaic-virus infection. Proc Natl Acad Sci USA 91:10556–10560

    PubMed  CAS  Google Scholar 

  • Schiene K, Donath S, Brecht M, Pühler A, Niehaus K (2004) A Rab-related small GTP binding protein is predominantly expressed in root nodules of Medicago sativa. Mol Genet Genomics 272:57–66

    PubMed  CAS  Google Scholar 

  • Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev 13:3259–3270

    PubMed  CAS  Google Scholar 

  • Segev N (2001) Ypt and Rab GTPases: insight into functions through novel interactions. Curr Opin Cell Biol 13:500–511

    PubMed  CAS  Google Scholar 

  • Shin HW et al (2005) An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 170:607–618

    PubMed  CAS  Google Scholar 

  • Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394:494–498

    PubMed  CAS  Google Scholar 

  • Sivars U, Aivazian D, Pfeffer SR (2003) Yip3 catalyses the dissociation of endosomal Rab–GDI complexes. Nature 425:856–859

    PubMed  CAS  Google Scholar 

  • Sohn EJ, Kim ES, Zhao M, Kim SJ, Kim H, Kim YW, Lee YJ, Hillmer S, Sohn U, Jiang L, Hwang I (2003) Rha-1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins. Plant Cell 15:1057–1070

    PubMed  CAS  Google Scholar 

  • Sousa E, Kost B, Malhó R (2008) Arabidopsis PIP5K4 regulates pollen tube growth and polarity through modulation of endocytosis and membrane secretion. Plant Cell 20:3050–3064

    PubMed  CAS  Google Scholar 

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G (1999) Coordinated polar localisation of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318

    PubMed  CAS  Google Scholar 

  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev 10:513–525

    CAS  Google Scholar 

  • Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol 2: Reviews 3007. doi:10.1186/gb-2001-2-5-reviews3007

  • Stenzel I, Ischebeck T, König S, Houbowska A, Sporysz M, Hause B, Heilmann I (2008) The type B phosphatidylinositol-4 phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20:124–141

    PubMed  CAS  Google Scholar 

  • Strickland LI, Burgess DR (2004) Pathways for membrane trafficking during cytokinesis. Trends Cell Biol 14:115–118

    PubMed  CAS  Google Scholar 

  • Surpin M, Raikhel N (2004) Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5:100–109

    PubMed  CAS  Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandgerg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

    PubMed  CAS  Google Scholar 

  • Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544

    PubMed  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  • Tall GG, Hama H, DeWald DB, Horazdovsky BF (1999) The phosphatidylinositol homologue to facilitate vesicle-mediated vacuolar protein sorting. Mol Biol Cell 10:1873–1889

    PubMed  CAS  Google Scholar 

  • Terryn N, Van Montagu M, Inzé D (1993) GTP-binding proteins in plants. Plant Mol Biol 22(1):143–152

    PubMed  CAS  Google Scholar 

  • Thole JM, Nielsen E (2008) Phosphoinositides in plants: novel functions in membrane trafficking. Curr Opin Plant Biol 11:620–631

    PubMed  CAS  Google Scholar 

  • Thole JM, Vermeer JE, Zhang Y, Gadella TW Jr, Nielsen E (2008) ROOT HAIR DEFECTIVE4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell 20:381–395

    PubMed  CAS  Google Scholar 

  • Ueda T, Anai T, Tsukaya H, Hirata A, Uchimiya H (1996a) Characterisation and subcellular localization of a small GTP binding protein (Ara-4) from Arabidopsis: conditional expression under control of the promoter of the gene for heat-shock proteinHSP81-1. Mol Gen Genet 250:533–539

    PubMed  CAS  Google Scholar 

  • Ueda T, Matsuda N, Anai T, Tsukaya H, Uchimiya H, Nakano A (1996b) An Arabidopsis gene isolated by a novel method for detecting genetic interaction in yeast encodes the GDP dissociation inhibitor of Ara4 GTPase. Plant Cell 8:2079–2091

    PubMed  CAS  Google Scholar 

  • Ueda T, Matsuda N, Uchimiya H, Nakano A (2000) Modes of interaction between the Arabidopsis Rab protein, Ara4, and its putative regulator molecules revealed by a yeast expression system. Plant J 21:341–349

    PubMed  CAS  Google Scholar 

  • Ueda T, Yamaguchi M, Uchimaya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741

    PubMed  CAS  Google Scholar 

  • Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789

    PubMed  CAS  Google Scholar 

  • Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208

    PubMed  CAS  Google Scholar 

  • Vieria AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089

    Google Scholar 

  • Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, VanDenBerg W, VanDongen W, Richter S, Geldner N, Takano J, Jurgens G, DeVries SC, Robinson DG, Schumacher K (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–1357

    PubMed  CAS  Google Scholar 

  • Voigt B, Timmers AC, Samaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H et al (2005) Actin-based motility of endosome is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621

    PubMed  CAS  Google Scholar 

  • Wagner W, Bielli P, Wacha S, Ragnini-Wilson A (2002) Mlc1p promotes septum closure during cytokinesis via the IQ motifs of the vesicle motor Myo2p. EMBO J 21:6397–6408

    PubMed  CAS  Google Scholar 

  • Watson BS, Lei Z, Dixon RA, Sumner LW (2004) Proteomics of Medicago sativa cell walls. Phytochemistry 65:1709–1720

    PubMed  CAS  Google Scholar 

  • Wojtas M, Swiezewski S, Sarnowski TJ, Plochocka D, Chelstowska A, Tolmachova T, Swiezwska E (2007) Cloning and characterization of rab escort protein (REP) from Arabidopsis thaliana. Cell Biol Int 31:246–251

    PubMed  CAS  Google Scholar 

  • Woollard AAD, Moore I (2008) The functions of Rab GTPases in plant membrane traffic. Curr Opin Plant Biol 11:610–619

    PubMed  CAS  Google Scholar 

  • Wu SK, Luan P, Matteson J, Zeng K, Nishimura N, Balch WE (1998) Molecular role for the Rab binding platform of guanine nucleotide dissociation inhibitor in endoplasmic reticulum to Golgi transport. J Biol Chem 273:26931–26938

    PubMed  CAS  Google Scholar 

  • Yi Y, Guerinot ML (1994) A new member of the small GTP-binding protein family in Arabidopsis thaliana. Plant Physiol 104(1):295–296

    PubMed  CAS  Google Scholar 

  • Zainal Z, Tucker GA, Lycett GW (1996) A rab11-like gene is developmentally regulated in ripening mango (Mangifera indica L.) fruit. Biochim Biophys Acta 1314:187–190

    PubMed  CAS  Google Scholar 

  • Žárský V, Cvrčková F, Potocký M, Hála M (2009) Exocytosis and cell polarity in plants: exocyst and recycling domains. New Phytol 183:255–272

    PubMed  Google Scholar 

  • Zegzouti H, Jones B, Frasse P, Marty C, Maitre B, Latché A, Pech JC, Bouzayen M (1999) Ethylene-regulated gene expression in tomato fruit: characterisation of novel ethylene-responsive and ripening-related genes isolated by differential display. Plant J 18:589–600

    PubMed  CAS  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organisers. Nat Rev Mol Cell Biol 2:107–117

    PubMed  CAS  Google Scholar 

  • Zheng H, Camacho L, Wee E, Batoko H, Legen J, Leaver CJ, Malho R, Hussey PJ, Moore I (2005) A Rab-E GTPase mutant acts downstream of the Rab-D subclass in biosynthetic membrane traffic to the plasma membrane in tobacco leaf epidermis. Plant Cell 17:2020–2036

    PubMed  CAS  Google Scholar 

  • Zhu J, Chen S, Alvarez S, Asirvatham VS, Schachtman DP, Wu Y, Sharp RE (2006) Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water soluble and lightly ionically bound proteins. Plant Physiol 140:311–325

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiaz Ul Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Rehman, R.U., Di Sansebastiano, GP. (2014). Plant Rab GTPases in Membrane Trafficking and Signalling. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_3

Download citation

Publish with us

Policies and ethics