Skip to main content

Plant Disease Resistance Genes: From Perception to Signal Transduction

  • Chapter
  • First Online:
Plant signaling: Understanding the molecular crosstalk

Abstract

Plants defend themselves against pathogen attack by activating a multicomponent defence response. The pathogen invasion is recognised by proteins encoded by plant disease resistance (R) genes that bind specific pathogen-derived avirulence (Avr) proteins either directly or indirectly via guard to decoy to mechanistic model. As a result, an intracellular signal transduction cascade is initiated, triggering activation of the defence arsenal of the challenged host plant cell and resulting in a localised cell and tissue death at the site of infection and a non-specific systemic acquired resistance (SAR) throughout the plant, which prevents the further spread of the infection termed as hypersensitive response (HR). A large number of plant resistance genes have been grouped into eight basic classes that can be grouped into several superfamilies, based on their protein domains. The vast majority of genes cloned so far belong to the NB–LRR, eLRR or LRR kinase superfamilies and provide a lot of information about the structure and function of R genes that exhibit resistance response against a variety of pathogens such as virus, bacteria, fungi, nematodes and pests. These and other domains like TIR and WRKY have been reported to play a major role in signal transduction. The present chapter focuses on R genes, structure of R proteins and perception of signal at early stages of R–Avr interaction to signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ade J, De Young BJ, Golstein C, Innes RW (2007) Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc Nat Acad Sci U S A 104:2531–2536

    Article  CAS  Google Scholar 

  • Agrois GN (1988) Plant pathology, 3rd edn. Academic, San Diego

    Google Scholar 

  • Baker BP, Zambryski B, Staskawicz SP, Dinesh K (1997) Signaling in plant-microbe interactions. Science 276:726–733

    Article  PubMed  CAS  Google Scholar 

  • Bartsch M, Gobbato E, Bednarek P, Debey S, Schultze JL, Bautor J, Parker JE (2006) Salicylic acid-independent Enhanced Disease Susceptibility 1 signalling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell 18:1038–1051

    Article  PubMed  CAS  Google Scholar 

  • Beynon JL (1997) Molecular genetics of disease resistance: an end to the gene-for-gene concept? In: The gene-for-gene relationship in plant parasite interactions. CABI Publishing, CAB International, Wallingford, Oxon, UK, pp 359–377

    Google Scholar 

  • Boter M, Amigues B, Peart J, Breuer C, Kadota Y, Casais C, Moore G, Kleanthous C, Ochsenbein F, Shirasu K, Guerois R (2007) Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19:3791–3804

    Article  PubMed  CAS  Google Scholar 

  • Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, Dinesh-Kumar SP (2007) A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 5:e68

    Article  PubMed  Google Scholar 

  • Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Brian EH, Staskawicz J (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278:1963–1965

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy PD, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404–2409

    Article  PubMed  CAS  Google Scholar 

  • Day B, Dahlbeck D, Huang J, Chisholm ST, Li D, Staskawicz BJ (2005) Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. Plant Cell 17:1292–1305

    Article  PubMed  CAS  Google Scholar 

  • Day B, Dahlbeck D, Staskawicz BJ (2006) NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis. Plant Cell 18:2782–2791

    Article  PubMed  CAS  Google Scholar 

  • De Wit PJGM (2007) How plants recognize pathogens and defend themselves. Cell Mol Life Sci 64:2726–2732

    Article  PubMed  Google Scholar 

  • Ellis J, Jones D (1998) Structure and function of proteins controlling strain-specific pathogen resistance in plants. Curr Opin Plant Biol 48:575–607

    Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signalling. Curr Opin Plant Biol 10:366–371

    Article  PubMed  CAS  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signalling pathways in plant disease resistance. Trends Genet 16:449–455

    Article  PubMed  CAS  Google Scholar 

  • Flor HH (1971) Host–parasite interactions in flax – its genetics and other implications. Phytopathology 65:680–685

    Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent responses. Plant Cell 8:1773–1791

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1997) Plant disease resistance genes. Annu Rev Plant Physiol 48:575–607

    CAS  Google Scholar 

  • Heath MC (2000) Non-host resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    Article  PubMed  CAS  Google Scholar 

  • Holub EB, Tor M, Brown D, Cooper A, Woods-Tor A, Sjolander K, Jones JD (2001) Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. Plant Physiol 135:1100–1112

    Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2008) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 59:585–612

    Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014

    Article  PubMed  CAS  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the Hm1 disease resistance gene in maize. Science 258:985–987

    Article  PubMed  CAS  Google Scholar 

  • Jones JD (2001) Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol 4:281–287

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl J (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302

    Article  PubMed  CAS  Google Scholar 

  • Keen NT (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24:447–463

    Article  PubMed  CAS  Google Scholar 

  • Keen NT (1992) The molecular biology of disease resistance. Plant Mol Biol 19:109–122

    Article  PubMed  CAS  Google Scholar 

  • Keen NT (1997) Elicitor generation and receipt. The mail gets through, but how? In: The gene-for-gene. Relationships in plant parasite interaction. CABI Publishing, CAB International, Wallingford, Oxon, UK, pp 379–387

    Google Scholar 

  • Kohler RC, Duplessis S, Baucher M et al (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636

    Article  PubMed  CAS  Google Scholar 

  • Lukasik E, Takken F (2009) STANDing strong, resistance proteins instigators of plant defence. Curr Opin Plant Biol 12:427–436

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Pecherer RM, Sivaramakrishanan S (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  PubMed  CAS  Google Scholar 

  • Nair RA, Thomas G (2007) Isolation, characterization and expression studies of resistance gene candidates (RGCs) from Zingiber spp. Theor Appl Genet 116:123–134

    Article  CAS  Google Scholar 

  • Oh SK, Baek KH, Park JM, Yi SY, Yu SH, Kamoun S, Choi D (2008) Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol 177:977–989

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

    PubMed  CAS  Google Scholar 

  • Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8:2033–2046

    PubMed  CAS  Google Scholar 

  • Peart JR, Cook G, Feys BJ, Parker JE, Baulcombe DC (2002) An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J 29:569–579

    Article  PubMed  CAS  Google Scholar 

  • Piedras P, Hammond-Kosack KE, Harrison K, Jones JDJ (1998) Rapid, Cf-9-and Avr9-dependent production of active oxygen species in tobacco suspension cultures. Mol Plant Microbe Interact 11:1155–1166

    Article  CAS  Google Scholar 

  • Ronald PC (1997) The molecular basis of disease resistance in rice. Plant Mol Biol 35:179–186

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Lefert P (2004) Plant immunity: the origami of receptor activation. Curr Biol 14:R22–R24

    PubMed  CAS  Google Scholar 

  • Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274:2063–2065

    Article  PubMed  CAS  Google Scholar 

  • Sharma TR, Das A, Kumar SP, Lodha ML (2009) Resistance gene analogues as a tool for rapid identification and cloning of disease resistance genes in plants - a review. J Plant Biochem Biotechnol 18:1–11

    Article  CAS  Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • van der Biezen EA, Jones JDG (1998) Plant disease resistance proteins and the gene-for-gene concept. Trends Plant Sci 23:454–456

    Google Scholar 

  • van der Hoom RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    Article  Google Scholar 

  • Warren RF, Merritt PM, Holub E, Innes RW (1999) Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics 152:401–412

    PubMed  CAS  Google Scholar 

  • Whalen MC, Innes RW, Bent AF, Staskawicz BJ (1991) Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining a virulence on both Arabidopsis and soybean. Plant Cell 3:49–59

    PubMed  CAS  Google Scholar 

  • White FF, Yang B, Johnson LB (2000) Prospects for understanding avirulence gene function. Curr Opin Plant Biol 3:291–298

    Article  PubMed  CAS  Google Scholar 

  • Whitham SA, Anderberg RJ, Chisholm ST, Carrington JC (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12:569–582

    PubMed  CAS  Google Scholar 

  • Xiao S, Ellwood S, Calis O, Patrick E, Li T et al (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120

    Article  PubMed  CAS  Google Scholar 

  • Ye Z, Ting JPY (2008) NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 20:3–9

    Article  PubMed  CAS  Google Scholar 

  • Zhou J-M, Loh Y-T, Bressan RA, Martin GB (1995) The tomato gene Pti1 encodes a serine-threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83:925–935

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Tang X, Martin GB (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J 16:3207–3218

    Article  PubMed  CAS  Google Scholar 

  • Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J (1998) PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell 10:1021–1030

    PubMed  CAS  Google Scholar 

  • Zhou J-M, Trifa Y, Silva H, Pontier D, Lam E et al (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact 13:191–202

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Kurth J, Wei F, Elliott C, Vale G et al (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1–independent signalling pathway. Plant Cell 13:337–350

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Padder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Padder, B.A. (2014). Plant Disease Resistance Genes: From Perception to Signal Transduction. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_20

Download citation

Publish with us

Policies and ethics