Skip to main content

Ethylene Signaling in Plants: Introspection

  • Chapter
  • First Online:
Plant signaling: Understanding the molecular crosstalk

Abstract

Ethylene is the simplest unsaturated hydrocarbon gas produced in most plants that regulates a number of biochemical processes. Ethylene regulates a wide array of developmental processes, but its precise role in the regulation of these processes is still not clear. Ethylene’s role as a signal molecule depends on the cell response to its changing concentrations and the processing of this information in the form of physiological responses in the target cell. Ethylene is perceived by a family of ER-membrane-bound receptors encoded by the ethylene response 1 (ETR1) gene, and these receptors transduce the ethylene signal. Other ethylene receptors such as ERS1, ERS2, EIN4, ETR1, and ETR2 act as negative regulators via constitutive triple response 1 (CTR1) gene. The CTR1 is presumed to show similarities with Raf, a mitogen-activated protein kinase kinase kinase (MAPKKK) and thus is thought to function like Raf, in a typical MAPK cascade. It has been demonstrated that CTR1 binds ER membrane via ETR1 or by a direct association with ERS1 and ETR2 during ethylene signaling. Ethylene is thought to regulate several aspects of plant growth involving associations with other plant hormones primarily auxins and gibberellins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic Press, San Diego, p 414

    Google Scholar 

  • Achard P, Vriezen WH, Straeten DV, Nicholas PH (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Cheng H, Grauwe DL, Decat J, Schoutteten H, Thomas M, Dominique SV, Peng J, Nicholas PH (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Mourad B, Andrew C, Peter H, Dominique VS, Pascal G, Thomas M, Nicholas PH (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem identity genes. Proc Natl Acad Sci USA 104:6484–6489

    Article  CAS  PubMed  Google Scholar 

  • Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane- 1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:170–174

    Article  CAS  PubMed  Google Scholar 

  • Alberts B, Johnson A, Lewis J (2002) Signaling in plants. In: Molecular biology of cell. Garland Sciences, New York

    Google Scholar 

  • Alonso JM, Stepanova AN (2004) The ethylene signaling pathway. Science 306:1513–1515

    Article  CAS  PubMed  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  CAS  PubMed  Google Scholar 

  • An FY, Zhao QO, Ji YS, Li WY, Jiang ZQ, Yu XC, Zhang C, Han Y, He WR, Liu YD, Zhang SQ, Ecker JR, Guo HW (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    Article  CAS  PubMed  Google Scholar 

  • Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26:92–105

    Article  CAS  Google Scholar 

  • Binder BM, Chang C, Schaller GE (2012) Perception of ethylene by plants – ethylene receptors. Annu Plant Rev (Wiley-Blackwell, Oxford) 44:117–145

    Google Scholar 

  • Binder BM, Rodriguez FI, Bleecker AB, Patterson SE (2007) The effects of Group 11 transition metals, including gold, on ethylene binding to the ETR1 receptor and growth of Arabidopsis thaliana. FEBS Lett 581(26):5105–5109

    Article  CAS  PubMed  Google Scholar 

  • Bisson MMA, Groth G (2011) New paradigm in ethylene signaling: EIN2, the central regulator of the signaling pathway, interacts directly with the upstream receptors. Plant Signal Behav 6:164–166

    Article  CAS  PubMed  Google Scholar 

  • Bisson MMA, Groth G (2012) Cyanide is an adequate agonist of the plant hormone ethylene for studying signaling of sensor kinase ETR1 at the molecular level. Biochem J 444:261–267

    Article  CAS  PubMed  Google Scholar 

  • Bisson MMA, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424:1–6

    Article  CAS  PubMed  Google Scholar 

  • Bleecker AB (1999) Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci 4:269–274

    Article  PubMed  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  CAS  PubMed  Google Scholar 

  • Bleecker AB, Schaller GE (1996) The mechanism of ethylene perception. Plant Physiol 111:653–660

    CAS  PubMed  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Burg SP, Burg EA (1967) Molecular requirements for the biological activity of ethylene. Plant Physiol 42:144

    Article  CAS  PubMed  Google Scholar 

  • Cancel JD, Larsen PB (2002) Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol 129:1557–1567

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  • Chao QM, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Etheridge N, Schaller E (2005) Ethylene signal transduction. Ann Bot 95:901–915

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Shakeel SN, Bowers J, Zhao XC, Etheridge N, Schaller GE (2007) Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. J Biol Chem 282:24752–24758

    Article  CAS  PubMed  Google Scholar 

  • Chiwocha SD, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross AR, Kermode AR (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48

    Article  CAS  PubMed  Google Scholar 

  • Cho YH, Yoo SD (2007) Ethylene response 1 histidine kinase activity of Arabidopsis promotes plant growth. Plant Physiol 143:612–616

    Article  CAS  PubMed  Google Scholar 

  • Clark KL, Larsen PB, Wang XX, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95:5401–5406

    Article  CAS  PubMed  Google Scholar 

  • del Pozo JC, Timpte C, Tan S, Callis J, Estelle M (1998) The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science 280:1760–1763

    Article  CAS  PubMed  Google Scholar 

  • Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667–674

    Article  CAS  PubMed  Google Scholar 

  • Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  CAS  PubMed  Google Scholar 

  • Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA 101:6803–6808

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR, Young TE (2004) The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics 271:267–281

    Article  CAS  PubMed  Google Scholar 

  • Gane R (1934) Production of ethylene by some fruits. Nature 134:1008

    Article  CAS  Google Scholar 

  • Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signalling complexes. J Biol Chem 278:34725–34732

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Wen CK, Binder BM, Chen YF, Chang J, Chiang YH, Kerris RJ 3rd, Chang C, Schaller GE (2008) Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem 283(35):23801–23810

    Article  CAS  PubMed  Google Scholar 

  • Grefen C, Stadele K, Ruzicka K, Obrdlik P, Harter K, Horak J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    Article  CAS  PubMed  Google Scholar 

  • Guo HW, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  CAS  PubMed  Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene related mutants. Plant Cell 2(513):23

    Google Scholar 

  • Hahn A, Harter K (2009) Mitogen-activated protein kinase cascades and ethylene: signaling, biosynthesis, or both? Plant Physiol 149:1207–1210

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz E (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332

    CAS  PubMed  Google Scholar 

  • Huang YF, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    Article  CAS  PubMed  Google Scholar 

  • Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 32:227–254

    Article  CAS  PubMed  Google Scholar 

  • Ju C, Chang C (2012) Advances in ethylene signaling: protein complexes at the endoplasmic reticulum membrane. Ann Bot Plants 2012:Pls031

    Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    Article  CAS  Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    Article  CAS  PubMed  Google Scholar 

  • Kieber JJ (1997) The ethylene response pathway in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 48:277–296

    Article  CAS  PubMed  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ (2004) Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol 135:660–667

    Article  CAS  PubMed  Google Scholar 

  • Kovacic P, Kiser PF, Reger DL, Huff MF, Feinberg BA (1991) Electrochemistry of Cu(1) bipyridyl complexes with alkene, alkyne, and nitrile ligands. Implications for plant hormone action of ethylene. Free Radic Res Commun 15:143–149

    Article  CAS  PubMed  Google Scholar 

  • Lehman A, Black R, Ecker JR (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85:183–194

    Article  CAS  PubMed  Google Scholar 

  • Leon P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Xu C, Wen C-K (2010) Genetic and transformation studies reveal negative regulation of ERS1 ethylene receptor signaling in Arabidopsis. BMC Plant Biol 10:60

    Article  PubMed  Google Scholar 

  • Mayerhofer H, Panneerselvam S, Mueller-Dieckmann J (2012) Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. J Mol Biol 415:768–779

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki JH, Yang SF (1987) The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiol Plant 69:366–370

    Article  CAS  Google Scholar 

  • Mount SM, Chang C (2002) Evidence for a plastid origin of plant ethylene receptor genes. Plant Physiol 130:10–14

    Article  CAS  PubMed  Google Scholar 

  • Pickett FB, Wilson AK, Estelle M (1990) The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol 94:1462–1466

    Article  CAS  PubMed  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689

    Article  CAS  PubMed  Google Scholar 

  • Prescott AG, John P (1996) Dioxygenases: molecular structure and role in plant metabolism. Annu Rev Plant Physiol Plant Mol Biol 47:245–271

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Hall BP, Gao ZY, Schaller GE (2007) A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol 7:3

    Article  PubMed  Google Scholar 

  • Ramon M, Rolland F, Sheen J (2008) Sugar sensing and signaling. In: The Arabidopsis book. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139:1393–1409

    CAS  PubMed  Google Scholar 

  • Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Gene Dev 12:198–207

    Article  CAS  PubMed  Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812–5817

    Article  CAS  PubMed  Google Scholar 

  • Schaller GE (2012) Ethylene and the regulation of plant development. BMC Biol 10:9

    Article  CAS  PubMed  Google Scholar 

  • Schaller GE, Kieber JJ (2002) Ethylene. In: The Arabidopsis book. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Sisler EC (1991) Ethylene-binding components in plants. In: Matoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, pp 81–99

    Google Scholar 

  • Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory meet. Curr Opin Plant Biol 12:548–555

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Ecker JR (2000) Ethylene signaling: from mutants to molecules. Curr Opin Plant Biol 3:353–360

    Article  CAS  PubMed  Google Scholar 

  • Takeshi U, Shinozaki-Yamaguchi K, Shinozaki K (2000) Two-component systems in plant signal transduction. Trends Plant Sci 5(2):67–74

    Article  Google Scholar 

  • Theologis A (1998) Ethylene signaling: redundant molecules all have their say. Curr Biol 8:875–878

    Article  Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1- carboxylate synthase gene family members. Plant Physiol 136:2982–3000

    Article  CAS  PubMed  Google Scholar 

  • Vandenbussche F, Vancompernolle B, Rieu I, Ahmad M, Phillips A, Moritz T, Hedden P, Van Der Straeten D (2007) Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins. J Exp Bot 58:4269–4281

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95:4766–4771

    Article  CAS  PubMed  Google Scholar 

  • Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151

    CAS  PubMed  Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246

    Article  CAS  PubMed  Google Scholar 

  • Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane- 1-carboxylic acid synthase. Plant Physiol 119:521–529

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–525

    Article  CAS  PubMed  Google Scholar 

  • Yoo DS, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14(5):270–279

    Article  CAS  PubMed  Google Scholar 

  • Zarembinski TI, Theologis A (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26:1579–1597

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Guo HW (2011) Paradigms and paradox in the ethylene signaling pathway and interaction network. Mol Plant 4:626–634

    Article  CAS  PubMed  Google Scholar 

  • Zhong S, Chang C (2012) Ethylene signaling: the CTR1 protein kinase. Ann Plant Rev (Wiley-Blackwell, Oxford) 44:147–168

    Google Scholar 

  • Zhong SL, Lin ZF, Grierson D (2008) Tomato ethylene receptor-CTR interactions: visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum. J Exp Bot 59:965–972

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inayatullah Tahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Ahmad, S.S., Shahri, W., Islam, S.T., Dar, R.A., Tahir, I. (2014). Ethylene Signaling in Plants: Introspection. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_17

Download citation

Publish with us

Policies and ethics