Skip to main content
  • 2496 Accesses

Abstract

Salicylic acid (SA) is a phenolic derivative, found in a wide range of plant species. Signaling role of SA in plants, particularly in defense against pathogens, has only become evident during the past 20 years. In addition to its role in plant defense responses against pathogens, SA has also functions in plant responses to abiotic stress factors such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. During the entire lives of the plants, physiological and biochemical processes including photosynthesis, ion uptake, membrane permeability, enzyme activities, flowering, heat production, and growth and development of plants are regulated by SA. For our better understanding, it is important to know how complex SA signaling works in these physiological processes. Therefore, we need to learn how SA acts and which molecules are related to its roles in plant growth and development. Here, the role of SA during plant growth and development will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462

    PubMed  CAS  Google Scholar 

  • Alibert G, Ranjeva R (1971) Recharches sur les enzymes catalysant la biosynthese des acides phenoliques chez Quercus pedunculata (Ehrn): I – Formation des series cinnamique et benzoique. FEBS Lett 19:11–14

    PubMed  CAS  Google Scholar 

  • Alibert G, Ranjeva R (1972) Recharches sur les enzymes catalysant la biosyntheses des acid phenoliques chez Quercus pedunculata (Ehrn): II- Localization intercellulaire de la phenylalanin mmonique-lyase, de la cinnamate 4-hydroxylase, et de la “benzoate synthase”. Biochem Biophys Acta 279:282–289

    PubMed  CAS  Google Scholar 

  • Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M, Gomez-Cadenas A, Nicolas C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    PubMed  CAS  Google Scholar 

  • Anandhi S, Ramanujam MP (1997) Effect of salicylic acid on black gram (Vigna mungo) cultivars. Indian J Plant Physiol 2:138–141

    CAS  Google Scholar 

  • Ananieva EA, Alexieva VS, Popova LP (2002) Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. J Plant Physiol 159:685–693

    CAS  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 6:685–694

    Google Scholar 

  • Bloom AJ, Burger M, Asensio JSR, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899–903

    PubMed  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella A (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    PubMed  CAS  Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584

    PubMed  CAS  Google Scholar 

  • Chen F, D’Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP, Pichersky E (2003) An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J 36:577–588

    PubMed  CAS  Google Scholar 

  • Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ (2004) Drought tolerance established by enhanced expression of the CCI-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 38:810–822

    PubMed  CAS  Google Scholar 

  • Christianson ML, Duffy SH (2002) Dose-dependent effect of salicylates in a moss, Funaria hygrometrica. J Plant Growth Regul 21:200–208

    CAS  Google Scholar 

  • Cleland CF, Ajami A (1974) Identification of a flower-inducing factor, isolated aphid honeydew as being salicylic acid. Plant Physiol 54:904–906

    PubMed  CAS  Google Scholar 

  • Dean JV, Mills JD (2004) Uptake of salicylic acid 2-O-β-d-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiol Plant 120:603–612

    PubMed  CAS  Google Scholar 

  • Dean JV, Mohammed LA, Fitzpatrick T (2005) The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta 221:287–296

    PubMed  CAS  Google Scholar 

  • Demiralay M, Sağlam A, Kadıoğlu A (2013) Salicylic acid delays leaf rolling by inducing antioxidant enzymes and modulating osmoprotectant content in Ctenanthe setosa under osmotic stress. Turk J Biol 37:49–59

    CAS  Google Scholar 

  • Dezar CA, Giacomelli JI, Manavella PA, Re DA, Alves-Ferreira M, Baldwin IT, Bonaventure G, Chan RL (2011) HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress. J Exp Bot 62:1061–1076

    PubMed  CAS  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy ASN, Poovaiah BW (2009) Ca2+/calmodulin regulates salicylic-acid mediated plant immunity. Nature 457:1154–1158

    PubMed  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 24:185–209

    Google Scholar 

  • Eberhard S, Doubrava N, Marta V, Mohnen D, Southwick A, Darwill A, Albersheim P (1989) Pectic cell wall fragments regulate tobacco thin cell layer explant morphogenesis. Plant Cell 1:747–755

    PubMed  CAS  Google Scholar 

  • Elthon TE, McIntosh L (1987) Identification of the alternative terminal oxidase of higher plant mitochondria. Proc Natl Acad Sci USA 84:8399–8403

    PubMed  CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica 41:281–284

    CAS  Google Scholar 

  • Ghai N, Setia RC, Setia N (2002) Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1). Phytomorphology 52:83–87

    Google Scholar 

  • Goto N (1981) Enhancement of gibberellic acid by 5-bromodeoxyuridine, salicylic acid and benzoic acid on the flowering of Arabidopsis thaliana. Arabidopsis Inf Serv 18:157–160

    Google Scholar 

  • Guan L, Scandalios JG (1995) Developmentally related responses of maize catalase genes to salicylic acid. Proc Natl Acad Sci USA 92:5930–5934

    PubMed  CAS  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Guneri Bagci E, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    PubMed  CAS  Google Scholar 

  • Hayat S, Fariduddin Q, Ali B, Ahmad A (2005) Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron Hung 53:433–437

    CAS  Google Scholar 

  • Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    CAS  Google Scholar 

  • Jain A, Srivastava HS (1981) Effect of salicylic acid on nitrate reductase activity in maize seedlings. Physiol Plant 51:339–342

    CAS  Google Scholar 

  • James WO, Beevers H (1950) The respiration of Arum spadix: a rapid respiration, resistant to cyanide. New Phytol 49:353–374

    Google Scholar 

  • Jeffreys D (2008) Aspirin: the remarkable story of a wonder drug. Bloomsbury Publishing, London, pp 38–40

    Google Scholar 

  • Jones HG, Kershanskaya OI, Bogdanova ED (1998) Photosynthetic characteristics of rolling leaf wheat lines in response to drought stress. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer Academic Publishers, Dordrecht, pp 3833–3836

    Google Scholar 

  • Kadioglu A, Terzi R (2007) A dehydration avoidance mechanism: leaf rolling. Bot Rev 73:290–302

    Google Scholar 

  • Kadioglu A, Saruhan N, Saglam A, Terzi R, Acet T (2011) Exogenous salicylic acid regulates leaf rolling by inducing antioxidant system in Ctenanthe setosa under drought stress. Plant Growth Regul 64:27–37

    CAS  Google Scholar 

  • Kadioglu A, Terzi R, Saruhan N, Sağlam A (2012) Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Sci 182:42–48

    PubMed  CAS  Google Scholar 

  • Kang HM, Saltveit ME (2002) Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576

    PubMed  CAS  Google Scholar 

  • Kang HG, Singh KB (2000) Characterization of salicylic acid responsive Arabidopsis Dof domain proteins: overexpression of OBP3 leads to growth defects. Plant J 21:329–339

    PubMed  CAS  Google Scholar 

  • Kapulnik Y, Yalpani N, Raskin I (1992) Salicylic acid induces cyanide-resistant respiration in tobacco cell-suspension cultures. Plant Physiol 100:1921–1926

    PubMed  CAS  Google Scholar 

  • Khan W, Prithviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    PubMed  CAS  Google Scholar 

  • Khodary SFA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int J Agric Biol 6:5–8

    CAS  Google Scholar 

  • Khurana JP, Maheshwari SC (1980) Some effects of salicylic acid on growth and flowering in Spirodela polyrrhiza SP20. Plant Cell Physiol 21:923–927

    CAS  Google Scholar 

  • Kovacik J, Gruz J, Backor M, Strnad M, Repcak M (2009) Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep 28:135–143

    PubMed  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    PubMed  CAS  Google Scholar 

  • Kumar P, Dube SD, Chauhan VS (1999) Effect of salicylic acid on growth, development and some biochemical aspects of soybean (Glycine max L. Merrill). Indian J Plant Physiol 4:327–330

    CAS  Google Scholar 

  • Kumar P, Lakshmi NJ, Mani VP (2000) Interactive effects of salicylic acid and phytohormones on photosynthesis and grain yield of soybean (Glycine max L. Merrill). Physiol Mol Biol Plants 6:179–186

    Google Scholar 

  • Lang YZ, Zhang ZJ, Gu XY, Yang JC, Zhu QS (2004) Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.) II. Photosynthetic character, dry mass production and yield forming. Acta Agron Sin 30:883–887

    CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    PubMed  CAS  Google Scholar 

  • Larque-Saavedra A (1979) Stomatal closure in response to acetylsalicylic acid treatment. Z Pflanzenphysiol 93:371–375

    CAS  Google Scholar 

  • Lopez-Bucio J, Cruz-Ramırez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    PubMed  CAS  Google Scholar 

  • Malamy J, Hennig J, Klessig DF (1992) Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell 4:359–366

    PubMed  CAS  Google Scholar 

  • Martinez C, Pons E, Prats G, Leon J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37:209–217

    PubMed  CAS  Google Scholar 

  • Martínez-Abarca F, Herrera-Cervera JA, Bueno P, Sanjuan J, Bisseling T, Olivares J (1998) Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Mol Plant Microbe Interact 11:153–155

    Google Scholar 

  • Mateo A, Mühlenbock P, Rusterucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpisnki S (2004) LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    PubMed  CAS  Google Scholar 

  • Meeuse BJD (1975) Thermogenic respiration in aroids. Annu Rev Plant Physiol 26:117–126

    CAS  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    PubMed  CAS  Google Scholar 

  • Moharekar ST, Lokhande SD, Hara T, Tanaka R, Tanaka A, Chavan PD (2003) Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings. Photosynthetica 41:315–317

    CAS  Google Scholar 

  • Moore AL, Siedow JN (1991) The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim Biophys Acta 1058:121–140

    Google Scholar 

  • Navarre DA, Mayo D (2004) Differential characteristics of salicylic acid-mediated signaling in potato. Physiol Mol Plant Pathol 64:179–188

    CAS  Google Scholar 

  • Nawrath C, Metraux JP (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393–1404

    PubMed  CAS  Google Scholar 

  • Norman C, Howell KA, Millar H, Whelan JM, Day DA (2004) Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol 134:492–501

    PubMed  CAS  Google Scholar 

  • Oota Y (1972) The response of Lemma gibba G3 to a single long day in the presence of EDTA. Plant Cell Physiol 13:575–580

    CAS  Google Scholar 

  • Oota Y (1975) Short-day flowering of Lemna gibba G3 induced by salicylic acid. Plant Cell Physiol 16:1131–1135

    CAS  Google Scholar 

  • Pancheva TV, Popova LP (1998) Effect of salicylic acid on the synthesis of ribulose-1,5,-biphosphate carboxylase/oxygenase in barley leaves. J Plant Physiol 152:381–386

    CAS  Google Scholar 

  • Pancheva TV, Popova L, Uzunova AM (1996) Effect of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 149:57–63

    CAS  Google Scholar 

  • Piterse AH (1982) A review of chemically induced flowering in Lemma gibba G3 and Pistia stratiotes. Aquat Bot 13:21–28

    Google Scholar 

  • Poor P, Gemes K, Szepesi A, Hovarth F, Simon LM, Tari I (2011) Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol 13:105–114

    PubMed  CAS  Google Scholar 

  • Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923

    PubMed  CAS  Google Scholar 

  • Ramirez AA, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    Google Scholar 

  • Rane J, Lakkineni KC, Kumar PA, Abrol YP (1995) Salicylic acid protects nitrate reductase activity of wheat leaves. Plant Physiol Biochem 22:119–121

    Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol 115:137–149

    PubMed  CAS  Google Scholar 

  • Raskin I (1992a) Salicylate, a new plant hormone. Plant Physiol 99:799–803

    PubMed  CAS  Google Scholar 

  • Raskin I (1992b) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    CAS  Google Scholar 

  • Raskin I, Ehmann A, Melander WR, Meeuse BJD (1987) Salicylic acid: a natural inducer of heat production in Arum lilies. Science 237:1601–1602

    PubMed  CAS  Google Scholar 

  • Raskin I, Turner IM, Melander WR (1989) Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proc Natl Acad Sci USA 86:2214–2218

    PubMed  CAS  Google Scholar 

  • Raskin I, Skubatz H, Tang W, Meeuse BJD (1990) Salicylic acid levels in thermogenic and nonthermogenic plants. Ann Bot 66:376–383

    Google Scholar 

  • Rate DN, Greenberg JT (2001) The Arabidopsis aberrant growth and death2 mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. Plant J 27:203–211

    PubMed  CAS  Google Scholar 

  • Rhoads DM, McIntosh L (1991) Isolation and characterization of a cDNA clone encoding an alternative oxidase protein of Sauromatum guttatum (Schott). Proc Natl Acad Sci USA 88:2122–2126

    PubMed  CAS  Google Scholar 

  • Rhoads DM, McIntosh L (1993) Cytochrome and alternative pathway respiration in tobacco. Plant Physiol 103:877–883

    PubMed  CAS  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    PubMed  CAS  Google Scholar 

  • Sahu GK, Kar M, Sabat SC (2002) Electron transport activities of isolated thylakoids from wheat plants grown in salicylic acid. Plant Biol 4:321–328

    CAS  Google Scholar 

  • Saruhan N, Saglam A, Kadioglu A (2012) Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiol Plant 34:97–106

    CAS  Google Scholar 

  • Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69

    PubMed  CAS  Google Scholar 

  • Scharfetter E, Rottenburg T, Kandeler R (1978) The effect of EDDHA and salicylic acid on flowering and vegetative development in Spirodela punctata. Z Pflanzenphysiol 87:445–454

    CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova V, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    CAS  Google Scholar 

  • Siedow JN, Umbach AL (1995) Plant mitochondrial electron transfer and molecular biology. Plant Cell 7:821–831

    PubMed  CAS  Google Scholar 

  • Silverman P, Seskar M, Kanter D, Schweizer P, Metraux JP, Raskin I (1995) Salicylic acid in rice, biosynthesis, conjugation and possible role. Plant Physiol 108:633–639

    PubMed  CAS  Google Scholar 

  • Smith WK (2008) C4 leaf curling – coupling incident light, stomatal and photosynthetic asymmetries. New Phytol 177:5–8

    PubMed  CAS  Google Scholar 

  • Song JT (2006) Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Mol Cell 22:233–238

    CAS  Google Scholar 

  • Sood V, Nanda K (1979) Effect of gibberellic acid and monophenols on the flowering of Impatiens balsamina in relation to the number of inductive and non-inductive photoperiodic cycles. Physiol Plant 45:250–254

    CAS  Google Scholar 

  • Stacey G, Sanjuán J, Luka S, Dockendorff T, Carlson RW (1995) Signal exchange in the Bradyrhizobium-soybean symbiosis. Soil Biol Biochem 27:473–483

    CAS  Google Scholar 

  • Stacey G, McAlvin BC, Kim SY, Olivares J, Soto MJ (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol 14:1473–1481

    Google Scholar 

  • Subashri M, Robin S, Vinod KK, Rajeswari S, Mohanasundaram K, Raveendran TS (2009) Trait identification and QTL validation for reproductive stage drought resistance in rice using selective genotyping of near flowering RILs. Euphytica 166:291–305

    Google Scholar 

  • Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796

    PubMed  CAS  Google Scholar 

  • Talieva MN, Kondrat’eva VV (2002) Influence of exogenous salicylic acid on the level of phytohormones in tissues of Phlox paniculata and Phlox setacea leaves with special reference to resistance against the powdery mildew causative Agent Erysiphe cichoracearum DC. f. phlogis Jacz. Biol Bull Russ Acad Sci 29:551–554

    CAS  Google Scholar 

  • Uzunova AN, Popova LP (2000) Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica 38:243–250

    CAS  Google Scholar 

  • Van Der Straeten D, Chaerle L, Sharkov G, Lambers H, Van Montagere M (1995) Salicylic acid enhances the activity of the alternative pathway of respiration in tobacco leaves and induces thermogensity. Planta 196:412–4419

    Google Scholar 

  • van Spronsen PC, Tak T, Rood AMM, van Brussel AAN, Kijne JW, Boot KJM (2003) Salicylic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. Mol Plant Microbe Interact 16:83–91

    PubMed  Google Scholar 

  • Vlot AC, Liu PP, Cameron RK, Park SW, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF (2008) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456

    PubMed  CAS  Google Scholar 

  • Watanabe K, Fujita T, Takimoto A (1981) Relationship between structure and flower inducing activity of benzoic acid derivatives in Lemma paucicostata 151. Plant Cell Physiol 20:847–850

    Google Scholar 

  • Wen JQ, Liang HG (1994) Comparison of the effects of salicylic acid on the alternative pathways in slices of dormant and dormancy-breaking potato tubers. Plant Sci 102:127–133

    CAS  Google Scholar 

  • Whitehouse DG, Moore AL (1995) Regulation of oxidative phosphorylation in plant mitochondria. In: Levings CS, Vasil I (eds) The molecular biology of plant mitochondria. Kluwer Academic Publishers, Dordrecht, pp 313–344

    Google Scholar 

  • Xie Z, Chen Z (1999) Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiol 120:217–225

    PubMed  CAS  Google Scholar 

  • Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid inducible WRKY gene. Plant Mol Biol 64:293–303

    PubMed  CAS  Google Scholar 

  • Yalpani N, Leen J, Lawthon MA, Raskin I (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103:315–321

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asım Kadıoğlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Kadıoğlu, A., Sağlam, A. (2014). Salicylic Acid Signaling. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_16

Download citation

Publish with us

Policies and ethics