Skip to main content

Recent Trends in Jasmonate Signaling Pathway

  • Chapter
  • First Online:
Plant signaling: Understanding the molecular crosstalk

Abstract

Jasmonates (JA) are a new class of plant hormones that has recently been worked out regulating the interweaving plant responses against invading microbes, herbivores, mechanical damage, and other environmental stresses. Their interactions are extensive working at the forefront of root or shoot tissues through volatile regulators, or they are regulated interdependently through the cross talk of other established growth regulators. Jasmonates, the product of octadecanoid pathway, have recently emerged as a versatile regulator of plant physiological and defense responses after salicylates. Most of the components of their signaling pathway have been identified through mutant studies. A progress towards the interaction of JA with other phytohormones is underway. Present review sheds the light on the recent progress made in identification and working mechanism of jasmonate receptor complex, its downstream signaling pathway, and the molecular interaction of its components with the signaling pathways of some other plant hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adie BA, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    PubMed  CAS  Google Scholar 

  • Aerts RJ, Gisi D, Decarolis E, De Luca V, Baumann TW (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5:635–643

    CAS  Google Scholar 

  • Arimura G, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. Biochim Biophys Acta 1734:91–111

    PubMed  CAS  Google Scholar 

  • Bai Y, Meng Y, Huang D, Qi Y, Chen M (2011) Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics 98:128–136

    PubMed  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    PubMed  CAS  Google Scholar 

  • Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380

    PubMed  CAS  Google Scholar 

  • Becker W, Apel K (1992) Isolation and characterization of a cDNA clone encoding a novel jasmonate-induced protein of barley (Hordeum vulgare L.). Plant Mol Biol 19:1065–1067

    PubMed  CAS  Google Scholar 

  • Browse J (2005) Jasmonate: an oxylipin signal with many roles in plants. Vitam Horm 72:431–456

    PubMed  CAS  Google Scholar 

  • Chaudhry B, Mueller-Uri F, Cameron- Mills V, Gough S, Simpson D, Skriver K, Mundy J (1994) The barley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant J 6:815–824

    PubMed  CAS  Google Scholar 

  • Chen H, McCaig BC, Melotto M, He SY, Howe GA (2004) Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine. J Biol Chem 279:45998–46007

    PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia- Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666–671

    PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Chico JM, Fernandez-Calvo P, Solano R (2009) The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J 59:77–87

    PubMed  CAS  Google Scholar 

  • Choi D, Bostock RM, Avdiushko S, Hildebrand DF (1994) Lipid-derived signals that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes antimicrobial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci USA 91:2329–2333

    PubMed  CAS  Google Scholar 

  • Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21:131–145

    PubMed  CAS  Google Scholar 

  • Chung I-M, Park MR, Chun JC, Yun SJ (2003) Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stress and hormones in peanut plants. Plant Sci 164:103–109

    CAS  Google Scholar 

  • Cohen Y, Gisi U, Niderman T (1993) Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester. Phytopathology 83:1054–1062

    CAS  Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants regulation development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119

    PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    PubMed  CAS  Google Scholar 

  • Creelman RA, Rao MV (2002) The oxylipin pathway in Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The arabidopsis book. American Society of Plant Biologists, Rockville. doi:10.1199/tab.0012

    Google Scholar 

  • Creelman RA, Tierney ML, Mullet J (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 89:4938–4941

    PubMed  CAS  Google Scholar 

  • del Pozo JC, Dharmasiri S, Hellmann H, Walker L, Gray WM, Estelle M (2002) AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 is required for auxin response. Plant Cell 14:421–433

    PubMed  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballare CL (2010) Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152:1084–1095

    PubMed  CAS  Google Scholar 

  • Deshaies RJ (1999) SCF and cullin/ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467

    PubMed  CAS  Google Scholar 

  • Dicosmo F, Misawa M (1995) Plant cell and tissue culture alternative for metabolite production. Biotechnol Adv 13(3):425–453

    PubMed  CAS  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci USA 92:4095–4098

    PubMed  CAS  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245

    PubMed  CAS  Google Scholar 

  • Dombrowski JE (2003) Salt stress activation of wound-related genes in tomato plants. Plant Physiol 132:2098–2107

    PubMed  CAS  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566

    PubMed  CAS  Google Scholar 

  • Farag MA, Pare PW (2002) C6-green leaf volatiles trigger local and systemic VOC emission in tomato. Phytochemistry 61:545–554

    PubMed  CAS  Google Scholar 

  • Farmer EE (2001) Surface-to-air signals. Nature 411:854–856

    Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    PubMed  CAS  Google Scholar 

  • Feys B, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl JA, and resistant to a bacterial pathogen. Plant Cell 6:751–759

    PubMed  CAS  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    PubMed  CAS  Google Scholar 

  • Gantet P, Imbault N, Thiersault M, Doireau P (1998) Necessity of a functional octadecanoic pathway for indole alkaloid synthesis by Catharanthus roseus cell suspensions cultured in an auxin-starved medium. Plant Cell Physiol 39:220–225

    CAS  Google Scholar 

  • Gfeller A, Liechti R, Farmer EE (2010) Arabidopsis Jasmonate signaling pathway. Sci Signal 3:cm4

    PubMed  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  • Gomez-Roldan V, Brewer PB, Puech-Pages V, Dun EA, Pillot J, Letisse F, Matusova R, Danoun S, Portais J, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    PubMed  CAS  Google Scholar 

  • Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M (2004) GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J 37:626–634

    PubMed  CAS  Google Scholar 

  • Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, Sutter VD, Lammertyn F, Nuutila AM, Soderlund H, Zabeau M, Inze D, Oksman-Caldentey K (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600

    PubMed  CAS  Google Scholar 

  • Grant MR, Jones JDG (2009) Hormone (dis)harmony moulds plant health and disease. Science 324:750–752

    PubMed  CAS  Google Scholar 

  • Grun S, Lindermayr C, Sell S, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516

    PubMed  CAS  Google Scholar 

  • Grunewald W, Vanholme B, Pauwels L, Plovie E, Inze D, Gheysen G, Goossens A (2009) Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin. EMBO Rep 10:923–928

    PubMed  CAS  Google Scholar 

  • Gundlach H, Muller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393

    PubMed  CAS  Google Scholar 

  • Halitschke R, Baldwin IT (2004) Jasmonates and related compounds in plant–insect interactions. J Plant Growth Regul 23:238–245

    CAS  Google Scholar 

  • Hayat S, Irfan M, Wani AS, Alyemeni MN, Ahmad A (2012) Salicylic acids local, systemic or inter-systemic regulators? Plant Signal Behav 7:1–10

    Google Scholar 

  • Heil M (2004) Induction of two indirect defenses benefits lima bean (Phaseolus lunatus, Fabaceae) in nature. J Ecol 92:527–536

    Google Scholar 

  • Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE (2001) Extrafloral nectar production of the ant-associated plant Macaranga tanarius, is induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci USA 98:1083–1088

    PubMed  CAS  Google Scholar 

  • Hou X, Lee LY, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    PubMed  CAS  Google Scholar 

  • Hou X, Lee LYC, Xia K, Yan Y, Yu H (2011) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    Google Scholar 

  • Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237

    CAS  Google Scholar 

  • Jiang C, Fu X (2007) GA action: turning on de-DELLA repressing signaling. Curr Opin Plant Biol 10:461–465

    PubMed  CAS  Google Scholar 

  • Johnson R, Narvaez J, An GH, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci USA 86:9871–9875

    PubMed  CAS  Google Scholar 

  • Jun JH, Fiume E, Fletcher JC (2008) The CLE family of plant polypeptide signaling molecules. Cell Mol Life Sci 65:743–755

    PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468

    PubMed  CAS  Google Scholar 

  • Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    PubMed  CAS  Google Scholar 

  • Koornneef M, van der Veen JH (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 58:257–263

    Google Scholar 

  • Kramell R, Atzorn R, Schneider G, Miersch O, Bruckner C, Schmidt J, Sembdner G, Parthier B (1995) Occurrence and identification of jasmonic acid and its amino-acid conjugates induced by osmotic-stress in barley leaf tissue. J Plant Growth Regul 14:29–36

    CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    PubMed  CAS  Google Scholar 

  • Langebartels C, Kangasjarvi J (2004) Ethylene and Jasmonate as regulators of cell death in disease resistance. In: Sandermann H (ed) Molecular ecotoxicology of plants, Ecological studies 170. Springer, Heidelberg, pp 75–110

    Google Scholar 

  • Lee-Parsons CWT, Erturk S, Tengtrakool J (2004) Enhancement of ajmalicine production in Catharanthus roseus cell cultures with methyl jasmonate is dependent on timing and dosage of elicitation. Biotechnol Lett 26(20):1595–1599

    PubMed  CAS  Google Scholar 

  • Leon J, Rojo E, Sanchez-Serrano JJ (2001) Wound signalling in plants. J Exp Bot 52:1–9

    PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    PubMed  CAS  Google Scholar 

  • Linsenmair KE, Heil M, Kaiser WM, Fiala B, Koch T, Boland W (2001) Adaptations to biotic and abiotic stress: Macaranga-ant plants optimize investment in biotic defense. J Exp Bot 52:2057–2065

    PubMed  CAS  Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defense—the players and protagonists. Curr Opin Plant Biol 10:466–472

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and Jasmonate pathways in plant defense. Plant Cell 15:165–178

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATEINSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950

    PubMed  CAS  Google Scholar 

  • Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J 46:984–1008

    PubMed  CAS  Google Scholar 

  • Mao P, Duan M, Wei C, Li Y (2007) WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates Jasmonate responsive gene expression. Plant Cell Physiol 48:833–842

    PubMed  CAS  Google Scholar 

  • Mccall AC, Karban R (2006) Induced defense in Nicotiana attenuata (Solanaceae) fruits and flowers. Oecologia 146:566–571

    PubMed  Google Scholar 

  • Mcconn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477

    PubMed  CAS  Google Scholar 

  • Melotto M, Mecey C, Niu Y, Chung HS, Katsir L, Yao J, Zeng W, Thines B, Staswick PE, Browse J, Howe GA, He SY (2008) A critical role of two positively charged amino acids in the JAs motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J 55:979–988

    PubMed  CAS  Google Scholar 

  • Memelink J (2009) Regulation of gene expression by Jasmonate hormones. Phytochemistry 70:1560–1570

    PubMed  CAS  Google Scholar 

  • Menke FL, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18:4455–4463

    PubMed  CAS  Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830

    PubMed  CAS  Google Scholar 

  • Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol 143:1398–1407

    PubMed  CAS  Google Scholar 

  • Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    PubMed  CAS  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    PubMed  CAS  Google Scholar 

  • Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses jasmonate-responsive PDF1.2 transcription. Plant J 50:128–139

    PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    PubMed  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H Jr, Kangasjarvi J (2000) Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862

    PubMed  CAS  Google Scholar 

  • Overmyer K, Brosche M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    PubMed  CAS  Google Scholar 

  • Pauwels L, Inze D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14:87–91

    PubMed  CAS  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Perez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G, Witters E, Inze D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    PubMed  CAS  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramırez I, Pena Cortes H, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41(2):149–158

    CAS  Google Scholar 

  • Pena-Cortes H, Barrios P, Dorta F, Sanchez C, Polanco V, Sanchez E, Ramirez I (2005) Involvement of jasmonic acid and derivatives in plant responses to pathogens and insects in fruit ripening. Plant Growth Regul 23:246–260

    Google Scholar 

  • Peng J (2009) GA and JA crosstalk during stamen development. J Integr Plant Biol 51(12):1064–1070

    PubMed  CAS  Google Scholar 

  • Penninckx IAMA, Eggermont K, Terras FRG, Thomma BPHJ, De Samblanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    PubMed  CAS  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    PubMed  CAS  Google Scholar 

  • Pickart CM (2004) Back to the future with ubiquitin. Cell 116:181–190

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Schaller A, Mauch-Mani B, Conrath U (2006) Signaling in plant resistance responses: divergence and cross-talk of defense pathways. In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 166–196

    Google Scholar 

  • Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR (2000) Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12:1633–1646

    PubMed  CAS  Google Scholar 

  • Rayapuram C, Baldwin IT (2007) Increased SA in NPR1-silenced plants antagonizes jasmonate and jasmonate-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. Plant J 52:700–715

    PubMed  CAS  Google Scholar 

  • Rodriguez-Saona C, Crafts-Brandner SJ, Pare PW, Henneberry TJ (2001) Exogenous methyl jasmonate induces volatile emissions in cotton plants. J Chem Ecol 27:679–695

    PubMed  CAS  Google Scholar 

  • Sanchez-Hernandez C, Lopez MG, Delano-Frier JP (2006) Reduced levels of volatile emissions in jasmonate deficient spr2 tomato mutants favour oviposition by insect herbivores. Plant Cell Environ 29:546–557

    PubMed  CAS  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signaling. Nature 459:1071–1078

    PubMed  CAS  Google Scholar 

  • Schmelz EA, Grebenok RJ, Ohnmeiss TE, Bowers WS (2002) Interactions between Spinacia oleracea and Bradysia impatiens: a role for phytoecdysteroids. Arch Insect Biochem Physiol 51:204–221

    PubMed  CAS  Google Scholar 

  • Schwechheimer C, Serino G, Deng XW (2002) Multiple ubiquitin ligase-mediated processes require COP9 signalosome and AXR1 function. Plant Cell 14:2553–2563

    PubMed  CAS  Google Scholar 

  • Sheard LB, Tan X, Mao HB, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    PubMed  CAS  Google Scholar 

  • Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The JASMONATE-ZIMDOMAIN proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate- regulated stamen development in Arabidopsis. Plant Cell Online 23:1000–1013

    CAS  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA 104:18842–18847

    PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    PubMed  CAS  Google Scholar 

  • Staswick PE, Yuen GY, Lehman CC (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J 15:747–754

    PubMed  CAS  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630

    PubMed  CAS  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling. Nature 448:661–665

    PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Neilssen I, Eggermont K, Broekaert WF (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19:163–171

    PubMed  CAS  Google Scholar 

  • Tiryaki I, Staswick PE (2002) An Arabidopsis mutant defective in Jasmonate response is allelic to auxin signalling mutant axr1. Plant Physiol 130:887–894

    PubMed  CAS  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:153–164

    Google Scholar 

  • Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19:2140–2155

    PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    PubMed  CAS  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    PubMed  Google Scholar 

  • Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G (2007) The tify family previously known as ZIM. Trends Plant Sci 12:239–244

    PubMed  CAS  Google Scholar 

  • Vert G, Nemhauser JL, Geldner N, Hong F, Chory J (2005) Molecular mechanisms of steroid hormone signaling in plants. Annu Rev Cell Dev Biol 21:177–201

    PubMed  CAS  Google Scholar 

  • Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA 95:7209–7214

    PubMed  CAS  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2(11):e123

    PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annu Bot (Lond) 100:681–697

    CAS  Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and plant development. Prog Nucleic Acid Res Mol Biol 72:165–221

    PubMed  CAS  Google Scholar 

  • Xie D, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    PubMed  CAS  Google Scholar 

  • Xu Y, Chang PF, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan RA (1994) Plant defense genes are synergically induced by ethylene and methyl jasmonate. Plant Cell 6:1077–1085

    PubMed  CAS  Google Scholar 

  • Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    PubMed  CAS  Google Scholar 

  • Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–2236

    PubMed  CAS  Google Scholar 

  • Zhao J, Fujita K, Yamada J, Sakai K (2001) Improved β-thujaplicin production in Cupressus lusitanica suspension cultures by fungal elicitors and methyl jasmonate. Appl Microbiol Biotechnol 55:301–305

    PubMed  CAS  Google Scholar 

  • Zhao J, Zheng SH, Fujita K, Sakai K (2004) Jasmonate and ethylene signaling and their interaction are integral parts of the elicitor signaling pathway leading to β-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. J Exp Bot 55:1003–1012

    PubMed  CAS  Google Scholar 

  • Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, Jiang Z, Kim J, To T, Li W, Zhang X, Yu Q, Dong Z, Chen W, Seki M, Zhoub J, Guo H (2011) De-repression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA 108:12539–12544

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Ahmad Dar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Dar, T.A., Moinuddin, Hashmi, N., Idrees, M., Ali, A. (2014). Recent Trends in Jasmonate Signaling Pathway. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_15

Download citation

Publish with us

Policies and ethics