Skip to main content

Molecular Builders of Cell Walls of Lignocellulosic Feedstock: A Source for Biofuels

  • Chapter
  • First Online:
Plant signaling: Understanding the molecular crosstalk
  • 2436 Accesses

Abstract

Biofuels are an alternative source of renewable and sustainable energy which can be obtained from lignocellulosic feedstock (crop or non-crop energy plants), algae, or as a by-product from the industrial processing of agricultural/food products, or from the recovery and reprocessing of products such as cooking and vegetable oil. Such biofuels are generally in the form of either bioethanol or biodiesel or biobutanol. It is necessary that improvements be made at every stage during the processing of biofuel starting from enhancing the ability of the plant to maximally utilize the solar energy to fix the CO2 into biomass and generate greater amounts of cellulosic material. The next step in the process would be to separate the cellulose from the lignin in a cost-effective way. And finally extract ethanol from this cellulose using various methodologies such as fermentation and/or cellulose pyrolysis. Engineering the steps involved in releasing the cellulose from the other cell wall components especially lignin would reduce the cost of generating biofuels from lignocellulosic materials. Hence, an in-depth understanding of the molecular components that are involved in either the regulation or biosynthesis of lignin and consequences/limitations of altering those pathways and redirecting the flux to alternate pathways are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrière Y, Riboulet C, Mèchin V, Maltese S, Pichon M, Cardinal A, Lapierre C, Lubberstedt T, Martinant JP (2007) Genetics and genomics of lignification in grass cell walls based on maize as model species. Genes Genome Genomics 1(2):133–156

    Google Scholar 

  • Chaddad FR (2010) UNICA: challenges to deliver sustainability in the Brazilian sugarcane industry. Int Food Agribus Manag Rev 13:173–192

    Google Scholar 

  • Dixon RA, Chen F, Guo D, Parvathi K (2001) The biosynthesis of monolignols: a “metabolic grid”, or independent pathways to guaiacyl and syringyl units? Phytochemistry 57:1069–1084

    Article  PubMed  CAS  Google Scholar 

  • Funnell DL, Pedersen JF (2006) Reaction of sorghum lines genetically modified for reduced lignin content to infection by Fusarium and Alternaria spp. Plant Dis 90:331–338

    Article  CAS  Google Scholar 

  • Funnell-Harris DL, Pedersen JF, Sattler SE (2010) Alteration in lignin biosynthesis restricts growth of Fusarium spp. In brown midrib sorghum. Phytopathology 100:671–681

    Article  PubMed  CAS  Google Scholar 

  • Gallego-Giraldo L, Escamilla-Trevino L, Jackson LA, Dixon RA (2011a) Salicylic acid mediates the reduced growth of lignin down-regulated plants. Proc Natl Acad Sci U S A 108:20814–20819

    Article  PubMed  CAS  Google Scholar 

  • Gallego-Giraldo L, Jikumaru Y, Kamiya Y, Tang YH, Dixon RA (2011b) Selective lignin down regulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytol 190:627–639

    Article  PubMed  CAS  Google Scholar 

  • Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. Comptes Rendus de Biologie 327:455–465

    Article  CAS  Google Scholar 

  • Grabber JH, Hatfield RD, Lu F, Ralph J (2008) Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Biomacromolecules 9:2510–2516

    Article  PubMed  CAS  Google Scholar 

  • Harrington MJ, Marek M, Barrière Y, Sibout R (2012) Molecular biology of lignification in grasses. Adv Bot Res 61:77–112

    Article  CAS  Google Scholar 

  • Huang J, Bhinu VS, Li X, Bashi ZD, Zhou R, Hannoufa A (2009) Pleiotropic changes in Arabidopsis f5h and sct mutants revealed by large-scale gene expression and metabolite analysis. Planta 23:1057–1069

    Article  Google Scholar 

  • Huang JL, Gu M, Lai ZB, Fan BF, Shi K, Zhou YH et al (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  PubMed  CAS  Google Scholar 

  • Quentin M, Allasia V, Pegard A, Allais F, Ducrot PH, Favery B et al (2009) Imbalanced lignin biosynthesis promotes the sexual reproduction of homothallic oomycete pathogens. PLoS Pathog 5:e1000264

    Article  PubMed  Google Scholar 

  • Sattler SE, Funnell-Harris DL (2013) Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens? Front Plant Sci Rev 4:70

    Google Scholar 

  • Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 137:949–960

    Article  PubMed  CAS  Google Scholar 

  • Wang HZ, Dixon RA (2012) On–off switches for secondary cell wall biosynthesis. Mol Plant 5(2):297–303

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Avci U, Nakashima J, Hahn MG, Chen F, Dixon RA (2010) Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci U S A 107:22338–22343

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Zhang D, Hu J, Zhou X, Ye X, Reichel KL, Stewart NR, Syrenne RD, Yang X, Gao P, Shi W, Doeppke C et al (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics 10(Suppl 11):S3

    Article  PubMed  Google Scholar 

  • Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim JS, Sun L, Zheng K, Tang K, Auer M, Scheller HV, Loqué D (2013) Engineering secondary cell wall deposition in plants. Plant Biotechnol J 11(3):325–335

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16:227–233

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Wang H, Yin Y, Xu Y, Chen F, Dixon RA (2010) Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proc Natl Acad Sci U S A 107:14496–14501

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Ye ZH (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeru Gandotra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Gandotra, N. (2014). Molecular Builders of Cell Walls of Lignocellulosic Feedstock: A Source for Biofuels. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_14

Download citation

Publish with us

Policies and ethics