Skip to main content

Heat Signaling and Stress Responses in Photosynthesis

  • Chapter
  • First Online:
Book cover Plant signaling: Understanding the molecular crosstalk

Abstract

High temperature represents one of the most serious abiotic stress factors limiting plant photosynthesis, biomass production, and crop productivity. Photosynthetic apparatus is an important heat sensor in plants, sensing a wide range of air temperatures, from moderate to extreme. In this chapter we offer current knowledge on both photochemical and metabolic changes occurring within the photosynthetic apparatus in conditions of heat stress associated with signaling and stress response. The heat stress directly affects the heat-sensitive sites, mainly oxygen-evolving complex of photosystem II and Rubisco activase. It leads to subsequent indirect effects, such as changes of the redox status of individual components on thylakoid membrane in chloroplast and increase in production of reactive oxygen species (ROS). Hence, the redox signaling plays the crucial role in enhancement of alternative electron pathways such as cyclic electron flow as well as triggering the signal transduction pathways resulting to heat-stress response. The redox signaling in chloroplast is closely associated with ROS signaling, which interferes with regulation also out of chloroplast. The stress response involves mainly production of specific proteins (mostly heat shock proteins or antioxidants) or protective compounds (osmoprotectants) leading to increase of thermostability of sensitive sites or protection against ROS. Different signal molecules contribute in photosynthesis-related heat-stress signaling pathways, such as reactive oxygen species with hydrogen peroxide, nitric oxide, calcium, and abscisic acid. The specific roles of cytokinins and isoprene in heat-stress response are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiol 129:269–277

    PubMed  CAS  Google Scholar 

  • Affek HP, Yakir D (2003) Natural abundance carbon isotope composition of isoprene reflects incomplete coupling between isoprene synthesis and photosynthetic carbon flow. Plant Physiol 131:1727–1736

    PubMed  CAS  Google Scholar 

  • Anderson LS, Mansfield TA (1979) The effects of nitric oxide pollution on the growth of tomato. Environ Pollut 20:113–121

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  CAS  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    CAS  Google Scholar 

  • Astier J, Besson-Bard A, Wawer I, Parent C, Rasul S, Jeandroz S, Dat J, Wendehenne D (2010) Nitric oxide signalling in plants: cross-talk with Ca2+ protein kinases and reactive oxygen species. In: Foyer CH, Zhang H (eds) Annual plant reviews, vol 42, Nitrogen metabolism in plants in the post-genomic era. Wiley-Blackwell, Oxford, pp 147–170

    Google Scholar 

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol 152:1471–1483

    PubMed  CAS  Google Scholar 

  • Baron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188:48–59

    PubMed  Google Scholar 

  • Behnke K, Ehlting B, Teuber M, Bauerfeind M, Louis S, Hasch R, Polle A, Bohlmann J, Schnitzler JP (2007) Transgenic, non isoprene emitting poplars don’t like it hot. Plant J 51:485–499

    PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    PubMed  CAS  Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    PubMed  CAS  Google Scholar 

  • Brestic M, Zivcak M (2013) PSII fluorescence techniques for measurement of drought and high temperature stress signal in plants: protocols and applications. In: Rout GR, Das AB (eds) Molecular stress physiology of plants. Springer, Dordrecht, pp 87–131

    Google Scholar 

  • Brestic M, Shao HB, Ferus P, Malbeck J (2011) Peroxidases play important roles in abscisic acid (ABA)-simulating photosystem II (PSII) thermostability of apple tree rootstock leaves. Afr J Biotechnol 10:15891–15900

    CAS  Google Scholar 

  • Brestic M, Zivcak M, Kalaji HM, Allakhverdiev SI, Carpentier R (2012) Photosystem II thermo-stability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105

    PubMed  CAS  Google Scholar 

  • Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254

    PubMed  CAS  Google Scholar 

  • Browse J, Xin Z (2001) Temperature sensing and cold acclimation. Curr Opin Plant Biol 4:241–246

    PubMed  CAS  Google Scholar 

  • Brüggemann N, Schnitzler JP (2002) Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic performance in water-limited oak (Quercus pubescens Willd. and Quercus robur L.) saplings. Plant Biol 4:456–463

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59:81–93

    CAS  Google Scholar 

  • Calfapietra C, Wiberley AE, Falbel TG, Linskey AR, Mugnozza GS, Karnosky DF et al (2007) Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees. Plant Cell Environ 30:654–661

    PubMed  CAS  Google Scholar 

  • Chernyaďev II (2009) The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). Appl Biochem Microbiol 45:351–362

    Google Scholar 

  • Coleman JS, McConnaughay K (1994) Phenotypic plasticity. Trends Ecol Evol 9:187–191

    PubMed  CAS  Google Scholar 

  • Copolovici LO, Filella I, Llusia J, Niinemets U, Penuelas J (2005) The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol 139:485–496

    PubMed  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    PubMed  CAS  Google Scholar 

  • Datko M, Zivcak M, Brestic M (2008) Proteomic analysis of barley (Hordeum vulgare L.) leaves as affected by high temperature treatment. In: Allen JF, Gantt E, Goldbeck JH, Os-mond B (eds) Photosynthesis. Energy from the sun: 14th international congress on photosynthesis. Springer, Dordrecht, pp 1523–1527

    Google Scholar 

  • Delfine S, Csiky O, Seufert G, Loreto F (2000) Fumigation with exogenous monoterpenes of a non-isoprenoid-emitting oak (Quercus suber): monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures. New Phytol 146:27–36

    CAS  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci U S A 99:16314–16318

    PubMed  CAS  Google Scholar 

  • Ding W, Song L, Wang X, Bi Y (2010) Effect of abscisic acid on heat stress tolerance in the calli from two ecotypes of Phragmites communis. Biol Plant 54:607–613

    CAS  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Al-Khatib K (2011) Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Environ Exp Bot 71:215–223

    CAS  Google Scholar 

  • Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, Gaudinova A, Havlova M, Gubis J, Vankova R (2010) Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol 167:1360–1370

    PubMed  CAS  Google Scholar 

  • Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374

    PubMed  CAS  Google Scholar 

  • Falk S, Maxwell DP, Laudenbach DE, Huner NPA (2004) Photosynthetic adjustment to temperature. In: Baker NR (ed) Photosynthesis and environment, advances in photosynthesis, vol 5. Kluwer Academic Publishers, Dordrecht, pp 367–385

    Google Scholar 

  • Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116:539–546

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    PubMed  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    PubMed  CAS  Google Scholar 

  • Gao Y, Guo YK, Lin SH, Fang YY, Bai JG (2010) Hydrogen peroxide pretreatment alters the activity of antioxidant enzymes and protects chloroplast ultrastructure in heat-stressed cucumber leaves. Sci Hortic 126:20–26

    CAS  Google Scholar 

  • Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    PubMed  CAS  Google Scholar 

  • García-Mata C, Lamattina L (2013) Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. Plant Sci 201–202:66–73

    PubMed  Google Scholar 

  • Georgieva K (1999) Some mechanisms of damage and acclimation of the photosynthetic apparatus due to high temperature. Bulg J Plant Physiol 25:89–99

    CAS  Google Scholar 

  • Godde D, Bornman JF (2004) Regulation of photosynthesis in higher plants. In: Archer MD, Barber J (eds) Molecular to global photosynthesis. Imperial College Press, River Edge, pp 221–286

    Google Scholar 

  • Gong M, Li YJ, Chen SZ (1998) Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J Plant Physiol 153:488–496

    CAS  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response. Plant Cell Environ 26:1851–1862

    CAS  Google Scholar 

  • Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755

    PubMed  CAS  Google Scholar 

  • Hancock JT, Neill SJ, Wilson ID (2011) Nitric oxide and ABA in the control of plant function. Plant Sci 181:555–559

    PubMed  CAS  Google Scholar 

  • Havaux M, Tardy F (1996) Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments. Planta 198:324–333

    CAS  Google Scholar 

  • Hu WH, Xiao YA, Zeng JJ, Hu XH (2010) Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. Biol Plant 54:761–765

    CAS  Google Scholar 

  • Hufton CA, Besford RT, Wellburn AR (1996) Effects of NO (+NO2) pollution on growth, nitrate reductase activities and associated protein contents in glasshouse lettuce grown hydroponically in winter CO2 enrichment. New Phytol 133:495–501

    CAS  Google Scholar 

  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin 46:1–10

    CAS  Google Scholar 

  • Hüve K, Bichele I, Rasulov B, Niinemets U (2011) When it is too hot for photosynthesis: heat‐induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ 34:113–126

    PubMed  Google Scholar 

  • Ishibashi Y, Yamaguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng SH (2011) Hydrogen peroxide spraying alleviates drought stress in soybean plants. J Plant Physiol 168:1562–1567

    PubMed  CAS  Google Scholar 

  • Ivanov AG, Kitcheva MI, Christov AM, Popova LP (1992) Effects of abscisic acid treatment on the thermostability of the photosynthetic apparatus in barley chloroplasts. Plant Physiol 98:1228–1232

    PubMed  CAS  Google Scholar 

  • Jan N, Hussain M, Andrabi KI (2009) Cold resistance in plants: a mystery unresolved. Electr J Biotechnol 12:1–15

    Google Scholar 

  • Jiang Y, Huang B (2001) Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J Exp Bot 52:341–349

    PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    PubMed  CAS  Google Scholar 

  • Kleinhenz MD, Palta JP (2002) Root zone calcium modulates the response of potato plants to heat stress. Physiol Plant 115:111–118

    PubMed  CAS  Google Scholar 

  • Konigshofer H, Tromballa HW, Loppert HG (2008) Early events in signalling high-temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production. Plant Cell Environ 31:1771–1780

    PubMed  CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    PubMed  CAS  Google Scholar 

  • Kreslavski VD, Los DA, Allakhverdiev SI, Kuznetsov VV (2012) Signaling role of reactive oxygen species in plants under stress. Russ J Plant Physiol 59:141–154

    CAS  Google Scholar 

  • Kumar S, Kaushal N, Nayyar H, Gaur P (2012) Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiol Plant 34:1651–1658

    CAS  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    PubMed  CAS  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    PubMed  CAS  Google Scholar 

  • Larkindale J, Mishkind M, Vierling E (2005) Plant responses to high temperature. In: Plant abiotic stress. Blackwell Publishing, Oxford, pp 100–144

    Google Scholar 

  • Laxalt AM, Beligni MV, Lamattina L (1997) Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. Euro J Plant Pathol 103:643–651

    CAS  Google Scholar 

  • Leshem Y (2001) Nitric oxide in plants. Kluwer Academic Publishers, London

    Google Scholar 

  • Leshem YY, Haramaty E (1996) The characterisation and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. J Plant Physiol 148:258–263

    CAS  Google Scholar 

  • Leshem YY, Haramaty E, Iluz D, Malik Z, Sofer Y, Roitman L, Leshem Y (1997) Effect of stress nitric oxide (NO): interaction between chlorophyll fluorescence, galactolipid fluidity and lipoxygenase activity. Plant Physiol Biochem 35:573–579

    CAS  Google Scholar 

  • Li ZG, Yang SZ, Long WB, Yang GX, Shen ZZ (2013) Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ. doi:10.1111/pce.12092 (in press)

    Google Scholar 

  • Liu ZJ, Guo YK, Bai JG (2010) Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress. J Plant Growth Regul 29:171–183

    Google Scholar 

  • Ma FF, Lu R, Liu HY, Shi B, Zhang JH, Tan MP, Zhang AY, Jiang MY (2012) Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot 63:4835–4847

    PubMed  CAS  Google Scholar 

  • Maruta T, Noshi M, Tanouchi M, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2012) H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. J Biol Chem 287:11717–11729

    PubMed  CAS  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress: a synergistic signaling approach. J Stress Physiol Biochem 7:34–74

    Google Scholar 

  • Meinhard M, Rodriguez PL, Grill E (2002) The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta 214:775–782

    PubMed  CAS  Google Scholar 

  • Misra AN, Misra M, Singh R (2011) Nitric oxide: a ubiquitous signaling molecule with diverse role in plants. Afr J Plant Sci 5:57–74

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    PubMed  CAS  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118

    PubMed  CAS  Google Scholar 

  • Monson RK, Jones RT, Rosenstiel TN, Schnitzler JP (2013) Why only some plants emit isoprene. Plant Cell Environ 36:503–516

    PubMed  CAS  Google Scholar 

  • Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quileré I, Leydecker MT, Kaiser WM, Morot-Gaudry JF (2002) Nitrite accumulation and nitric oxide emission in relation to cellular signalling in nitrite reductase antisense plants. Planta 215:708–715

    PubMed  CAS  Google Scholar 

  • Mubarakshina MM, Ivanov BN, Naidov IA, Hillier W, Badger MR, Krieger-Liszkay A (2010) Production and diffusion of chloroplastic H2O2 and its implication to signalling. J Exp Bot 61:3577–3587

    PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19

    PubMed  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002a) Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells. Plant Physiol 128:13–16

    PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002b) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1242

    PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279

    CAS  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    PubMed  CAS  Google Scholar 

  • Pareek A, Singla SL, Grover A (1998) Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar. Curr Sci 75:1023–1035

    CAS  Google Scholar 

  • Park SK, Jung YJ, Lee JR, Lee YM, Jang HH, Lee SS, Park JH, Kim SY, Moon JC, Lee SY et al (2009) Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol 150:552–561

    PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Bräutigam K, Wagner R, Dietzel L, Schröter Y, Steiner S, Nykytenko A (2009) Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot 103:599–607

    PubMed  CAS  Google Scholar 

  • Piterkova J, Luhová L, Mieslerová B, Lebeda A, Petřivalský M (2013) Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. Plant Sci 207:57–65

    PubMed  CAS  Google Scholar 

  • Polanska L, Vicankova A, Novakova M, Malbeck J, Dobrev PI, Brzobohaty B, Vankova R, Machackova I (2007) Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. J Exp Bot 58:637–649

    PubMed  CAS  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    PubMed  CAS  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    PubMed  CAS  Google Scholar 

  • Ristic Z, Cass DD (1992) Chloroplast structure after water and high-temperature stress in two lines of maize that differ in endogenous levels of abscisic acid. Int J Plant Sci 153:186–196

    CAS  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    PubMed  CAS  Google Scholar 

  • Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843

    PubMed  CAS  Google Scholar 

  • Saidi Y, Peter M, Finka A, Cicekli C, Vigh L, Goloubinoff P (2010) Membrane lipid composition affects plant heat sensing and modulates Ca2+-dependent heat shock response. Plant Signal Behav 5:1530–1533

    PubMed  CAS  Google Scholar 

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556–565

    PubMed  CAS  Google Scholar 

  • Samach A, Wigge P (2005) Ambient temperature perception in plants. Curr Opin Plant Biol 8:483–486

    PubMed  Google Scholar 

  • Sangwan V, Dhindsa RS (2002) In vivo and in vitro activation of temperature-responsive plant map kinases. FEBS Lett 531:561–564

    PubMed  CAS  Google Scholar 

  • Sasaki K, Ohara K, Yazaki K (2005) Gene expression and characterization of isoprene synthase from Populus alba. FEBS Lett 579:2514–2518

    PubMed  CAS  Google Scholar 

  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735

    CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333

    Google Scholar 

  • Sharkey TD, Zhang R (2010) High temperature effects on electron and proton circuits of photosynthesis. J Integr Plant Biol 52:712–722

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Chen XY, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125:2001–2006

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez DE (2005) Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol 137:700–712

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18

    PubMed  CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    CAS  Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    PubMed  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455

    PubMed  CAS  Google Scholar 

  • Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol 115:1413–1420

    PubMed  CAS  Google Scholar 

  • Siwko ME, Marrink SJ, de Vries AH, Kozubek A, Schoot Uiterkamp AJM, Mark AE (2007) Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Biochim Biophys Acta-Biomembr 1768:198–206

    CAS  Google Scholar 

  • Song LL, Ding W, Zhao MG, Sun BT, Zhang LX (2006) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 171:449–458

    CAS  Google Scholar 

  • Song LL, Ding W, Shen J, Zhang ZG, Bi YR, Zhang LX (2008) Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. Plant Sci 175:826–832

    CAS  Google Scholar 

  • Špundová M, Popelková H, Ilík P, Skotnica J, Novotný R, Nauš J (2003) Ultra-structural and functional changes in the chloroplasts of detached barley leaves senescing under dark and light conditions. J Plant Physiol 160:1051–1058

    PubMed  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor & Francis, London

    Google Scholar 

  • Sugio A, Dreos R, Aparicio F, Maule AJ (2009) The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell 21:642–654

    PubMed  CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    PubMed  CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plant 126:45–51

    CAS  Google Scholar 

  • Takahashi S, Yamasaki H (2002) Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. FEBS Lett 512:145–148

    PubMed  CAS  Google Scholar 

  • Tan W, Brestic M, Olsovska K, Yang X (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071

    PubMed  CAS  Google Scholar 

  • Tingey DT, Evans R, Gumpertz M (1981) Effects of environmental conditions on isoprene emission from live oak. Planta 152:565–570

    CAS  Google Scholar 

  • Tun NN, Holk A, Scherer GFE (2001) Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Lett 509:174–176

    PubMed  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–5234

    CAS  Google Scholar 

  • Velikova V, Loreto F (2005) On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell Environ 28:318–327

    CAS  Google Scholar 

  • Velikova V, Edreva A, Loreto F (2004) Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. Physiol Plant 122:219–225

    CAS  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    PubMed  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    CAS  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    PubMed  CAS  Google Scholar 

  • Vranova E, Inze D, van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    PubMed  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Li SH (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34

    PubMed  Google Scholar 

  • Waters ER, Lee GJ, Wierling E (1996) Evolution, structure and function of the small heat-shock proteins in plants. J Exp Bot 47:325–338

    CAS  Google Scholar 

  • Wei T, QingLiang L, Yin L, Wei W, XingHong Y (2009) Alleviative effects of exogenous CaCl2 on the inhibition of photosynthesis induced by heat stress in tobacco. Sci Agric Sinica 42:3871–3879

    Google Scholar 

  • Wildt J, Kley D, Rockel A, Rockel P, Segschneider HJ (1997) Emission of NO from several higher plant species. J Geophys Res 102:5919–5927

    CAS  Google Scholar 

  • Wise RR, Naylor AW (1987) Chilling-enhanced photooxidation evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol 83:278–282

    PubMed  CAS  Google Scholar 

  • Xing J, Xu Y, Tian J, Gianfagna T, Huang B (2009) Suppression of shade- or heat-induced leaf senescence in creeping bentgrass through transformation with the ipt gene for cytokinin synthesis. J Am Soc Hortic Sci 134:602–609

    Google Scholar 

  • Xu Y, Tian J, Gianfagna T, Huang B (2009) Effects of SAG12-ipt expression on cytokinin production, growth and senescence of creeping bentgrass (Agrostis stolonifera L.) under heat stress. Plant Growth Regul 57:281–291

    CAS  Google Scholar 

  • Xu Y, Gianfagna T, Huang B (2010) Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. J Exp Bot 61:3273–3289

    PubMed  CAS  Google Scholar 

  • Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L (2010) Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol 153:1895–1906

    PubMed  CAS  Google Scholar 

  • Yabuta Y, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2004) Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. Plant Cell Physiol 45:1586–1594

    PubMed  CAS  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37804

    PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058

    PubMed  CAS  Google Scholar 

  • Yeh CH, Kaplinsky NJ, Hu C, Charng YY (2012) Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci 195:10–23

    PubMed  CAS  Google Scholar 

  • Yordanov I, Dilova S, Petkova R, Pangelova T, Goltsev V, Suss KH (1986) Mechanisms of the temperature damage and acclimation of the photosynthetic apparatus. Photobiochem Photobiol 12:147–155

    Google Scholar 

  • Zhao HJ, Tan JF (2005) Role of calcium ion in protection against heat and high irradiance stress-induced oxidative damage to photosynthesis of wheat leaves. Photosynthetica 43:473–476

    CAS  Google Scholar 

Download references

Acknowledgement

This is supported by project “AgroBioTech” of the Operational Programme Research and Development, Structural Funds of EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Brestic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Brestic, M., Zivcak, M., Olsovska, K., Kalaji, H.M., Shao, H., Hakeem, K.R. (2014). Heat Signaling and Stress Responses in Photosynthesis. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_12

Download citation

Publish with us

Policies and ethics