Skip to main content

Signaling in Response to Cold Stress

  • Chapter
  • First Online:
Plant signaling: Understanding the molecular crosstalk

Abstract

World population is growing at a fast pace and is projected to reach 6.5 billion by 2050. At the same time, numbers of changes that are occurring in regular environmental parameters are posing threats to the agricultural productivity. Thus, feeding 6.5 mouths would indeed be a huge challenge. Besides the ever-growing human population and alterations in environmental scenarios, reduction in the area of land used for agriculture, declination of crop productivity, overexploitation of bioresources, mal-agricultural practices, and deleterious abiotic environmental stresses are leading to ecological imbalance. To reduce these losses scientists all over the world focus on novel strategies to enhance crop production in order to meet the increasing food demand and establish a balance among different ecological factors. The various abiotic stress conditions such as cold, temperature, drought and salinity cause noxious effects on plant growth and development ultimately affecting the crop productivity. Among various abiotic stresses, cold stress is one of the main environmental stresses that limits the crop productivity and geographical distribution of most valuable crop plants. However, plants show remarkable developmental plasticity to survive in a continually changing environment. Being sessile, plants have generated in the course of their development proficient strategies of tremendous response to elude, tolerate, or adapt to various types of environmental stress conditions including cold. The acclimatization to various abiotic stress factors is largely dependent upon the activation of cascades of molecular channels involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Understanding the pathway mechanisms by which plants recognize these stress signals and then transduce them to cellular machinery in order to stimulate adaptive responses is of crucial importance to crop biology. Here we summarize cold stress tolerance mechanism pathways in plants. The main significant points discussed in this chapter include (a) adverse effects of cold stress on plant physiochemical parameters, (b) sensing of cold temperature and involvement of various signal transduction pathways, (c) function of various compatible solutes or osmoprotectants, and (d) types and functions of different cold-responsive genes and transcription factors (TFs) involved in various cold stress tolerance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ABREs:

ABA-responsive elements

ADC:

Arginine decarboxylase

AFPs:

Antifreeze proteins

BADH:

Betaine aldehyde dehydrogenase

bHLC:

Basic helix-loop-helix

BL:

Brassinolide

BRs:

Brassinosteroids

bZIP:

Basic leucine zipper

CaM:

Calmodulin

CaMK:

CaM-dependent protein kinases

CAMTA:

Calmodulin-binding transcription activator

Cas :

Cold acclimation-specific genes

CBF:

C-repeat-binding factors

CBLs:

Calcineurin B-like proteins

CDPKs:

Calcium-dependent protein kinases

CIPKs:

CBL-interacting protein kinases

CMO:

Choline monooxygenase

CO:

Choline oxidase

COR:

Cold responsive

CRT:

C-repeats

CS:

Castasterone

DACC:

Depolarization-activated Ca2+ channels

DAG:

Diacylglycerol

DHN:

Dehydrin

DNA:

Deoxyribonucleic acid

DRE:

Dehydration-responsive elements

DREB:

Dehydration-responsive element binding

EBR:

24-Epibrassinolide

ERD:

Early responsive to dehydration

EREBP:

Ethylene-responsive element-binding proteins

GA:

Gibberellin

GB:

Glycine betaine

GSA:

Glutamate semialdehyde

HACC:

Hyperpolarization-activated Ca2+ channels

HSPs:

Heat shock proteins

ICE1:

Inducer of CBF expression

KIN:

Cold induced

LEA:

Late embryogenesis abundant

LOV1:

LONG VEGETATIVE PHASE 1

LTI:

Low-temperature induced

LTST:

Low-temperature-induced signal transduction

MAPKs:

Mitogen-activated protein kinases

NAD:

Nicotinamide adenine dinucleotide

OAT:

Orn-d-aminotransferase

OsCDPK13 :

Oryza sativa CDPK13

OsSPDS2 :

Spermidine synthase gene

P5CA:

δ-1-Pyrroline-5-carboxylate synthetase

P5CDH:

P5C dehydrogenase

P5CR:

P5C reductase

PA:

Polyamines

PIP2:

Phosphatidylinositol 4, 5-bisphosphate

PLC:

Phospholipase-C

PLD:

Phospholipase-D

PR:

Pathogenesis related

ProDH:

Proline dehydrogenase

RAB:

Responsive to abscisic acid

RACE:

Randomly amplified cDNA ends

RNA:

Ribonucleic acid

ROIs:

Reactive oxygen intermediates

ROS:

Reactive oxygen species

SAM:

S-adenosyl-1-methionine

SMDS:

Spermidine synthase

SPMS:

Spermine synthase

TFs:

Transcription factors

THPs:

Thermal hysteresis proteins

TPP:

Trehalose-6-phosphate phosphatase

TPS:

Trehalose phosphate synthase

W7:

N-(6-Amonihexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride

References

  • Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S (2004) OsCDPK 13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol Biol 55:541–552

    PubMed  CAS  Google Scholar 

  • Abdin MZ, Rehman RU, Israr M, Srivastava PS, Bansal KC (2002) Abiotic stress related genes and their role in conferring resistance in plants. Indian J Biotechnol 1:225–244

    CAS  Google Scholar 

  • Abdin MZ, Rehman RU, Israr M, Srivastava PS, Bansal KC (2004) Development of transgenic chicory (Cichorium intybus L). In: Mujeeb A (ed) In vitro application in crop improvement: recent progress. IBH/Oxford, New Delhi

    Google Scholar 

  • Ahuja I, de Vos RCH, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15(12):664–674

    PubMed  CAS  Google Scholar 

  • Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI, Singh NK (2012) DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 91:385–395

    PubMed  CAS  Google Scholar 

  • Akhtar M, Jaiswal A, Jaiswal JP, Qureshi MI, Tufchi M, Singh NK (2013) Cloning and characterization of cold, salt and drought inducible C-repeat binding factor gene from a highly cold adapted ecotype of Lepidium latifolium L. Physiol Mol Biol Plants 19:221–230. doi:10.1007/s12298-012-0154-2

    CAS  Google Scholar 

  • Alam I, Sharmin SA, Kim KH, Yang JK, Choi MS, Lee BH (2010) Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil 333:491–505

    CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M et al (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    PubMed  Google Scholar 

  • Alet AI, Sanchez DH, Cuevas JC et al (2011) Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal Behav 6:278–286

    PubMed  CAS  Google Scholar 

  • Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry (Moscow) 68:945–951

    CAS  Google Scholar 

  • Antikainen M, Griffth M, Zhang J, Hon WC, Yang D, Pihakaski-Maunsbach K (1996) Immunolocalization of antifreeze proteins in winter rye leaves, crowns, and roots by tissue printing. Plant Physiol 110:845–857

    PubMed  CAS  Google Scholar 

  • Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M (2008) Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant Cell Physiol 49:1237–1249

    PubMed  CAS  Google Scholar 

  • Bansal KC, Goel D, Singh AK, Yadav V, Babbar SB, Murata N (2011) Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol 168:1286–1294

    PubMed  Google Scholar 

  • Bashir H, Ahmad J, Bagheri R, Nauman M, Qureshi MI (2012) Limited sulfur resource forces Arabidopsisthaliana to shift towards non-sulfur tolerance under cadmium stress. Environ Exp Bot. doi:10.1016/j.envexpbot.2012.05.004

  • Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    PubMed  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1979) Osmoregulation in the halophilic algae Dunaliella and Asteromonas. Basic Life Sci 14:91–99

    PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Kiran K, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    PubMed  CAS  Google Scholar 

  • Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124

    PubMed  CAS  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    PubMed  CAS  Google Scholar 

  • Bravo LA, Gallardo J, Navarrete A, Olave N, Martínez J, Alberdi M, Close TJ, Corcuera LJ (2003) Cryoprotective activity of a cold induced dehydrin purified from barley. Physiol Plant 118:262–269

    CAS  Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and association with phenotypic traits. New Phytol 137:61–74

    CAS  Google Scholar 

  • Carpaneto A, Ivashikina N, Levchenko V, Krol E, Jeworutzki E, Zhu JK, Hedrich R (2007) Cold transiently activates calcium permeable channels in Arabidopsis mesophyll cells. Plant Physiol 143:487–494

    PubMed  CAS  Google Scholar 

  • Chapman KD (1998) Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci 3(11):419–426

    Google Scholar 

  • Chen TH, Murata N (2008) Glycine betaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    PubMed  CAS  Google Scholar 

  • Chen TH, Murata N (2011) Glycine betaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    PubMed  Google Scholar 

  • Chen M, Xu Z, Xia L, Li L, Cheng X, Dong J, Wang Q, Ma Y (2009) Cold-induced modulation and functional analyses of the DRE binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). J Exp Bot 60:121–135

    PubMed  CAS  Google Scholar 

  • Chen JR, Lu JJ, Liu R, Xiong XY, Wang TX, Chen SY et al (2010) DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.). Plant Growth Regul 60:199–211

    CAS  Google Scholar 

  • Chen N, Xu Y, Wang X, Du C, Du J et al (2011) OSRAN2, essential for mitosis, enhances cold tolerance in rice by promoting export of intra-nuclear tubulin and maintaining cell division under cold stress. Plant Cell Environ 34:52–64

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    PubMed  CAS  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C et al (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    PubMed  CAS  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T et al (2007) Overexpression of an R1R2R3 Myb gene, OSMYB3R–2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    PubMed  CAS  Google Scholar 

  • De Palma M, Grillo S, Massarelli I, Costa A, Balogh G, Vigh L, Leone A (2008) Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants. Mol Breed 21:15–26

    Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signaling. Biochem J 425:27–40

    CAS  Google Scholar 

  • DeVries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155

    PubMed  CAS  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold regulated gene expression and freezing tolerance. Plant Cell 21:972–984

    PubMed  CAS  Google Scholar 

  • Efeoglu B (2009) Heat shock proteins and heat shock response in plants. Gazi Univ J Sci 22:67–75

    Google Scholar 

  • Eriksson SK, Kutzer M, Procek J, Grobner G, Harryson P (2011) Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein. Plant Cell 23:2391–2404

    PubMed  CAS  Google Scholar 

  • Fernandez O, Bethencourt L, Quero A, Sangwan RS, Clement C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    PubMed  CAS  Google Scholar 

  • Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clément C, Fontaine F, Ait Barka E (2012) Burkholderia phytofirmans strain PsJN acclimates grapevine to cold by modulating carbohydrates metabolism. Mol Plant Microbe Interact 25:496–504

    PubMed  CAS  Google Scholar 

  • Fernando N, Joaquin M, Rodriguez-Franco M, Gunther N, Julio S (2012) Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress. J Exp Bot 63(1):293–304

    Google Scholar 

  • Finka A, Mattoo RU, Goloubinoff P (2011) Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperones 16(1):15–31. doi:10.1007/s12192-010-0216-8

    PubMed  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    PubMed  CAS  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    PubMed  CAS  Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS et al (2009) A cotton (Gossypium hirsutum) Dre-binding transcription factor gene, GHDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28:301–311

    PubMed  CAS  Google Scholar 

  • Gardiner J, Collings DA, Harper JDI, Marc J (2003) The effects of the phospholipase D- antagonist 1-butanol on seedling development and microtubule organization in Arabidopsis. Plant Cell Physiol 44:687–696

    PubMed  CAS  Google Scholar 

  • Ge L-F, Chao D-Y, Shi M, Zhu M-Z, Gao J-P et al (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OSTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    PubMed  CAS  Google Scholar 

  • Gilmour SJ et al (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    PubMed  CAS  Google Scholar 

  • Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators Cbf1, Cbf2, and Cbf3 have matching functional activities. Plant Mol Biol 54:767–781

    PubMed  CAS  Google Scholar 

  • Griffith M, Lumb C, Wiseman SB, Wisniewski M, Johnson RW, Marangoni AG (2005) Antifreeze proteins modify the freezing process in planta. Plant Physiol 138:330–340

    PubMed  CAS  Google Scholar 

  • Gutha LR, Reddy AR (2008) Rice DREB1B promoter shows distinct stress-specific responses, and the over-expression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol 68:533–555

    PubMed  CAS  Google Scholar 

  • Gutierrez M, Sola MD, Pascual L, Rodriguez-Garcia MI, Vargas AM (1992) Ultrastructural changes in cherimoya fruit injured by chilling. Food Struct 11(4):323–332

    Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF et al (2002) Transcription factor Cbf4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    PubMed  CAS  Google Scholar 

  • Hai-NA Z, Jun-Tao G, Wen-Jing L, Cun-Dong L, Kai X (2009) Improvement of low-tolerant capacities in transgenic tobacco plants from overexpression of wheat TASOD1.1. and TASOD1.2 genes. Sci Agric Sin 42:10–16

    Google Scholar 

  • Hakeem KR, Chandna R, Ahmad V, Ozturk M, Iqbal M (2012) Relevance of proteomic investigations in plant stress physiology. OMICS: J Integr Biol 16(11):621–635

    CAS  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Kudla J (2011) Calcium decoding mechanisms in plants. Biochimie 93(12):2054–2059

    PubMed  CAS  Google Scholar 

  • Hayashi H, Alia L, Mustardy P, Deshnium MI et al (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    PubMed  CAS  Google Scholar 

  • Hayat S, Ahmad A (eds) (2011) Brassinosteroids: a class of plant hormone. Springer, Dordrecht/Heidelberg/London/New York

    Google Scholar 

  • Hekneby M, Antolin NC, Sanchez-Diaz M (2006) Frost resistance and biochemical changes during cold acclimation in different annual legumes. Environ Exp Bot 55:305–314

    CAS  Google Scholar 

  • Hibino TY, Meng L, Kawamitsu Y, Uehara YN, Matsuda N, Tanaka Y, Ishikawa H, Baba S, Takabe T, Wada K, Ishii T, Takabe T (2001) Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Mol Biol 45:353–363

    PubMed  CAS  Google Scholar 

  • Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11:2113–2122

    PubMed  CAS  Google Scholar 

  • Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL (2000) Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210:329–335

    PubMed  CAS  Google Scholar 

  • Holmberg N et al (2001) Targeted expression of a synthetic codon optimized gene, encoding the spruce budworm antifreeze protein, leads to accumulation of antifreeze activity in the apoplasts of transgenic tobacco. Gene 275:115–124

    PubMed  CAS  Google Scholar 

  • Hong SW, Jon JH, Kwak M, Nam HG (1997) Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol 113:1203–1212

    PubMed  CAS  Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla KJ, Luan S, Nimmo HG, Sussman MR (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY et al (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    PubMed  CAS  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    PubMed  CAS  Google Scholar 

  • Imai R, Ali A, Pramanik HR, Nakaminami K, Sentoku N, Kato H (2004) A distinctive class of spermidine synthase is involved in chilling response in rice. J Plant Physiol 161:883–886

    PubMed  CAS  Google Scholar 

  • Janská P, Maršík ZS, Ovesná J (2010) Cold stress and acclimation – what is important for metabolic adjustment. Plant Biol 12:395–405

    PubMed  Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279

    PubMed  CAS  Google Scholar 

  • Jonytiene V, Burbulis N, Kupriene R, Blinstrubiene A (2012) Effect of exogenous proline and de-acclimation treatment on cold tolerance in Brassica napus shoots cultured in vitro. J Food Agric Environ 10(1):327–330

    CAS  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    PubMed  CAS  Google Scholar 

  • Kang HM, Saltveit ME (2001) Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Plant Physiol 113:548–556

    CAS  Google Scholar 

  • Kaplan F, Guy CL (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135:1674–1684

    PubMed  CAS  Google Scholar 

  • Kasuga M et al (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    PubMed  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stress and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    PubMed  CAS  Google Scholar 

  • Kaur G, Kumar S, Thakur P, Malik JA, Bhandhari K, Sharma KD, Nayyar H (2011) Involvement of proline in response of chickpea (Cicer arietinum L.) to chilling stress at reproductive stage. Sci Hortic 128:174–181

    CAS  Google Scholar 

  • Kawakami A, Sato Y, Yoshida M (2008) Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J Exp Bot 59:793–802

    PubMed  CAS  Google Scholar 

  • Kenward KD et al (1999) Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance. Transgenic Res 8:105–117

    PubMed  CAS  Google Scholar 

  • Khodakovskaya M, Mcavoy R, Peters J, Wu H, Li Y (2006) Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold inducible promoter. Planta 223:1090–1100

    PubMed  CAS  Google Scholar 

  • Kim TE, Kim SK, Han TJ, Lee JS, Chang SC (2002) ABA and polyamines act independently in primary leaves of cold‐stressed tomato (Lycopersicon esculentum). Physiol Plant 115:370–376

    PubMed  CAS  Google Scholar 

  • Kim MC, Chung WS, Yun DJ, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21

    PubMed  CAS  Google Scholar 

  • Kim TW, Michniewicz M, Bergmann DC, Wang ZY (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419–423

    PubMed  CAS  Google Scholar 

  • Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao K, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Klimecka M, Muszyńska G (2007) Structure and functions of plant calcium-dependent protein kinases. Acta Biochim Pol 54:219–233

    PubMed  CAS  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    PubMed  CAS  Google Scholar 

  • Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D (2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ 34:1291–1303

    PubMed  CAS  Google Scholar 

  • Konstantinova T, Parvanova D, Atanassov A, Djilianoiv D (2002) Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci 163:157–164

    CAS  Google Scholar 

  • Kosova K, Vitamvas P, Prasil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51:601–617

    CAS  Google Scholar 

  • Kovacs Z, Simon-Sarkadi L, Szucs A, Kocsy G (2010) Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids 38:623–631

    PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Zeng W, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716–720

    PubMed  CAS  Google Scholar 

  • Kovtun YW, Chiu L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    PubMed  CAS  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    PubMed  CAS  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    PubMed  CAS  Google Scholar 

  • Kumar S, Kaur G, Nayyer H (2008) Exogenous application of abscisic acid improves cold tolerance in Chickpea (Cicer arietinum L.). J Agric Crop Sci 194:449–456

    CAS  Google Scholar 

  • Li W, Li M, Zhang W, Welti R, Wang X (2004) The plasma membrane-bound phospholipase D enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol 22:427–433

    PubMed  Google Scholar 

  • Li X, Cheng X, Liu J, Zeng H, Han L, Tang W (2011) Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotechnol Rep 5:61–69

    Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    PubMed  CAS  Google Scholar 

  • Lissarre M, Ohta M, Sato A, Miura K (2010) Cold-responsive gene regulation during cold acclimation in plants. Plant Signal Behav 5:948–952

    PubMed  CAS  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    CAS  Google Scholar 

  • Liu JH, Nakajima I, Moriguchi T (2011a) Effects of salt and osmotic stresses on free polyamine content and expression of polyamine biosynthetic genes in Vitis vinífera. Biol Plant 55(2):340–344

    CAS  Google Scholar 

  • Liu Y, Jiang H, Zhao Z, An L (2011b) Abscisic acid is involved in brassinosteroids-induced chilling tolerance in the suspension cultured cells from Chorispora bungeana. J Plant Physiol 168:853–862

    PubMed  CAS  Google Scholar 

  • Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66:2007–2023

    PubMed  CAS  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    PubMed  CAS  Google Scholar 

  • Lv WT, Lin B, Zhang M, Hua XJ (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol 156:1921–1933

    PubMed  CAS  Google Scholar 

  • Ma Q, Dai X, Xu Y, Guo J, Liu Y et al (2009) Enhanced tolerance to chilling stress in OSMYB3R–2transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150:244–256

    PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    PubMed  CAS  Google Scholar 

  • Matteucci M, D’Angeli S, Errico S, Lamanna R, Perrotta G, Altamura MM (2011) Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness. J Exp Bot 62:3403–3420

    PubMed  CAS  Google Scholar 

  • Miranda JA, Avonce N, Suarez R, Thevelein JM, Van Dijck P, Iturriaga G (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421

    PubMed  CAS  Google Scholar 

  • Mizoguchi M, Umezawa T, Nakashima K, Kidokoro S, Takasaki H, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2010) Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant Cell Physiol 51:842–847

    PubMed  CAS  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta – Gene Regulon Mech 1819(2):86–96

    CAS  Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low–temperature signal transduction: induction of cold acclimation–specific genes of Alfalfa by calcium at 25 °C. Plant Cell 7:321–331

    PubMed  CAS  Google Scholar 

  • Monroy AF, Sangwan V, Dhindsa RS (1998) Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold-inactivation. Plant J 13:653–660

    CAS  Google Scholar 

  • Monroy AF, Dryanova A, Malette B, Oren DH, RidhaFarajalla M, Liu W, Danyluk J, Ubayasena LW, Kane K, Scoles GJ, Sarhan F, Gulick PJ (2007) Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol 64:409–423

    PubMed  CAS  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J et al (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance intransgenic plants. Proc Natl Acad Sci U S A 100:358–363

    PubMed  CAS  Google Scholar 

  • Morales C, Andre L, Adler L (1990) A procedure for enrichment and isolation of mutants of the salt-tolerant yeast Debaryomyces hansenii having altered glycerol metabolism. FEMS Microbiol Lett 57:73–77

    PubMed  CAS  Google Scholar 

  • Morimoto RI, Tissieres A, Georgopoulos C (eds) (1994) The biology of heat shock proteins and molecular Chaperones. Cold Spring Harbor Laboratory Press, New York, pp 1–30

    Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J 18:185–193

    PubMed  CAS  Google Scholar 

  • Nayyar H, Bains TS, Kumar S, Kaur G (2005) Chilling effects during seed filling on accumulation of seed reserves and yield of chickpea. J Sci Food Agric 85:1925–1930

    CAS  Google Scholar 

  • NDong C, Danyluk J, Wilson KE, Pocock T, Huner NP, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129:1368–1381

    PubMed  CAS  Google Scholar 

  • Nelson DE, Koukoumanos M, Bohnert HJ (1999) Myo-inositol dependent sodium uptake in ice plant. Plant Physiol 119:165–172

    PubMed  CAS  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    PubMed  CAS  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 101:3985–3990

    PubMed  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Ju-Kim K (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    PubMed  CAS  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SIK, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. J Plant Biotechnol 5:646–656

    CAS  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64(2):445–458

    PubMed  CAS  Google Scholar 

  • Peleg Z, Apse MP, Blumwald E (2011) Engineering salinity and water-stress tolerance in crop plants: getting closer to the field. Adv Bot Res 57:405–443

    CAS  Google Scholar 

  • Peng Y, Arora R, Li G, Wang X, Fessehae A (2008) Rhododendron catawbiense plasma membrane intrinsic proteins (RcPIPs) are aquaporins and their over-expression compromises constitutive freezing tolerance and cold acclimation ability of transgenic Arabidopsis plants. Plant Cell Environ 31:1275–1289

    PubMed  CAS  Google Scholar 

  • Pramanik MHR, Imai R (2005) Functional identification of a trehalose-6-phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    PubMed  CAS  Google Scholar 

  • Puhakainen T, Pihakaski-Maunsbach K, Widell S, Sommarin M (1999) Cold acclimation enhances the activity of plasma membrane Ca2+ ATPase in winter rye leaves. Plant Physiol Biochem 37:231–239

    CAS  Google Scholar 

  • Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    PubMed  CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high‐salinity stresses and abscisic acid application using cDNA microarray and RNA gel‐blot analyses. Plant Physiol 133:1755–1767

    PubMed  CAS  Google Scholar 

  • Ray S, Agarwal P, Arora R, Kapoor S, Tyagi AK (2007) Expression analysis of calcium‐dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics 278:493–505

    PubMed  CAS  Google Scholar 

  • Reddy VS, Reddy AS (2004) Proteomics of calcium-signaling components in plants. Phytochemistry 65:1745–1776

    PubMed  CAS  Google Scholar 

  • Reddy ASN, Gul SA, Helena C, Irene SD (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    PubMed  CAS  Google Scholar 

  • Redillas MCFR, Park SH, Lee JW, Kim YS, Jeong JS, Jung H, Bang SW, Hahn TR, Kim JK (2012) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6:89–96

    Google Scholar 

  • Rehman RU (2003) Studies on regeneration in chicory (Cichorium intybus L.) and transformation by Agrobacterium tumefaciens, Jamia Hamdard, PhD thesis, New Delhi. http://www.jamiahamdard.edu/thesis_chicory.asp

  • Rekarte-Cowie I, Ebshish OS, Mohamed KS, Pearce RS (2008) Sucrose helps regulate cold acclimation of Arabidopsis thaliana. J Exp Bot 59:4205–4217

    PubMed  CAS  Google Scholar 

  • Renaut J, Hausman JF, Bassett C, Artlip T, Cauchie HM, Witters E, Wisniewski M (2008) Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunus persica L. Batsch). Tree Genet Genomes 4:589–600

    Google Scholar 

  • Rorat T (2006) Plant dehydrins tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    PubMed  CAS  Google Scholar 

  • Ruelland E, Cantrel C, Gawer M, Kader JC, Zachowski A (2002) Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol 130:999–1007

    PubMed  CAS  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V, Kader JC, Delseny M (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    CAS  Google Scholar 

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556–565

    PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    PubMed  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    PubMed  CAS  Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    PubMed  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    PubMed  CAS  Google Scholar 

  • Sarkar N et al (2009) Rice sHSPs genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393

    PubMed  Google Scholar 

  • Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539

    PubMed  CAS  Google Scholar 

  • Seki M et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high- salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    PubMed  CAS  Google Scholar 

  • Seo PJ, Lee AK, Xiang F, Park CM (2008) Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant Cell Physiol 49:334–344

    PubMed  CAS  Google Scholar 

  • Sham A, Aly MAM (2012) Bioinformatics based comparative analysis of Omega-3 fatty acids in desert plants and their role in stress resistance and tolerance. Int J Plant Res 2(3):80–89

    Google Scholar 

  • Shao HB, Chu LY, Wu G et al (2007) Changes of some antioxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids Surf B Biointerfaces 54(2):143–149

    PubMed  CAS  Google Scholar 

  • Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. Bioessays 27:1048–1059

    PubMed  CAS  Google Scholar 

  • Sharma N, Cram D, Huebert T, Zhou N, Parkin IA (2007) Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant’s response to cold stress. Plant Mol Biol 63:171–184

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    PubMed  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold‐adapted enzymes. Annu Rev Biochem 75:403–433

    PubMed  CAS  Google Scholar 

  • Solanke AU, Sharma AK (2008) Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14:1–2

    Google Scholar 

  • Stein H, Honig A, Miller G, Erster O, Eilenberg H, Csonka LN, Szabados L, Koncz C, Zilberstein A (2011) Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Sci 181:140–150

    PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryo-stability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Advances in low-temperature biology, vol 2. JAI Press, London, pp 211–312

    Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Nat Acad Sci U S A 94:1035–1040

    CAS  Google Scholar 

  • Strand A, Foyer CH, Gustafsson P, Gardeström P, Hurry V (2003) Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant Cell Environ 26:523–535

    CAS  Google Scholar 

  • Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH et al (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153:145–158

    PubMed  CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    CAS  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: multifunctional amino acid. Cell Press 15:89–97

    Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    PubMed  CAS  Google Scholar 

  • Takahashi S, Katagiri T, Hirayama T, Yamaguchi-Shinozaki K, Shinozaki K (2001) Hyperosmotic stress induced a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol 42:214–222

    PubMed  CAS  Google Scholar 

  • Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70(4):599–613

    PubMed  CAS  Google Scholar 

  • Tayal D, Srivastava PS, Bansal KC (2005) Transgenic crops for abiotic stress tolerance. In: Srivastava PS, Narula A, Srivastava S (eds) Plant biotechnology and molecular markers. Springer, Dordrecht, pp 346–365

    Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K et al (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    PubMed  CAS  Google Scholar 

  • Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clément C, Ait Barka E (2011) Burkholderia phytofirmans strain PsJN primes Vitis vinifera L. and confers a better tolerance to low non-freezing temperatures. Mol Plant Microbe Interact 25:241–249

    Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93

    PubMed  CAS  Google Scholar 

  • Tian Y, Zhang H, Pan X, Chen X, Zhang Z et al (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20(4):857–866

    PubMed  CAS  Google Scholar 

  • Tichtinsky G, Vanoosthuyse V, Cock JM, Gaude T (2003) Making inroads into plant receptor kinase signalling pathways. Trends Plant Sci 8:231–237

    PubMed  CAS  Google Scholar 

  • Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Func Integr Genomics 8:387–405

    CAS  Google Scholar 

  • Tong Z, Hong B, Yang Y, Li Q, Ma N, Ma C, Gao J (2009) Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Mol Biol 71:115–129

    PubMed  CAS  Google Scholar 

  • Trischuk RG, Schilling BS, Wisniewski M, Gusta LV (2006) Freezing stress: systems biology to study cold tolerance. In: Madhava Rao KV, Raghavendra AS, Janardhan RK (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 131–155

    Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    PubMed  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637

    PubMed  CAS  Google Scholar 

  • Urao T et al (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    PubMed  CAS  Google Scholar 

  • Usadel B, Blasing OE, Gibon Y, Poree F, Hohne M, Gunter M, Trethewey R, Kamlage B, Poorter H, Stitt M (2008) Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant Cell Environ 31:518–547

    PubMed  CAS  Google Scholar 

  • Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916

    PubMed  CAS  Google Scholar 

  • Valluru R, Lammens W, Claupein W, Van den Ende W (2008) Freezing tolerance by vesicle-mediated fructan transport. Trends Plant Sci 13:409–414

    PubMed  CAS  Google Scholar 

  • Venketesh S, Dayananda C (2008) Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotechnol 28:57–82

    PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    PubMed  CAS  Google Scholar 

  • Vergnolle C, Vaultier MN, Taconnat L, Renou JP, Kader JC, Zachowski A, Ruelland E (2005) The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol 139:1217–1233

    PubMed  CAS  Google Scholar 

  • Walker DJ, Romero P, Correal E (2010) Cold tolerance, water relations and accumulation of osmolytes in Bituminaria bituminosa. Biol Plant 54:293–298

    Google Scholar 

  • Wallis JG et al (1997) Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Mol Biol 35:323–330

    PubMed  CAS  Google Scholar 

  • Wan B, Lin Y, Mou T (2007) Expression of rice Ca2+‐dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett 581:1179–1189

    PubMed  CAS  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    PubMed  CAS  Google Scholar 

  • Wang J, Ding H, Zhang A, Ma F, Cao J, Jiang M (2010) A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integr Plant Biol 52:442–452

    PubMed  CAS  Google Scholar 

  • Wen JQ, Oono K, Imai R (2002) Two novel mitogen‐activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low‐temperature signaling pathway in rice. Plant Physiol 129:1880–1891

    PubMed  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    PubMed  CAS  Google Scholar 

  • Yaish MW, Doxey AC, McConkey BJ, Moffatt BA, Griffith M (2006) Cold-active winter rye glucanases with ice-binding capacity. Plant Physiol 141:1459–1472

    PubMed  CAS  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    PubMed  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    PubMed  CAS  Google Scholar 

  • Yancey PH, Blake WR, Conley J (2002) Unusual organic osmolytes in deep-sea animals, adaptation to hydrostatic pressure and other perturbants. Comp Biochem Physiol Part A 133:667–676

    Google Scholar 

  • Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW (2010) A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem 285:7119–7126

    PubMed  CAS  Google Scholar 

  • Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL et al (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219–229

    PubMed  CAS  Google Scholar 

  • Yin ZM, Rorat T, Szabala BM, Ziolkowska A, Malepszy S (2006) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172

    CAS  Google Scholar 

  • Yin G, Sun H, Xin X, Qin G, Liang Z, Jing X (2009) Mitochondrial damage in the soybean seed axis during imbibition at chilling temperatures. Plant Cell Physiol 50:1305–1318

    PubMed  CAS  Google Scholar 

  • Yoo SY, Kim Y, Kim SY, Lee JS, Ahn JH (2007) Control of flowering time and cold response by a NAC‐domain protein in Arabidopsis. PLoS One 2:e642

    PubMed  Google Scholar 

  • Yoshida T, Fujita Y, SayamaH KS, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685

    PubMed  CAS  Google Scholar 

  • Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold regulatory circuit that is desensitized by low temperature. Plant Physiol 133(2):910–918

    PubMed  CAS  Google Scholar 

  • Zeinolabedin J, Seyyed GM (2012) Cold stress effects in plants. Tech J Eng App Sci 2(7):167–171

    Google Scholar 

  • Zeng Y, Yu J, Cang J, Liu L, Mu Y, Wang J, Zhang D (2011) Detection of sugar accumulation and expression levels of correlative key enzymes in winter wheat (Triticum aestivum) at low temperatures. Biosci Biotechnol Biochem 75:681–687

    PubMed  CAS  Google Scholar 

  • Zhang CF, Ding ZS, Xu XB, Wang Q, Qin GZ, Tian SP (2010) Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury. Amino Acids 39:181–194

    PubMed  CAS  Google Scholar 

  • Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X (2011a) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77:17–31

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wu R, Qin G, Chen Z, Gu H, Qu LJ (2011b) Overexpression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis. J Integr Plant Biol 53:493–506

    PubMed  CAS  Google Scholar 

  • Zhao L, Liu F, Xu W, Di C, Zhou S et al (2009a) Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnol J 7:550–561

    PubMed  CAS  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009b) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    PubMed  CAS  Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    PubMed  CAS  Google Scholar 

  • Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12a

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reiaz Ul Rehman or M. Irfan Qureshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Pirzadah, T.B., Malik, B., Rehman, R.U., Hakeem, K.R., Qureshi, M.I. (2014). Signaling in Response to Cold Stress. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_10

Download citation

Publish with us

Policies and ethics