Skip to main content

Optimization of Spiral Inductor with Bounding of Layout Parameters

  • Chapter
  • First Online:
Design and Analysis of Spiral Inductors

Abstract

A typical spiral inductor design problem is to determine its optimum layout parameters for a given inductance that will result in the highest quality factor at desired frequency. This chapter discusses a new approach for spiral inductor design and its optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haobijam, G., Paily, R.: Efficient optimization of integrated spiral inductor with bounding of layout design parameters. Analog Integr. Circ. Sig. Process. 51(3), 131–140 (June 2007)

    Article  Google Scholar 

  2. Greenhouse, H.M.: Design of planar rectangular microelectronic inductors. IEEE Trans. Parts Hybrids Packag 10(2), 101–109 (1974)

    Article  Google Scholar 

  3. Grover, F.W.: Inductance calculations. Van Nostrand, Princeton, New Jersey (1946), (reprinted by Dover Publications 1962)

    Google Scholar 

  4. Long, J.R., Copeland, M.A.: The modeling, characterization, and design of monolithic inductors for silicon RF IC’s. IEEE J. Solid State Circ. 32(3), 357–369 (1997)

    Article  Google Scholar 

  5. Sia, C.B., Hong, B.H., Chan, K.W., Yeo, K.S., Ma, J.G., Do, M.A.: Physical layout design optimization of integrated spiral inductors for silicon-based RFIC. IEEE Trans. Electr. Devices 52(12), 2559–2567 (2005)

    Article  Google Scholar 

  6. Koutsoyannopoulos, Y.K., Papananos, Y.: Systematic analysis and modeling of integrated inductors and transformers in RFIC design. IEEE Trans. Circ. Syst. II 47(8), 699–713 (2000)

    Article  Google Scholar 

  7. Haobijam, G., Paily, R.: Performance study of fixed value inductors and their optimization using electromagnetic simulator. Microwave Opt. Technol. Lett. 50(5), 1205–1210 (2008)

    Article  Google Scholar 

  8. Zolfaghari, A., Chan, A., Razavi, B.: Stacked inductors and transformers in CMOS technology. IEEE J. Solid State Circ. 36(4), 620–628 (2001)

    Article  Google Scholar 

  9. Kuhn, W.B., Ibrahim, N.: Analysis of current crowding effects in multiturn spiral inductors. IEEE Trans. Microw. Theory Tech. 49(1), 31–38 (2001)

    Article  Google Scholar 

  10. Post, J.E.: Optimizing the design of spiral inductors on silicon. EEE Trans. Circ. Syst. II: Analog Digit. Sig. Process. 47(1), 15–17 (2000)

    Article  Google Scholar 

  11. Yue, C.P., Wong, S.S.: Physical modeling of spiral inductors on silicon. IEEE Trans. Electr. Devices 47(3), 560–568 (2000)

    Article  Google Scholar 

  12. Yue, C.P., Wong, S.S.: On-chip spiral inductors with patterned ground shields for Si-based RF IC’s. IEEE J. Solid State Circ. 33(5), 743–752 (1998)

    Article  Google Scholar 

  13. Farina, M., Rozzi, T.: A 3-D integral equation-based approach to the analysis of real-life MMICs-application to microelectromechanical systems. IEEE Trans. Microw. Theory Tech. 49(12), 2235–2240 (2001)

    Article  Google Scholar 

  14. Hershenson, M.M., Mohan, S.S., Boyd, S.P., Lee, T.H.: Optimization of inductor circuits via geometric programming. In: Proceedings of the Design Automation Conference, pp. 994–998 (1999)

    Google Scholar 

  15. Zhan, Y., Sapatnekar, S.S.: Optimization of integrated spiral inductors using sequential quadratic programming. In: Proceedings of the IEEE Design, Automation and Test in Europe Conference and Exhibition, vol. 1, pp. 622–627 (2004)

    Google Scholar 

  16. Nieuwoudt, A., Massoud, Y.: Variability-aware multilevel integrated spiral inductor synthesis. IEEE Trans. Comput. Aided Design Integr. Circ. Syst. 25(12), 2613–2625 (2006)

    Google Scholar 

  17. Pettenpaul, E., Kapusta, H., Weisberger, A., Mampe, H., Luginsland, J., Wolff, I.: Cad models of lumped elements on gaas up to 18 ghz. IEEE Trans. Microwave Theory Tech. 36, 294–304 (1988)

    Article  Google Scholar 

  18. Hershenson, M., Lee, T.H., Mohan, S.S., Yue, C.P., Wong, S.S.: Modeling and characterization of on-chip transformers. In Proceedings of the IEEE International Electron Devices Meeting, pp. 531–534 (1998)

    Google Scholar 

  19. Normak, U.: Integrated transformer. KTH Kista, Kista (1998)

    Google Scholar 

  20. Mohan, S., Hershenson, M., Boyd, S., Lee, T.: Simple accurate expressions for planar spiral inductances. IEEE J. Solid State Circ. 34(10), 1419–1424 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genemala Haobijam .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Haobijam, G., Palathinkal, R.P. (2014). Optimization of Spiral Inductor with Bounding of Layout Parameters. In: Design and Analysis of Spiral Inductors. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1515-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1515-8_2

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1514-1

  • Online ISBN: 978-81-322-1515-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics