Skip to main content

Introduction

  • Chapter
  • First Online:
Design and Analysis of Spiral Inductors

Abstract

On-chip spiral inductors are extensively used in analog, mixed signal and radio frequency integrated circuits. High performance on-chip inductors have become increasingly important and with the increasing frequencies of operation of the circuits, the on-chip inductors have gained even more importance [1]. Complementary metal oxide semiconductor (CMOS) technology has been widely adopted for its mature and mass productivity [2, 3]. Steady improvements in the radio frequency characteristics of CMOS devices via scaling is driven by advancement in lithography. It has enabled increased integration of RF functions. Spiral inductors are widely used even at microwave frequencies and their applications in millimeter-wave circuits are investigated [4]. In this chapter a brief summary of the silicon integrated passive devices is given in Sect. 1.1. An introduction to on-chip inductor is presented in Sect. 1.2. The losses in the conductor and the substrate are also explained. An overview of the evolution and progress of the on-chip inductor with a review on the integrated inductor design is presented in Sect. 1.3. The design complexity and performance issues are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. RF and AMS technologies for wireless communications. The International Technology Roadmap For Semiconductors, 2007 edn. http://www.itrs.net/Links/2007ITRS/Home2007.htm

  2. Bennett, H.S., Brederlow, R., Costa, J.C., Cottrell, P.E., Huang, W.M., Immorlica, A.A., Mueller, J.E., Racanelli, M., Shichijo, H., Weitzel, C.E., Zhao, B.: Device and technology evolution for silicon-based RF integrated circuits. IEEE Trans. Electron Dev. 52(7), 1235–1258 (2005)

    Article  Google Scholar 

  3. Abidi, A.A.: Rf cmos comes of age. IEEE J. Solid-State Circuits 39(4), 549–561 (2004)

    Article  Google Scholar 

  4. Dickson, T., LaCroix, M.-A., Boret, S., Gloria, D., Beerkens, R., Voinigescu, S.: 30–100–GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits. IEEE Trans. Microw. Theory Tech. 53(1), 123–133 (2005)

    Article  Google Scholar 

  5. Pedder, D.J.: Technology and infrastructure for embedded passive components. On Board Technology, pp. 8–11 (2005)

    Google Scholar 

  6. Ulrich, R.K., Brown, W.D., Ang, S.S., Barlow, F.D., Elshabini, A., Lenihan, T.G., Naseem, H.A., Nelms, D.M., Parkerson, J., Schaper, L.W., Morcan, G.: Getting aggressive with passive devices. IEEE Circuits Devices Mag. 16(5), 16–25 (2000)

    Google Scholar 

  7. 11b WLAN transceiver shrinks circuit board and bill of material. Application note. http://www.eetindia.co.in

  8. Matsuzawa, A.: RF-Soc—Expectations and required conditions. IEEE Trans. Microw. Theory Tech. 50(1), 245–253 (2002)

    Article  Google Scholar 

  9. Dunn, J.S., Freeman, G., Greenberg, D.R., Groves, R.A., Guarin, F.J., Hammad, Y., Joseph, A.J., Lanzerotti, L.D., Onge, S.A.S., Orner, B.A., Rieh, J.-S., Stein, K.J., Voldman, S.H., Wang, P.-C., Zierak, M.J., Subbanna, S., Harame, D.L., Herman, D.A., Meyerson, J.B.S.: Foundation of RF CMOS and SiGe BiCMOS technologies. IBM J. Res. Dev. 47(2/3), 101–138 (2003)

    Google Scholar 

  10. Koutsoyannopoulos, Y.K., Papananos, Y.: Systematic analysis and modeling of integrated inductors and transformers in RFIC design. IEEE Trans. Circuits Syst. II 47(8), 699–713 (2000)

    Article  Google Scholar 

  11. Pucel, R., Massè, D., Hartwig, C.: Losses in microstrip. IEEE Trans. Microw. Theory Tech. 16(6), 342–350 (1968)

    Article  Google Scholar 

  12. Faraji-Dana, R., Chow, Y.: The current distribution and ac resistance of a microstrip structure, IEEE Trans. Microw. Theory Tech. 38(9), 1268–1277 (1990)

    Google Scholar 

  13. Bahl, I.J.: Lumped Elements for RF and Microwave Circuits. Artech House Publishers, Norwood (2003)

    Google Scholar 

  14. Niknejad, A.M., Meyer, R.G.: Design, Simulation and Applications of Inductors and Transformers for Si RF ICs. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  15. Nguyen, N.M., Meyer, R.G.: Si IC-compatible inductors and LC passive filters. IEEE J. Solid-State Circuits 25(4), 1028–1031 (1990)

    Article  Google Scholar 

  16. Nguyen, N.M., Meyer, R.G.: A Si bipolar monolithic RF bandpass amplifier. IEEE J. Solid State Circuits. 27(1), 123–127 (1992)

    Google Scholar 

  17. Nguyen, N.M., Meyer, R.G.: A 1.8-GHz monolithic LC voltage-controlled oscillator. IEEE J. Solid State Circuits. 27( 3) 444–450 (1992)

    Google Scholar 

  18. Chang, J.Y.C., Abidi, A.A., Gaitan, M.: Large suspended inductors on silicon and their use in a 2\(\mu \)m CMOS RF amplifier. IEEE Electron Dev. Lett. 14(5), 246–248 (1993)

    Article  Google Scholar 

  19. Negus, K., Koupal, B., Wholey, J., Carter, K., Millicker, D., Snapp, C., Marion, N.: Highly-integrated transmitter rfic with monolithic narrowband tuning for digital cellular handsets. IEEE Int. Solid State Circuits Conf. Dig. Tech. Pap. 38–39 (1994)

    Google Scholar 

  20. Stetzler, T.D., Post, I.G., Havens, J.H., Koyama, M.: A 2.7-4.5 V single chip GSM transceiver RF integrated circuit. IEEE J. Solid-State Circuits 30(12), 1421–1429 (1995)

    Article  Google Scholar 

  21. Marshall, C., Behbahani, F., Birth, W., Fotowai, A., Fuchs, T., Gaethke, R., Heimeri, E., Lee, S., Moore, P., Navid, S., Saur, E.: A 2.7 v gsm transceiver ics with on-chip filtering. IEEE Int. Solid State Circuits Conf. Dig. Tech. Pap. 148–149 (1995)

    Google Scholar 

  22. Ashby, K.B., Finley, W.C., Bastek, J.J., Moinian, S., Koullias, I.A.: High Q inductors for wireless applications in a complementary silicon bipolar process. In: Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, Oct 1994

    Google Scholar 

  23. Soyuer, M., Burghartz, J.N., Jenkins, K.A., Ponnapalli, S., Ewen, J.F., Pence, W.E.: Multi-level monolithic inductors in silicon technology. Electron. Lett. 31(5), 359–360 (1995)

    Article  Google Scholar 

  24. Burghartz, J.N., Soyuer, M., Jenkins, K.A.: Microwave inductors and capacitors in standard multilevel interconnect silicon technology. IEEE Trans. Microw. Theory Tech. 44(1), 100–104 (1996)

    Article  Google Scholar 

  25. Wu, C.-H., Kuo, C.-Y., Liu, S.-I.: Selective metal parallel shunting inductor and its VCO application. IEEE Trans. on Circuits Syst. I: Regul. Pap. 52(9) 1811–1818 (2005)

    Google Scholar 

  26. Merrill, R.B., Lee, T.W., You, H., Rasmussen, R., Moberly, L.A., Optimization of high Q integrated inductors for multilevel metal CMOS. IEDM Tech. Dig. 983–986 (1995)

    Google Scholar 

  27. Burghartz, J.N., Soyuer, M., Jenkins, K.A., Hulvey, M.D.: High-Q inductors in standard silicon interconnect technology and its application to an integrated RF power amplifier. IEDM Tech. Dig. 1015–1018 (1995)

    Google Scholar 

  28. Burghartz, J.N., Jenkins, K.A., Soyuer, M.: Multilevel-spiral inductors using VLSI interconnect technology. IEEE Electron Dev. Lett. 17(9) 428–430 (1996)

    Google Scholar 

  29. Zolfaghari, A., Chan, A., Razavi, B.: Stacked inductors and transformers in CMOS technology. IEEE J. Solid-State Circuits 36(4), 620–628 (2001)

    Article  Google Scholar 

  30. Feng, H., Jelodin, G., Gong, K., Zhan, R., Wu, Q., Chen, C., Wang, A.: Super compact RFIC inductors in 0.18 \(\mu \)m CMOS with copper interconnects. IEEE MTT-S Int. Microwave Symp. Dig. 1, 553–556 (2002)

    Google Scholar 

  31. Tang, C.-C., Wu, C.-H., Liu, S.-I.: Miniature 3-D inductors in standard CMOS process. IEEE J. Solid-State Circuits 37(4), 471–480 (2002)

    Article  Google Scholar 

  32. Yin, W.-Y., Xie, J.-Y., Kang, K., Shi, J., Mao, J.-F., Sun, X.-W.: Vertical topologies of miniature multispiral stacked inductors. IEEE Trans. Microw. Theory Tech. 56(2), 475–486 (2008)

    Article  Google Scholar 

  33. Tsui, H.-Y., Lau, J.: An on-chip vertical solenoid inductor design for multigigahertz CMOS RFIC. IEEE Trans. Microw. Theory Tech. 53(6), 1883–1890 (2005)

    Article  Google Scholar 

  34. Edelstein, D.C., Burghartz, J.N.: Spiral and solenoidal inductor structures on silicon using Cu-damascene interconnects. In: Proceedings of the IEEE International Interconnect Technology Conference, June 1998

    Google Scholar 

  35. Yue, C.P., Wong, S.S.: On-chip spiral inductors with patterned ground shields for Si-based RF IC’s. IEEE J. Solid-State Circuits 33(5), 743–752 (1998)

    Article  Google Scholar 

  36. Yim, S.-M., Chen, T., Kenneth, K.O.: The effects of a ground shield on the characteristics and performance of spiral inductors. IEEE J. Solid-State Circuits 37(2), 237–244 (2002)

    Article  Google Scholar 

  37. Cheung, T.S.D., Long, J.R., Vaed, K., Volant, R., Chinthakindi, A., Schnabel, C.M., Florkey, J., Stein, K.: Differentially shielded monolithic inductors. In: Proceedings of the IEEE Custom Integrated Circuits Conference, Sept 2003

    Google Scholar 

  38. Cheung, T.S.D., Long, J.R.: Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits. IEEE J. Solid-State Circuits 41(5), 1183–1200 (2006)

    Article  Google Scholar 

  39. Craninckx, J., Steyaert, M.: A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors. IEEE J. Solid-State Circuits 32(5), 736–744 (1997)

    Article  Google Scholar 

  40. Kuhn, W.B., Elshabini-Riad, A., Stephenson, F.W.: Centre-tapped spiral inductors for monolithic bandpass filters. Electron. Lett. 31(8), 625–626 (1995)

    Article  Google Scholar 

  41. Danesh, M., Long, J.R.: Differentially driven symmetric microstrip inductors. IEEE Trans. Microw. Theory Tech. 50(1), 332–341 (2002)

    Article  Google Scholar 

  42. Rabjohn, G.G.: Monolithic microwave transformers. Master’s thesis. Carleton Univ, Ottawa, ON, Canada (1991)

    Google Scholar 

  43. Wang, Y.-Y., Li, Z.-F.: Group-cross symmetrical inductor (GCSI): a new inductor structure with higher self-resonance frequency and Q factor. IEEE Trans. Magn. 42(6), 1681–1686 (2006)

    Article  Google Scholar 

  44. Chen, W.-Z., Chen, W.-H.: Symmetric 3D passive components for RF ICs application. In: Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC), Symposium, pp. 599–602, June 2003

    Google Scholar 

  45. Kodali, S., Allstot, D.J.: A symmetric miniature 3D inductor. In: Proceedings of the International Symposium on Circuits and Systems, vol. 1, pp. I–92, May 2003

    Google Scholar 

  46. Yang, H.Y.D.: Design considerations of differential inductors in CMOS technology for RFIC. In: Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC), Symposium, pp. 449–452, June 2004

    Google Scholar 

  47. Lopez-Villegas, J.M., Samitier, J., Cane, C., Losantos, P., Bausells, J.: Improvement of the quality factor of RF integrated inductors by layout optimization. IEEE Trans. Microw. Theory Tech. 48(1), 76–83 (2000)

    Article  Google Scholar 

  48. Niknejad, A.M., Meyer, R.G.: Design, simulation and applications of inductors and transformers for SI RF ICs. Kluwer Academic, Boston (2000)

    Google Scholar 

  49. Chi, C.-Y., Rebiez, G.M.: Planar microwave and millimeter-wave lumped elements andcoupled-line filters using micro-machining techniques. IEEE Trans. Microw. Theory Tech. 43(4), 730–738 (1995)

    Article  Google Scholar 

  50. Ozgur, M., Zaghloul, M.E., Gaitan, M.: High Q backside micromachined CMOS inductors. In: Proceedings of the IEEE International Symposium on Circuits and Systems, vol 2, pp. 577–580, May 1999

    Google Scholar 

  51. Hongrui, J., Wang, Y., Yeh, J.-L.A., Tien, N.C.: On-chip spiral inductors suspended over deep copper-lined cavities. IEEE Trans. Microw. Theory Tech. 48(12) 2415–2423 (2000)

    Google Scholar 

  52. Lakdawala, H., Zhu, X., Luo, H., Santhanam, S., Carley, L.R., Fedder, G.K.: Micromachined high-Q inductors in a 0.18\(\mu \)m copper interconnect low-k dielectric CMOS process. IEEE J. Solid State Circuits 37(3) 394–403 (2002)

    Google Scholar 

  53. Hsieh, M.-C., Fang, Y.-K., Chen, C.-H., Chen, S.-M., Yeh, W.-K.: Design and fabrication of deep submicron CMOS technology compatible suspended high-Q spiral inductors. IEEE Trans. Electron Dev. 51(3), 324–331 (2004)

    Article  Google Scholar 

  54. Ribas, R.P., Lescot, J., Leclercq, J.-L., Karam, J.M., Ndagijimana, F.: Micromachined microwave planar spiral inductors and transformers. IEEE Trans. Microw. Theory Tech. 48(8) 1326–1335 (2000)

    Google Scholar 

  55. Park, J.Y., Allen, M.G.: High Q spiral-type microinductors on silicon substrates. IEEE Trans. Magnetics 35(5) 3544–3546 (1999)

    Google Scholar 

  56. Ashby, K.B., Koullias, I.A., Finley, W.C., Bastek, J.J., Moinian, S.: High-Q inductors for wireless applications in a complementary silicon bipolar process. IEEE J. Solid State Circuits 31(1), 4–9 (1996)

    Article  Google Scholar 

  57. Burghartz, J.N., Edelstein, D.C., Jenkins, K.A., Kwark, Y.H., Spiral inductors and transmission lines in silicon technology using copper-damascene interconnects and low-loss substrates. IEEE Trans. Microw. Theory Tech. 45(10, Part 2) 1961–1968 (1997)

    Google Scholar 

  58. Okabe, H., Yamada, H., Yamasaki, M., Kagaya, O., Sekine, K., Yamashita, K.: Characterization of a planar spiral inductor on a composite-resin low-impedance substrate and its application to microwave circuits. IEEE Trans. Compon. Packag. Manuf. Technol. Part B 21(3) 269–273 (1998)

    Google Scholar 

  59. Kihong K., Kenneth, O.: Characteristics of an integrated spiral inductor with an underlying n-well. IEEE Trans. Electron Dev. 44(9) 1565–1567 (1997)

    Google Scholar 

  60. Choong-Mo, N., Young-Se, K.: High-performance planar inductor on thick oxidized porous silicon (OPS) substrate. IEEE Microw. Guided Wave Lett. 7(8) 236–238 (1997)

    Google Scholar 

  61. Lee, L.S., Chungpin, L., Liao, C., Lee, C.-L., Huang, T.-H., Tang, D.D.-L., Duh, T.S., Yang, T.-T.: Isolation on si wafers by MeV proton bombardment for RF integrated circuits. IEEE Trans. Electron Dev. 48(5), 928–934 (2001)

    Article  Google Scholar 

  62. Long, J.R., Copeland, M.A.: The modeling, characterization, and design of monolithic inductors for silicon RF IC’s. IEEE J. Solid State Circuits 32(3), 357–369 (1997)

    Article  Google Scholar 

  63. Andersen, R.B., Jorgensen, T., Laursen, S., Kolding, T.E.: EM-simulation of planar inductor performance for epitaxial silicon processes. Analog Integr. Circ. Sig. Process 30(1), 51–58 (2002)

    Article  Google Scholar 

  64. Niknejad, A.M., Meyer, R.G.: Analysis, design, and optimization of spiral inductors and transformers for Si RF IC’s. IEEE J. Solid State Circuits 33(10), 1470–1481 (1998)

    Article  Google Scholar 

  65. Hershenson, M.M., Mohan, S.S., Boyd, S.P., Lee, T.H.: Optimization of inductor circuits via geometric programming. In: Proceedings of the Design Automation Conference, June 1999

    Google Scholar 

  66. Duffin, R.J., Peterson, E.L., Zener, C.: Geometric programming-theory and application. Wiley, New York (1967)

    MATH  Google Scholar 

  67. Post, J.E.: Optimizing the design of spiral inductors on silicon. IEEE Trans. Circuits and Syst. II: Analog and Digital Signal Process. 47(1), 15–17 (2000)

    Article  Google Scholar 

  68. Zhan, Y., Sapatnekar, S.S.: Optimization of integrated spiral inductors using sequential quadratic programming. In: Proceedings of the IEEE Design, Automation and Test in Europe Conference and Exhibition, vol 1, pp. 622–627, Feb 2004

    Google Scholar 

  69. Nieuwoudt A., Massoud, Y., Variability-aware multilevel integrated spiral inductor synthesis. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 25(12) 2613–2625 (2006)

    Google Scholar 

  70. Bhaduri, A., Vijay, V., Agarwal, A., Vemuri, R., Mukherjee, B., Wang, P., Pacelli, A.: Parasitic-aware synthesis of RF LNA circuits considering quasi-static extraction of inductors and interconnects. In: Proceedings of the 47th Midwest Symposium on Circuits and System, vol 1, pp. 477–480, July 2004

    Google Scholar 

  71. Mukherjee, S., Mutnury, B., Dalmia, S., Swaminathan, M.: Layoutlevel synthesis of RF inductors and filters in LCP substrates for Wi-Fi applications. IEEE Trans. Microw. Theory Tech. 53, 2196–2210 (2005)

    Article  Google Scholar 

  72. Mandal, S.K., Sural, S., Patra, A.: ANN- and PSO-based synthesis of on-chip spiral inductors for RF ICs. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 27(1) 188–192 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genemala Haobijam .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Haobijam, G., Palathinkal, R.P. (2014). Introduction. In: Design and Analysis of Spiral Inductors. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1515-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1515-8_1

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1514-1

  • Online ISBN: 978-81-322-1515-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics