Climate Change and Its Impact on Brackish Water Fish and Fishery

  • Abhijit Mitra


The neritic zone of the ocean, coastal and estuarine waters is extremely important from the production point of view as these areas receive major nutrients (ammonia, nitrate, phosphate and silicate – the raw materials for primary production) from adjacent landmasses and sustain the foundation community of marine and estuarine biodiversity – the phytoplankton. This community comprises of diverse species of tiny free-floating floral components like Coscinodiscus sp., Chaetoceros sp., Fragilaria sp. and Biddulphia sp. The upwelling areas of the marine environment also support large population of several types of phytoplankton due to the presence of nutrient-rich water that are transported from the bottom of the ocean to the surface layer. The estuaries flowing through mangrove forests and salt-marsh grass ecosystems are also saturated with nutrients sourced from these coastal vegetations through microbial degradation of litter. The nutrients are basically the building blocks of phytoplankton biomass. Phytoplankton provide food to the zooplankton (the major groups include copepods, chaetognaths and harpacticoids) of the pelagic zone, which are finally consumed by fishes (like herring, cod, flounder, Bombay duck and Hilsa) that comprise the nekton community of the marine and estuarine ecosystems (Fig. 6.1). Any change in the lower tiers of food web due to sea-level rise, saline water intrusion into the bays and estuaries, ocean acidification (as a result of lowering of pH) or temperature rise is likely to be transmitted to the members of higher trophic level (nekton).


Ocean Acidification Aquatic Salinity Oyster Reef Whale Shark Fish Community Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Important References

  1. Atkinson AA, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103PubMedCrossRefGoogle Scholar
  2. Banerjee K, Bhattacharyya DP, Mitra A (2005) Ichthyoplankton community spectrum in coastal West Bengal: threats and conservation. Indian Sci Cruiser 19(5):34–40Google Scholar
  3. Beaugrand G (2004) The North Sea regime shift: evidence, causes, mechanisms and consequences. Prog Oceanogr 60:245–262CrossRefGoogle Scholar
  4. Carpelan LH (1967) Invertebrates in relation to hypersaline habitats. Invertebrates in supersaline waters. Univ Tex Contrib Mar Sci 12(21):219–229Google Scholar
  5. Casselman JM (2002) Effect of temperature, global extremes, and climate change on year class production of warm water, cool water, and cold water fish in the Great Lakes Basin. Am Fish Soc Symp 32:29–60, American Fisheries SocietyGoogle Scholar
  6. Chaudhuri AB, Choudhury A (1994) Mangroves of the Sundarbans, India. IUCN, BangkokGoogle Scholar
  7. Copeland BJ (1967) Environmental characteristics of hypersaline lagoons. Univ Tex Contrib Mar Sci 12:207–218Google Scholar
  8. CTDEP, Bureau of Natural Resources, Marine Fisheries Division (2006) A study of marine recreational fisheries in Connecticut. Federal aid in sport fish restoration, F-54-R-25, Annual performance reportGoogle Scholar
  9. De TK, Saigal BN (1989) Spawning of Hilsa, Tenualosa ilisha (Hamilton) in the Hooghly estuary. J Inland Fish Soc India 21:46–48Google Scholar
  10. Dove ADM, LoBue C, Bowser P, Powell M (2004) Excretory calcinosis: a new fatal disease of wild American lobsters Homarus americanus. Dis Aquat Organ 58(2–3):215–221PubMedCrossRefGoogle Scholar
  11. Ehrlich Paul R, Ehrlich AH (1970) Population, resources, environment – issues in perfect human ecology, 2nd edn. W.H. Freeman, San FranciscoGoogle Scholar
  12. Ford SE, Smolowitz R (2007) Infection dynamics of an oyster parasite in its newly expanded range. Mar Biol 151:119–133CrossRefGoogle Scholar
  13. Hagar JM (1984) Diets of Lake Michigan salmonids: an analysis of predator-prey interaction. M.S. thesis, University of Wisconsin, Madison, 74 pGoogle Scholar
  14. Hamilton-Buchanan (1922) An account of the fishes found in river Ganges and its branches. Edinbrough/London, 405ppGoogle Scholar
  15. Hammer UT (1986) Saline lake ecosystems of the world. Dr. W Junk Publishers, DordrechtGoogle Scholar
  16. Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus ADME, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine disease – climate links and anthropogenic factors. Science 285:1505–1510PubMedCrossRefGoogle Scholar
  17. Hinrichsen HH, Mollmann C, Voss R, Koster FW, Kornilovs G (2002) Biophysical modeling of larval Baltic cod (Gadus morhua) survival and growth. Can J Fish Aquat Sci 59:1858–1873CrossRefGoogle Scholar
  18. Hora SL (1933) Animals in Brackish water at Uttarbhag, Lower Bengal. Curr Sci 1:12–38Google Scholar
  19. Hora SL (1934) Brackish water animals of Gangetic Delta. Curr Sci 2:426–427Google Scholar
  20. Hora SL (1936) Ecology and bionomics of Gobioid fishes of Gangetic Delta. C R Congr Int Zool 12:841–864Google Scholar
  21. Hora SL (1943) Evidence of distribution of fishes regarding rise in salinity of the river Hugli. Curr Sci 12:69–90Google Scholar
  22. Jhingran VG (1982) Fish and fisheries of India. Hindustan Publishing Corporation, DelhiGoogle Scholar
  23. Jude DJ, Tesar FJ, Deboe SF, Miller TJ (1988) Diet and selection of major prey species by Lake Michigan salmonines, 1973–1982. Trans Am Fish Soc 116(5):677–691CrossRefGoogle Scholar
  24. Kawasaki T (2001) Climate change, regime shift and -stock management. Presented to international commemorative symposium of the 70th anniversary of the Japanese Society of Fisheries Science, Yokohama, 1–5 Oct 2001, 6ppGoogle Scholar
  25. Khan RA (2003) Fish faunal resources of Sunderban estuarine system with special reference to the biology of some commercially important species. Zoological Survey of India, Occ. Paper No. 209, KolkataGoogle Scholar
  26. Kitchell JF, Crowder LB (1986) Predator-prey Interaction in Lake Michigan: model predictions and recent dynamics. Environ Biol Fish 16(1):205–211CrossRefGoogle Scholar
  27. Koster FW, Neuenfeldt S, Mollmann C, Vinther M, St. John MA, Tomkiewicz J, Voss R, Kraus G, Schnack D (2003) Fish stock development in the Central Baltic sea (1976–2000) in relation to variability in the physical environment. ICES Mar Sci Symp 219:294–306Google Scholar
  28. Mandal AK, Nandi NC (1989) Fauna of Sundarban mangrove ecosystem, West Bengal, India, Fauna of conservation areas. Zoological Survey of India, CalcuttaGoogle Scholar
  29. Mitra A (1998) Status of coastal pollution in West Bengal with special reference to heavy metals. J Indian Ocean Stud 5(2):135–138Google Scholar
  30. Mitra A (2000) Chapter 62: The Northeast coast of the Bay of Bengal and deltaic Sundarbans. In: Sheppard C (ed) Seas at the millennium – an environmental evaluation. Elsevier Science, Oxford, pp 143–157Google Scholar
  31. Mitra A, Trivedi S, Choudhury A (1994) Inter-relationship between trace metal pollution and physico-chemical variables in the frame work of Hooghly estuary. Indian Ports 10:27–35Google Scholar
  32. Mitra A, Gangopadhyay A, Dube A, Andre CKS, Banerjee K (2009) Observed changes in water mass properties in the Indian Sundarbans (Northwestern Bay of Bengal) during 1980–2007. Curr Sci 97:1445–1452Google Scholar
  33. Mollmann C, Kornilovs G, Sidrevics L (2000) Long-term dynamics of main mesozooplankton species in the Central Baltic Sea. J Plankton Res 22:2015–2038CrossRefGoogle Scholar
  34. Mollmann C, Kornilovs G, Fetter M, Koster FW, Hinrichsen HH (2003a) The marine copepod, Pseudocalanus elongatus, as a mediator between climate variability and fisheries in the Central Baltic Sea. Fish Oceanogr 12:360–368CrossRefGoogle Scholar
  35. Mollmann C, Koster FW, Kornilovs G, Sidrevics L (2003b) Interannual variability in population dynamics of calanoid copepods in the Central Baltic Sea. ICES Mar Sci Symp 219:294–306Google Scholar
  36. Morgan I, McDonald DG, Wood CM (2001) The cost of living for freshwater fish in a warmer, more polluted world. Glob Chang Biol 7:345–355CrossRefGoogle Scholar
  37. MPEDA (1999) Guidelines for green certification of freshwater ornamental fishes, Panampilly Avenue, Cochin, India 122ppGoogle Scholar
  38. Mukherjee M, Kashem A (2007) Chapter IX: Pollution threats to Sundarban wetlands. In: Mukherjee M (ed) Sundarbans wetlands. Department of Fisheries, Aquaculture, Aquatic Resources, and Fishing Harbours, Govt. of West Bengal, Kolkata, pp 150–165Google Scholar
  39. Pearse AF (1932) Observation on the ecology of certain fishes and crustaceans along the bank of Matlah river at Port Canning. Rec Ind Mus 34:289–298Google Scholar
  40. Prashad B, Hora SL, Nair KK (1940) Observation on seaward migration of so called Indian Shad, Hilsa ilisha (Hamilton). Rec Indian Mus 42:529–552Google Scholar
  41. Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Orr J, Soldatov V, Spall SA, Stouffer R (2005) Response of ocean ecosystems to climate warming. Glob Biogeochem Cycl 18:123–148Google Scholar
  42. Sinha M, Mukhopadhyay MK, Mitra PM, Bagchi MM, Karmakar HC (1996) Impact of Farakka Barrage on the hydrology and fishery of Hooghly Estuary. Estuaries 19(3):710–722CrossRefGoogle Scholar
  43. Talwar PK (1991) Pisces. In: Arun Gopal Jhingran (ed) Faunal resources of Ganga, Part 1. Zoological Survey of India, Calcutta, pp 59–145Google Scholar
  44. Talwar PK, Mukherjee P, Saha D, Pal SN, Kar S (1992) Marine and estuarine fishes. In: Arun Gopal Jhingran (ed) State fauna series three: fauna of West Bengal, Part 2. Zoological Survey of India, Calcutta, pp 243–342Google Scholar
  45. Tang DL, Kawamura H (2001) Long-term series satellite ocean colour products on the Asian waters. In: Proceedings of the 11th PAMS/JECSS workshop. Hanrimwon Publishing (CD-ROM: 0112-PO3), Seoul, pp 49–52Google Scholar
  46. Walker BW (1961) The ecology of the Salton Sea, California, in relation to the sport fishery. Fish Bulletin No. 113. State of California, Department of Fish and Game, San DiegoGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Abhijit Mitra
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations