Skip to main content

Ecosystem Monitoring

  • Chapter
  • First Online:

Abstract

Monitoring the quality and sustainability of the ecosystem with lichens has been studied worldwide. Three major categories of assessment that have been identified so far for the role of lichens in ecosystem monitoring include air quality, climate and biodiversity. Both natural and man-made disturbances/disasters are responsible for imbalance in the ecosystem.

With increasing economic growth, environmental contamination, especially air pollution, is resulting in environmental degradation in the developing nations of Asia, especially India. In order to attain sustainable economic development, monitoring and eradication of environmental problems is important. The highest priority issues include monitoring of the quality of air, water and soil, deforestation and degradation of the natural environment.

Lichens are very useful for monitoring spatial and/or temporal deposition patterns of pollutants as they allow accumulation of pollutant throughout its thalli, and concentrations of pollutants in lichen thalli may be directly correlated with environmental levels of these elements. Lichens also meet other characteristics of the ideal sentinel organism: they are long lived, having wide geographical distribution, and accumulate and retain many trace elements to concentrations that highly exceed their physiological requirements. The details of the factors affecting the ecosystem, natural as well as anthropogenic, and role of lichens in ecosystem monitoring have been discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdalla K (2006) Health and environmental benefits of clean fuels and vehicles. Keynote presentation. UN DESA, Cairo

    Google Scholar 

  • Achotegui-Castells A, Sardans J, Ribas A, Peñuelas J (2012) Identifying the origin of atmospheric inputs of trace elements in the Prades Mountains (Catalonia) with bryophytes, lichens, and soil monitoring. Environ Monit Assess. doi:10.1007/s10661-012-2579-z

    Google Scholar 

  • Adamova LI, Biazrov LG (1991) Heavy natural radionuclides in lichens from different ecosystems of the Western Caucasus (In Russian) – bioindication and biomonitoring. Nauka, Moscow, pp 125–129

    Google Scholar 

  • Ahmad MN, van den Berg LJL, Shah HU, Masood T, Büker P, Emberson L, Ashmore M (2012) Hydrogen fluoride damage to vegetation from peri-urban brick kilns in Asia: a growing but unrecognised problem? Environ Pollut 162:319–324

    Article  CAS  Google Scholar 

  • Aide M (2005) Elemental composition of soil nodules from two alfisols on an alluvial terrace in Missouri. Soil Sci 170:1022–1033. doi:10.1097/01.ss.0000187351.16740.55

    Article  CAS  Google Scholar 

  • Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719

    Article  CAS  Google Scholar 

  • Al TA, Blowes DW (1999) The hydrogeology of a tailing impoundment formed by central discharge of thickened tailing: implications for tailing management. J Conta Hydrol 38:489–505

    Article  CAS  Google Scholar 

  • Alauddin M (2003) Economic liberalization and environmental concerns: a South Asian perspective. South Asia 26(3):439–453

    Article  Google Scholar 

  • Alauddin M (2004) Environmentalizing economic development: a South Asian perspective. Ecol Econ 51:251–270

    Article  Google Scholar 

  • Ammann K, Herzig R, Liebendoerfer L, Urech M (1987) Multivariate correlation of deposition data of 8 different air pollutants to lichen data in a small town in Switzerland. Adv Aerobiol 87:401–406

    Article  Google Scholar 

  • Aptroot A, van Herk CM (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environ Pollut 146(2):293–298

    Article  CAS  Google Scholar 

  • Arb CV, Mueller C, Ammann K, Brunold C (1990) Lichen physiology and air pollution II. Statistical analysis of the correlation between SO2, NO2, NO and O3 and chlorophyll content, net photosynthesis, sulphate uptake and protein synthesis of Parmelia sulcata Taylor. New Phytol 115:431–437

    Article  Google Scholar 

  • Aragón G, Martínez I, Izquierdo P, Belinchón R, Escudero A (2010) Effects of forest management on epiphytic lichen diversity in Mediterranean forests. Appl Veg Sci 13:183–194. doi:10.1111/j.1654-109X.2009.01060.x

    Article  Google Scholar 

  • Archer DE, Johnson K (2000) A model of the iron cycle in the ocean. Glob Biogeochem Cycle 14:269–279

    Article  CAS  Google Scholar 

  • Asta J, Rolley F (1999) Biodiversitéet bioindication lichénique: qualitéde l’air dans l’agglomération Grenobloise. Bull Int Assoc Fr Lichénol 3:121–126

    Google Scholar 

  • Asta J, Erhardt W, Ferretti M, Fornasier F, Kirschbaum U, Nimis PL, Purvis O, Pirintsos S, Scheidegger C, Van- Haluwyn C, Wirth V (2002) Mapping lichen diversity as an indicator of environmental quality. In: Nimis PL, Scheidegger C, Wolseley P (eds) Monitoring with lichens-monitoring lichens. Kluwer, Dordrecht, pp 273–279

    Chapter  Google Scholar 

  • Augusto S, Catarino F, Branquinho C (2007) Interpreting the dioxin and furan profiles in the lichen Ramalina canariensisSteiner for monitoring air pollution. Sci Total Environ 377:114–123

    Article  CAS  Google Scholar 

  • Augusto S, Maguas C, Matos J, Pereira MJ, Soares A, Branquihno C (2009) Spatial modeling of PAHs in lichens for fingerprinting of Multisource atmospheric pollution. Environ Sci Technol 43(20):7762–7769

    Article  CAS  Google Scholar 

  • Augusto S, Maguas C, Matos J, Pereira MJ, Branquihno C (2010) Lichens as an integrating tool for monitoring PAH atmospheric deposition: a comparison with soil, air and pine needles. Environ Pollut 158(2):483–489

    Article  CAS  Google Scholar 

  • Backor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53(2):214–222

    Article  CAS  Google Scholar 

  • Bačkor M, Gibalová A, Budová J, Mikeš J, Solár P (2006) Cadmium-induced stimulation of stress protein hsp70 in lichen photobiont Trebouxia erici. Plant Growth Regul 50:159–164

    Article  CAS  Google Scholar 

  • Baddeley MA, Ferry BW, Finegan EJ (1972) The effects of sulphur dioxide on lichen respiration. Lichenologist 5:283–291

    Article  Google Scholar 

  • Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R (1991) A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Pollut 60:79–300

    Article  Google Scholar 

  • Baeza A, Del Rio M, Jimenez A, Miro C, Paniagua J (1995) Influence of geology and soil particle size on the surface area/volume activity ratio for natural radionuclides. J Radioanal Nucl Chem 189(2):289–299

    Article  CAS  Google Scholar 

  • Bajpai R, Upreti DK (2012) Accumulation and toxic effect of arsenic and other heavy metals in a contaminated area of West Bengal, India, in the lichen Pyxine cocoes (Sw.) Nyl. Ecotoxicol Environ Saf 83:63–70

    Article  CAS  Google Scholar 

  • Bajpai R, Upreti DK, Mishra SK (2004) Pollution monitoring with the help of lichen transplant technique at some residential sites of Lucknow city, Uttar Pradesh. J Environ Biol 25(5):191–195

    CAS  Google Scholar 

  • Bajpai R, Upreti DK, Dwivedi SK (2009a) Arsenic accumulation in lichens of Mandav monuments, Dhar district, Madhya Pradesh, India. Environ Monit Assess 159:437–442. doi:10.1007/s10661-008-0641-7

    Article  CAS  Google Scholar 

  • Bajpai R, Upreti DK, Dwivedi SK, Nayaka S (2009b) Lichen as quantitative biomonitors of atmospheric heavy metals deposition in Central India. J Atmos Chem 63:235–246

    Article  CAS  Google Scholar 

  • Bajpai R, Upreti DK, Dwivedi SK (2010a) Passive monitoring of atmospheric heavy metals in a historical city of central India by Lepraria lobificans Nyl. Environ Monit Assess 166:477–484. doi:10.1007/s10661-009-1016-4

    Article  CAS  Google Scholar 

  • Bajpai R, Upreti DK, Nayaka S (2010b) Accumulation of arsenic and fluoride in lichen Pyxine cocoes (Sw.) Nyl., growing in the vicinity of coal-based thermal power plant at Raebareli, India. J Exper Sci 1(4):37–40

    Google Scholar 

  • Bajpai R, Upreti DK, Nayaka S, Kumari B (2010c) Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal based thermal power plant of Raebareli district, north India. J Hazard Mater 174:429–436

    Article  CAS  Google Scholar 

  • Bajpai R, Mishra GK, Mohabe S, Upreti DK, Nayaka S (2011) Determination of atmospheric heavy metals using two lichen species in Katni and Rewa cities. Indian J Environ Biol 32:195–199

    CAS  Google Scholar 

  • Bajpai R, Pandey AK, Deeba F, Upreti DK, Nayaka S, Pandey V (2012) Physiological effects of arsenate on transplant thalli of the lichen Pyxine cocoes (Sw.) Nyl. Environ Sci Pollut Res 19:1494–1502

    Article  CAS  Google Scholar 

  • Bajpai R, Shukla V, Upreti DK (2013) Impact assessment of anthropogenic activities on air quality, using lichen Remototrachyna awasthii as biomonitors. Int J Environ Sci Technol. doi:10.1007/s13762-012-0156-1

    Google Scholar 

  • Baker DA (1983) Uptake of cations and their transport within the plants. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients: uptake and utilization by plants. Academic, London, pp 3–19

    Google Scholar 

  • Balaguer L, Manrique E, Ascaso C (1997) Predictability of the combination effects of sulphur dioxide and nitrate on green algal lichen Ramalina farinacea. Can J Bot 75:1836–1842

    Article  CAS  Google Scholar 

  • Ballschmitter K, Wittlinger R (1991) Interhemispheric exchange of hexachlorocyclohexanes, hexachlorobenzene, polychlorobiphenyls, and 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane in the lower troposphere. Environ Sci Technol 25:1103–1111

    Article  Google Scholar 

  • Baptista MS, Teresa M, Vasconcelos SD, Carbral JP, Freitas CM, Pacheo AMG (2008) Copper, nickel, lead in lichens & tree bark transplants over different period of time. Environ Pollut 151:408–413

    Article  CAS  Google Scholar 

  • Barber JL, Sweetman AJ, Wijk D, Jones C (2005) Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes. Sci Total Environ 349:1–44

    Article  CAS  Google Scholar 

  • Bargagli R (1998) Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. Springer, Berlin, p 324

    Google Scholar 

  • Bargagli R, Nimis PL (2002) Guidelines for the use of epiphytic lichens as biomonitors of atmospheric deposition of trace elements. In: Monitoring with lichens-monitoring lichens, vol 7, pp 295–299

    Google Scholar 

  • Bari A, Rosso A, Minciardi MR, Troiani F, Piervittori R (2001) Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudevernia furfuracea thalli. Environ Monit Assess 69:205–220

    Article  CAS  Google Scholar 

  • Barták M, Solhaug KA, Vráblíková H, Gauslaa Y (2006) Curling during desiccation protects the foliose lichen Lobaria pulmonaria against photoinhibition. Oecologia. doi:10.1007/s00442-006-0476-2

    Google Scholar 

  • Bässler C, Müller J, Hothorn T, Kneib T, Badeck F, Dziock F (2010) Estimation of the extinction risk for high-montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators. Ecol Indic 10:341–352

    Article  Google Scholar 

  • Baumard P, Budzinski H, Michon Q, Garrigues P, Burgeot T, Bellocq J (1998) Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine Coastal Shelf Sci 47:77–90

    Article  CAS  Google Scholar 

  • Beckett RP, Brown DH (1983) Natural and experimentally-induced zinc and copper resistance in the lichen genus Peltigera. Ann Bot 52:43–50

    CAS  Google Scholar 

  • Beckett RP, Brown DH (1984) The control of Cd uptake in lichen genus Peltigera. J Exp Bot 35:1071–1082

    Article  CAS  Google Scholar 

  • Behling H (1998) Late Quaternary vegetational and climatic changes in Brazil. Rev Palaeobot Palynol 99(143):156

    Google Scholar 

  • Belandria G, Asta J (1986) Les lichens bioindicateurs: la pollution acide dans la région lyonnaise. Pollut Atmos 109:10–23

    CAS  Google Scholar 

  • Belvermis M, Kılıç Ö, Çotuk Y, Topcuoğlu S (2010) The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ Monit Assess 163:15–26

    Article  CAS  Google Scholar 

  • Berry WL, Wallace A (1981) Toxicity: the concept and relationship to the dose response curve. J Plant Nutr 3:13–19

    Article  CAS  Google Scholar 

  • Beschel R (1950) Flechten als Alteramasstab Rezenter Moränen. Zeitschrift für Glatscherkunde und Glazial-geiglogie 1:152–161

    Google Scholar 

  • Biazrov LG (1994) The radionuclides in lichen thalli in Chernobyl and East Urals areas after nuclear accidents. Phyton (Horn, Austria) 34(1):85–94

    CAS  Google Scholar 

  • Biazrov LG, Adamova LI (1990) Heavy metals in lichens of the Caucasusky and Ritzinsky reserves (In Russian) – the reserves of USSR – their real and future. Part 1: Topicals problems of reserve management. Abstracts of the all-union conference, Novgorod, pp 338–339

    Google Scholar 

  • Bidleman TF, Billings WN, Foreman WY (1986) Vapor-particle partitioning of semivolatile organic compounds: estimates from field collection. Environ Sci Technol 20:1038–1043

    Article  CAS  Google Scholar 

  • Bignal KL, Ashmore MR, Headley AD, Stewart K, Weigert K (2007) Ecological impacts of air pollution from road transport on local vegetation. Appl Geochem 22:1265–1271

    Article  CAS  Google Scholar 

  • Bignal KL, Ashmore MR, Headley AD (2008) Effects of air pollution from road transport on growth and physiology of six transplanted bryophyte species. Environ Pollut 156:332–340

    Article  CAS  Google Scholar 

  • Bird PM (1966) Radionuclides in foods. Can Med Assoc J 94:590–597

    CAS  Google Scholar 

  • Bird PM (1968) Studies of fallout of 137Cs in the Canadian North. Arch Environ Health 17:631–638

    Article  CAS  Google Scholar 

  • Blackman A, Harrington W (2000) The use of economic incentives in developing countries: lessons from international experience with industrial air pollution. J Environ Dev 9:5–44

    Article  Google Scholar 

  • Blasco M, Domeno C, Nerin C (2008) Lichen biomonitoring as feasible methodology to assess air pollution in natural ecosystems: combined study of quantitative PAHs analysis and lichen biodiversity in the Pyrenees mountain. Anal Bioanal Chem 391:759–771

    Article  CAS  Google Scholar 

  • Boileau LJR, Beckett PJ, Richardsons DHS (1982) Lichens and mosses as monitors of industrial activities associated with Uranium mining in northern Ontario, Canada. Part 1: field procedure, chemical analysis and inter-species comparison. Environ Pollut 4:69–84

    Article  CAS  Google Scholar 

  • Boonpragob K, Nash TH III, Fox CA (1989) Seasonal deposition patterns of acidic ions and ammonium to the lichen Ramalina menziesii Tayl. in southern California. Environ Exp Bot 29:187–197

    Article  CAS  Google Scholar 

  • Boudri JC, Hordijk L, Kroeze C, Amann M, Cofala J, Bertok I, Junfeng L, Lin D, Shuang Z, Runquing H, Panwar TS, Gupta S, Singh D et al (2002) The potential contribution of renewable energy in air pollution abatement in China and India. Energy Policy 30:409–424

    Article  Google Scholar 

  • Branquinho C (2001) Lichens. In: Prasad MNV (ed) Metals in the environment: analysis by biodiversity. Marcel Dekker, New York, pp 117–157

    Google Scholar 

  • Branquinho C, Brown DH, Magaus C, Catarino CL (1997) Metal uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species. Environ Exp Bot 37:95–105

    Article  CAS  Google Scholar 

  • Brewer RF (1960) The effects of hydrogen fluoride gas on seven citrus varieties. Am Soc Hortic Sci 75:236–243

    CAS  Google Scholar 

  • Brifett C (1999) Environmental impact assessment in East Asia. In: Petts J (ed) Handbook of environmental impact assessment, vol 2. Blackwell, Oxford

    Google Scholar 

  • Brodo IM (1961) Transplant experiments with corticolous lichens using a new technique. Ecology 42:838–841

    Article  Google Scholar 

  • Brodo IM (1964) Field studies of the effects of ionizing radiation on lichens. Bryologist 67:76–87

    Google Scholar 

  • Brown DH, Avalos A, Miller JE, Bargagli R (1994) Interactions of lichens with their mineral environment. Crypt Bot 4:135–142

    Google Scholar 

  • Bryselbout C, Henner P, Carsignol J, Lichtfouse E (2000) Polycyclic aromatic hydrocarbon in highway plants and soils. Evidence for a local distillation effect. Analusis 28(4):290–293

    Article  CAS  Google Scholar 

  • Buccolieri A, Buccolieri G, Dell’atti A, Perrone MR, Turnone A (2006) Natural sources and heavy metal. Annali di Chimica, 96 by Società Chimica Italiana

    Google Scholar 

  • Budka D, Przybyiowicz WJ, Mesjasz- Przybyiowicz J (2004) Environmental pollution monitoring using lichens as bioindicators: a micro-PIXE study. Radiat Phys Chem 71:783–784

    Article  CAS  Google Scholar 

  • Bunce NJ, Liu L, Zhu J, Lane DA (1997) Reaction of naphthalene and its derivatives with hydroxyl radicals in the gas phase. Environ Sci Technol 31:2252–2259

    Article  CAS  Google Scholar 

  • Butler WL, Kitajima M (1975) Fluorescence quenching in photosystem II of chloroplasts. Biochem Biophys Acta 376:116–125

    Article  CAS  Google Scholar 

  • Button KJ, Rietveld P (1999) Transport and the environment. In: van den Bergh JCJM (ed) Handbook of environmental and resource economics. Edward Elgar, Cheltenham, pp 581–589

    Google Scholar 

  • C.P.C.B. (2005) Parivesh: proposed limits for Pah in India. Central pollution Control Board, Ministry of Environment and Forest, Delhi – 32. www.cpcb.nic.in

  • Calderón-Garcidueňas L, Mora-Tiscareno A, Fordham LA, Valencia-Salazar G, Chung CJ, Rodriguez-Alcaraz A et al (2003) Respiratory damage in children exposed to urban pollution. Pediatr Pulmonol 3:148–161

    Article  Google Scholar 

  • Carignan V, Villard MA (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78:45–61

    Article  Google Scholar 

  • Carreras HA, Gudiño GL, Pignata ML (1998) Comparative biomonitoring of atmospheric quality in five zones of Cardóba city (Argentina) employing the transplanted lichen Usnea sp. Environ Pollut 103:317–325

    Article  CAS  Google Scholar 

  • Central Pollution Control Board (1999) Parivesh: Newsletter, 6(1), June. CPCB, Ministry of Environment and Forests, Delhi

    Google Scholar 

  • Chakraborty P, Zhang G, Li J, Xu Y, Liu X, Tanabe S, Jones KC (2010) Selected organochlorine pesticides in the atmosphere of major Indian cities: levels, regional versus local variations, and sources. Environ Sci Technol 44(21):8038–8043

    Article  CAS  Google Scholar 

  • Chaphekar SB (2000) Phytomonitoring in industrial areas. In: Agrawal SB, Agrawal M (eds) Environmental pollution and plant responses. CRC Press, Boca Raton, pp 329–342

    Google Scholar 

  • Chapin FS, Körner C (1994) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Trends Ecol Evol 9:45–47

    Article  Google Scholar 

  • Charak S, Sheikh MA, Raina AK, Upreti DK (2009) Ecological impact of coal mines on lichens: a case study at Moghla coal mines kalakote (Rajouri), J & K. J Appl Nat Sci 1(1):24–26

    Google Scholar 

  • Cheng Z et al (2005) Limited temporal variability of arsenic concentrations in 20 wells monitored for 3 years in Araihazar, Bangladesh. Environ Sci Technol 39(13):4759–4766

    Article  CAS  Google Scholar 

  • Cheng J, Yuan T, Wu Q, Zhao W, Xie H, Ma Y, Ma J, Wang J (2007) PM10-bound polycyclic aromatic hydrocarbons (PAHs) and cancer risk estimation in the atmosphere surrounding an industrial area of Shanghai, China. Water Air Soil Pollut 183(1–4):437–446. doi:1007/s11270-007-9392-2

    Article  CAS  Google Scholar 

  • Chetwittayachan T, Shimazaki D, Yamamoto K (2002) A comparison of temporal variation of particle-bound polycyclic aromatic hydrocarbons (pPAHs) concentration in different urban environments: Tokyo, Japan, and Bangkok, Thailand. Atmos Environ 36:2027–2037

    Article  CAS  Google Scholar 

  • Clark BD (1999) Capacity building. In: Petts J (ed) Handbook of environmental impact assessment, vol 2. Blackwell, Oxford

    Google Scholar 

  • Clark AJ, Landolt W, Bucher JB, Strasser RJ (2000) Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. Environ Pollut 109:501–507

    Article  CAS  Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicator of air pollution assessment – a review. Environ Pollut 114:471–492

    Article  CAS  Google Scholar 

  • Cortes DR, Hites RA (2000) Detection of statistically significant trends in atmospheric concentrations of semivolatile compounds. Environ Sci Technol 34:2826–2829

    Article  CAS  Google Scholar 

  • Cortes DR, Basu I, Sweet CW, Brice KA, Hoff RM, Hites RA (1998) Temporal trends in gas-phase concentrations of chlorinated pesticides measured at the shores of the Great Lakes. Environ Sci Technol 32:1920–1927

    Article  CAS  Google Scholar 

  • Coskun M, Steinnes E, Coskun M, Cayir A (2009) Comparison of epigeic moss (Hypnum cupressiforme) and lichen (Cladonia rangiformis) as biomonitor species of atmospheric metal deposition. Bull Environ Contam Toxicol 82:1–5

    Article  CAS  Google Scholar 

  • Crespo A, Divakar PK, Arguello A, Gasca C, Hawksworth DL (2004) Molecular studies on Punctelia species of the Iberian Peninsula, with an emphasis on specimens newly colonizing Madrid. Lichenologist 36(5):299–308

    Article  Google Scholar 

  • Cropper ML, Simon NB, Alberini A, Arora S, Sharma PK (1997) The health benefits of air pollution control in Delhi. Am J Agric Econ 79:1625–1629

    Article  Google Scholar 

  • Curran TP (2000) Sustainable development: new ideas for a new century. Seminar at the Graduate School of Environmental Studies. Seoul National University, Seoul

    Google Scholar 

  • Daly GL, Wania F (2005) Organic contaminants in mountains. Environ Sci Technol 39(2):385–398

    Article  CAS  Google Scholar 

  • Das G, Das AK, Das JN, Guo N, Majumdar R, Raj S (1986) Studies on the plant responses to air pollution, occurrence of lichen in relation to Calcutta city. Indian Biol 17(2):26–29

    Google Scholar 

  • Das P, Joshi S, Rout J, Upreti DK (2012) Shannon diversity index (H) as an ecological indicator of environmental pollution – a GIS approach. J Funct Environ Bot 2(1):22–26

    Article  Google Scholar 

  • Das P, Joshi S, Rout J, Upreti DK (2013) Impact of anthropogenic factors on abundance variability among Lichen species in southern Assam, north east India. Trop Ecol 54:65–70

    Google Scholar 

  • Davies L, Bates JW, Bell JNB, James PW, Purvis OW (2007) Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environ Pollut 146:299–310

    Article  CAS  Google Scholar 

  • Deb MK, Thakur M, Mishra RK, Bodhankar N (2002) Assessment of atmospheric arsenic levels in airborne dust particulates of an urban city of Central India. Water Air Soil Pollut 140:57–71

    Article  CAS  Google Scholar 

  • Delfino RJ, Murphy-Moulton AM, Becklake MR (1998) Emergency room visits for respiratory illnesses among the elderly in Montreal: association with low level ozone exposure. Environ Res Sect A 76:67–77

    Article  CAS  Google Scholar 

  • Dentener FJ, Carmichael GR, Zhang Y, Lelieveld J, Crutzen PJ (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J Geophys Res 101:22869–22889

    Article  CAS  Google Scholar 

  • Derwent R, Collins W, Johnson C, Stevenson D (2002) Viewpoint. Global ozone concentrations and regional air quality. Environ Sci Technol 36:379A–382A

    Article  CAS  Google Scholar 

  • De Sloover J, Le Blanc F (1968) Mapping of atmospheric pollution on the basis of lichen sensitivity. In: Misra R, Gopal B (eds) Proceedings of the symposium on recent advances on tropical ecology. International Society for Tropical Ecology, Varanasi, pp 42–56

    Google Scholar 

  • Dickerson RR, Kondragunta S, Stenchikov G, Civerolo KL, Doddridge BG, Holben BN (1997) The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 278:827–830

    Article  CAS  Google Scholar 

  • Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME et al (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329:1753–1759

    Article  CAS  Google Scholar 

  • Domeňo C, Blasco M, Sanchez C, Nerin C (2006) A fast extraction technique for extracting polycyclic aromatic hydrocarbons (PAHs) from lichen samples used as biomonitors of air pollution: dynamic sonication versus other methods. Anal Chim Acta 569:103–112

    Article  CAS  Google Scholar 

  • Dubey AK, Pandey V, Upreti DK, Singh J (1999) Accumulation of lead by lichens growing in and around Faizabad, U.P., India. J Environ Biol 20(3):223–225

    CAS  Google Scholar 

  • Dutkiewicz VA, Alvi S, Ghauri BM, Choudhary MI, Husain L (2009) Black carbon aerosols in urban air in South Asia. Atmos Environ 43:1737–1744

    Article  CAS  Google Scholar 

  • Eckl P, Hofmann W, Türk R (1986) Uptake of natural and man-made radionuclides by lichens and mushrooms. Radiat Environ Biophys 25:43–54

    Article  CAS  Google Scholar 

  • Egger R, Schlee D, Turk R (1994a) Changes of physiological and biochemical parameters in the lichen Hypogymnia physodes (L.) Nyl due to the action of air-pollutants – a field study. Phyton-Annales Rei Botanicae 34:229–242

    CAS  Google Scholar 

  • Egger R, Schlee D, Türk R (1994b) Changes of physiological and biochemical parameters in the lichen Hypogymnia physodes (L.) Nyl. due to the action of air pollutants – a field study. Phyton 34(2):229–242

    CAS  Google Scholar 

  • Ellis KM, Smith JN (1987) Dynamic model for radionuclide uptake in lichen. J Environ Radioact 5:185–208

    Article  CAS  Google Scholar 

  • Ellis CJ, Coppins BJ, Dawson TP (2007) Predicted response of lichen epiphyte Lecanora populicolato climate change scenarios in a clean-air region of Northern Britain. Biol Conserv 135:396–404

    Article  Google Scholar 

  • Emberson LD, Ashmore MR, Murray F, Kuylenstierna JCI, Percy KE, Izuta T, Zheng Y, Shimizu H, Sheu BH, Liu CP, Agrawal M, Wahid A, Abdel-Latif NM, Van Tienhoven M, Bauer LI, Domingos M (2001) Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut 130:107–118

    Article  CAS  Google Scholar 

  • Emberson L, Ashmore M, Murray F (eds) (2003) Air pollution effects on crops and forests. Imperial College Press, London

    Google Scholar 

  • Essington M (2004) Soil and water chemistry – an integrative approach. CRC Press, Boca Raton

    Google Scholar 

  • Eversman S, Sigal LL (1987) Effects of SO2, O3, and SO2 and O3 in combination on photosynthesis and ultrastructure of two lichen species. Can J Bot 65(9):1806–1818

    Article  CAS  Google Scholar 

  • Faiz A, Weaver CS, Walsh MP (1996) Air pollution from motor vehicles. International Bank for Reconstruction and Development/World Bank, Washington, DC

    Book  Google Scholar 

  • Farmer AM, Bates JW, Bell JNB (1991) Seasonal variations in acidic pollutant inputs and their effects on the chemistry of stemflow, bark and epiphyte tissues in three oak woodlands in N.W. Britain. New Phytol 118:441–451

    Article  CAS  Google Scholar 

  • Farmer AM, Bates JW, Bell JNB (1992) Ecophysiological effects of acid rain on bryophytes and lichens. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon, Oxford

    Google Scholar 

  • Feige GB, Niemann L, Jahnke S (1990) Lichens and mosses: silent chronists of the Chernobyl accident. Bibl Lichenol 38:63–77

    Google Scholar 

  • Fendorf SE (1995) Surface reactions of chromium in soils and waters. Geoderma 67:55–71

    Article  CAS  Google Scholar 

  • Fernandez P, Vilanova RM, Grimalt JO (1999) Sediment fluxes of polycyclic aromatic hydrocarbons in European high altitude mountain lakes. Environ Sci Technol 33:3716–3722

    Article  CAS  Google Scholar 

  • Fields RD (1988) Physiological responses of lichens to air pollutant fumigations. In: Nash TH III, Wirth V (eds) Lichens, bryophytes and air quality, Bibliotheca Lichenologica 30. J. Cramer, Berlin/Stuttgart, pp 175–200

    Google Scholar 

  • Flesher JW, Horn J, Lehner AF (2002) Role of the Bay- and L-regions in the metabolic activation and carcinogenicity of Picene and Dibenz[a,h]anthracene. Polycycl Aromat Compd 22:737–745

    Article  CAS  Google Scholar 

  • Foell W, Green C, Amann M, Bhattacharya S, Carmichael G et al (1995) Energy use, emissions, and air pollution reduction strategies in Asia. Water Air Soil Pollut 85:2277–2282

    Article  Google Scholar 

  • Foster JB (1993) Let them eat pollution: capitalism and the world environment. Monthly Review, January, pp 10–20

    Google Scholar 

  • Frati L, Caprasecca E, Santoni S, Gaggi C, Guttova A, Gaudino S, Pati A, Rosamilia S, Pirintsos SA, Loppi S (2006) Effects of NO2 and NH3 from road traffic on epiphytic lichens. Environ Pollut 142:58–64

    Article  CAS  Google Scholar 

  • Freitas MC (1994) Heavy metals in Parmelia sulcatacollected in the neighbourhood of a coal-fired power station. Biol Trace Elem Res 43–45:207–212

    Article  Google Scholar 

  • Freitas MC (1995) Elemental bioaccumulators in air pollution studies. J Radioanal Nucl Chem 192:171–181

    Article  CAS  Google Scholar 

  • Furlan CM, Moraes RM, Bulbovas P, Sanz MJ, Domingos M, Salatino A (2008) Tibouchina pulchra (Cham.) Cogn., a native Atlantic Forest species, as a bio-indicator of ozone: visible injury. Environ Pollut 152:361–365

    Article  CAS  Google Scholar 

  • Gaare E (1990) Lichen content of radiocesium after the Chernobyl accident in mountains in southern Norway. In: Desmet G et al (eds) Transfer of radionuclides in natural and seminatural environments. Elsevier, London/New York, pp 492–501

    Google Scholar 

  • Gagnon ZE, Karnosky DF (1992) Physiological response of three species of Sphagnum to ozone exposure. J Bryol 17:81–91

    Google Scholar 

  • Gailey FAY, Smith GH, Rintoul LJ, Lloyd OL (1985) Metal deposition patterns in central Scotland, as determined by lichen transplants. Environ Monit Assess 5:291–309

    Article  CAS  Google Scholar 

  • Galarneau E, Makar PA, Sassi M, Diamond ML (2007) Estimation of atmospheric emissions of six semivolatile polycyclic aromatic hydrocarbons in Southern Canada and the United States by use of an emissions processing system. Environ Sci Technol 41:4205–4213

    Article  CAS  Google Scholar 

  • Garćia AZ, Coyotzin CM, Amaro AR, Veneroni DL, Martínez CL, Iglesias GS (2009) Distribution and sources of bioaccumulative air pollutants at Mezquital Valley, Mexico, as reflected by the atmospheric plant Tillandsia recurvata L. Atmos Chem Phys 9:6479–6494

    Article  Google Scholar 

  • Garty J (1993) Plants as biomonitors. In: Markert B (eds) VCH Verlagsgesellschaft mbh, Germany, pp 193–263

    Google Scholar 

  • Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20(4):309–371

    Article  CAS  Google Scholar 

  • Garty J, Galun M, Kessel M (1979) Localization of heavy metal and other elements accumulated in the lichen thallus. New Phytol 82:159–168

    Article  CAS  Google Scholar 

  • Gasparatos D (2012) Fe–Mn concretions and nodules to sequester heavy metals in soils. In: Lichtfouse E et al (eds) Environmental chemistry for a sustainable world, vol 2: remediation of air and water pollution, pp 443–474. doi 10.1007/978-94-007-2439-6_11

  • Geebelen W, Hoffman M (2001) Evaluation of bio-indication methods using epiphytes by correlating with SO2-pollution parameters. Lichenologist 33:249–260

    Article  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • George C (2000) Comparative review of environmental assessment procedures and practice. In: Lee N, George C (eds) Environmental assessment in developing and transitional countries. Wiley, Chichester

    Google Scholar 

  • Gilbert OL (1971) The effect of airborne fluorides on lichens. Lichenologist 5:26–32

    Article  Google Scholar 

  • Giordani P (2007) Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environ Pollut 146:317–323

    Article  CAS  Google Scholar 

  • Giordani P, Brunialti G, Alleteo D (2002) Effects of atmospheric pollution on lichen biodiversity (LB) in a Mediterranean region (Liguria, northwest Italy). Environ Pollut 118:53–64

    Article  CAS  Google Scholar 

  • Giordano S, Sorbo S, Adamo P, Basile A, Spagnuolo V, Cobianchi CR (2004) Biodiversity and trace element content of epiphytic bryophytes in urban and extra-urban sites of southern Italy. Plant Ecol 170:1–14

    Article  Google Scholar 

  • Gob F, Oetit F, Bravard JP, Ozer A, Gob A (2003) Lichenometric application to historical and subrecent dynamics and sediment transport of a Corsican stream (Figarella River, France). Quat Sci Rev 22:2111–2124

    Article  Google Scholar 

  • Godinho RM, Wolterbeek HT, Verburg T, Freitas MC (2008) Bioaccumulation behaviour of lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environ Pollut 151:318–325

    Article  CAS  Google Scholar 

  • Gombert S, Asta J, Seaward MRD (2002) Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area. Environ Pollut 123:281–290

    Article  CAS  Google Scholar 

  • Gorham E (1959) A comparison of lower and higher plants as accumulators of radioactive fall-out. Can J Bot 37:327–329

    Article  CAS  Google Scholar 

  • Goyal R, Seaward MRD (1982) Metal uptake in terricolous lichens. III Translocation in the thallus of Peltigera canina. New Phytol 90:85–98

    Article  CAS  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448–1448

    Article  CAS  Google Scholar 

  • Gries C, Sanz M-J, Nash TH III (1995) The effect of SO2 fumigation on CO2 gas exchange, chlorophyll fluorescence and chlorophyll degradation in different lichen species from western North America. Cryptogam Bot 5:239–246

    Google Scholar 

  • Grosjean D (2003) Ambient PAN and PPN in southern California from 1960 to the SCOS97- NARSTO. Atmos Environ 37:S221–S238

    Article  CAS  Google Scholar 

  • Guidotti M, Stella D, Owczarek M, DeMarco A, De Simone C (2003) Lichens as polycyclic aromatic hydrocarbon bioaccumulators used in atmospheric pollution studies. J Chromatogr 985(1–2):185–190

    CAS  Google Scholar 

  • Guidotti M, Stella D, Dominici C, Blasi G, Owazasek M, Vitali M, Protano C (2009) Monitoring of traffic related pollution in a province of central Italy with transplanted lichen Pseudevernia furfuracea. Bull Environ Contam Toxicol 83:852–858

    Article  CAS  Google Scholar 

  • Guttikunda SK, Carmichael GR, Calori G, Eck C, Woo JH (2003) The contribution of megacities to regional sulfur pollution in Asia. Atmos Environ 37:11–22

    Article  CAS  Google Scholar 

  • Haas JR, Bailey EH, Purvis OW (1998) Bioaccumulation of metals by lichens: uptake of aqueous uranium by Peltigera membranacea as a function of time and pH. Am Miner 83:1494–1502

    CAS  Google Scholar 

  • Haffner E, Lomsky B, Hynek V, Hallgren JE, Batic F, Pfanz H (2001) Air pollution and lichen physiology. Physiological responses of different lichens in a transplant experiment following an SO2-gradient. Water Air Soil Pollut 131:185–201

    Article  CAS  Google Scholar 

  • Hafner WD, Carlson DL, Hites RA (2005) Influence of local human population on atmospheric polycyclic aromatic hydrocarbon concentrations. Environ Sci Technol 39:7374–7379

    Article  CAS  Google Scholar 

  • Hale ME (1983) The biology of lichens, 3rd edn. Edward Arnold, London

    Google Scholar 

  • Halek F, Kianpour-rad M, Kavousi A (2010) Characterization and source apportionment of polycyclic aromatic hydrocarbons in the ambient air (Tehran, Iran). Environ Chem Lett 8:39–44

    Article  CAS  Google Scholar 

  • Han X, Naeher LP (2006) A review of traffic-related air pollution exposure assessment studies in the developing world. Environ Int 32:106–120

    Article  CAS  Google Scholar 

  • Handley R, Overstreet R (1968) Uptake of carrier-free Cs-137 by Ramalina reticulata. Plant Physiol 43:1401

    Article  CAS  Google Scholar 

  • Hansen ES (2008) The application of lichenometry in dating glacier deposits. Geografisk Tidsskrift-Danish J Geogr 108(1):143–151

    Article  Google Scholar 

  • Hanson WC (1967) Cesium-137 in Alaskan lichens, caribou and Eskimos. Health Phys 13:383–389

    Article  CAS  Google Scholar 

  • Hanson WC (1971) Fallout radionuclide distribution in lichen communities near Thule. J Arctic Inst N Am 24(4):269–276

    CAS  Google Scholar 

  • Hanson WC, Eberhardt LL (1971) Cycling and compartimentalizing of radionuclides in northern Alaskan lichen communities. SAEC, COO-2122-5. Memorial Institute of Pacific Northwest Laboratory, Ecos. Department, Battelle, Richland, Washington, DC

    Google Scholar 

  • Harmens H, Foan L, Simon V, Millis G (2013) Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review. Environ Pollut 173:245–254

    Article  CAS  Google Scholar 

  • Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ Sci Technol 30:825–832

    Article  CAS  Google Scholar 

  • Harvey RG, Halonen M (1968) Interaction between carcinogenic hydrocarbons and nucleosides. Cancer Res 28:2183–2186

    CAS  Google Scholar 

  • Hauck M (2008) Epiphytic lichens indicate recent increase in air pollution in the Mongolian capital Ulan Bator. Lichenologist 40(2):165–168

    Article  Google Scholar 

  • Hauck M (2009) Global warming and alternative causes of decline in arctic-alpine and boreal-montane lichens in North-Western Central Europe. Glob Chang Biol 15:2653–2661. doi:10.1111/j.1365-2486.2009.01968.x

    Article  Google Scholar 

  • Hawksworth DL (1971) Lichens as litmus for air pollution: a historical review. Int J Environ Stud 1:281–296

    Article  Google Scholar 

  • Hawksworth DL (1973) Mapping studies. In: Ferry BW, Baddeley MS, Hawksworth DL (eds) Air pollution and lichens. Athlone Press, London, pp 38–76

    Google Scholar 

  • Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichen. Nature 227:145–148

    Article  CAS  Google Scholar 

  • Heald CL, Jacob DJ, Fiore AM, Emmons LK, Gille JC, Deeter MN, Warner J, Edwards DP, Crawford JH, Hamlin AJ, Sachse GW, Browell EV, Avery MA, Vay SA, Westberg DJ, Blake DR, Singh HB, Sandholm ST, Talbot RW, Fuelberg HE (2003) Asian outflow and transpacific transport of carbon monoxide and ozone pollution: an integrated satellite, aircraft and model perspective. J Geophys Res 108(D24):4804

    Article  CAS  Google Scholar 

  • Heald CL, Jacob DJ, Park RJ, Alexander B, Fairlie TD, Yantosca RM, Chu DA (2006) Transpacific transport of Asian anthropogenic aerosols and its impact on surface air quality in the United States. J Geophys Res 111:14310

    Article  CAS  Google Scholar 

  • Herzig R, Urech M (1991) Flechten als Bioindikatoren. Integriertes biologisches Messsystem der Luftverschmutzung für das Schweizer Mittelland. Bibl Lichenol 43:1–283

    Google Scholar 

  • Herzig R, Liebendorfer L, Urech M, Ammann K, Cuecheva M, Landolt W (1989) Passive biomonitoring with lichens as a part of an integrated biological measuring system for monitoring air-pollution in Switzerland. Int J Environ Anal Chem 35:43–57

    Article  CAS  Google Scholar 

  • Holopainen T (1984) Types and distribution of ultra structural symptoms in epiphytic lichens in several urban and industrial environments in Finland. Ann Bot Fennici 21:213–229

    Google Scholar 

  • Holopainen T, Kärenlampi L (1985) Characteristic ultrastructural symptoms caused in lichens by experimental exposure to nitrogen compounds and fluorides. Ann Bot Fenn 22:333–342

    CAS  Google Scholar 

  • Hov Ø (1984) Modelling of the long-range transport of peroxyacetylnitrate to Scandinavia. J Atmos Chem 1:187–202

    Article  CAS  Google Scholar 

  • Hutchinson-Benson E, Svoboda J, Taylor HW (1985) The latitudinal inventory of 137Cs in vegetation and topsoil in northern Canada, 1980. Can J Bot 63:784–791

    Google Scholar 

  • Hviden T, Lillegraven A (1961) 137Cs and 90Sr in precipitation, soil and animals in Norway. Nature 192:1144–1146

    Article  Google Scholar 

  • Hyvärinen M, Koopmann R, Hormi O, Tuomi J (2000) Phenols in reproductive and somatic structures of lichens: a case of optimal defence? Oikos 91:371–375

    Article  Google Scholar 

  • IEA (International Energy Agency) (1999) World Energy Outlook-1999 insights. Looking at energy subsidies. Getting the Price Right, OCED

    Google Scholar 

  • Innes JL (1985) Lichenometry. Prog Phys Geogr 9:187–254

    Article  Google Scholar 

  • Insarov GE (2010) Epiphytic montane lichens exposed to background air pollution and climate change: monitoring and conservation aspects. Int J Ecol Environ Sci 36(1):29–35

    Google Scholar 

  • Insarov GE, Semenov SM, Insarova I (1999) A system to monitor climate change with epilithic lichens. Environ Monit Assess 55:279–298

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001) Climate change 2001: the scientific basis. In: Contribution of working group I to the third IPCC assessment report 944. Cambridge University Press, New York

    Google Scholar 

  • Iqbal A, Oanh NTK (2011) Assessment of acid deposition over Dhaka division using CAMx-MM5 modelling system. Atmos Pollut Res 2:52–462

    Article  CAS  Google Scholar 

  • Iurian AR, Hofmann W, Lettner H, Türk R, Cosma C (2011) Long term study of Cs-137 concentrations in lichens and mosses. Rom J Phys 56(7–8):983–992

    CAS  Google Scholar 

  • Ivanovich M, Harmon RS (1982) Uranium series disequilibrium – applications to environmental problems. Clarendon, Oxford

    Google Scholar 

  • Janssen NAH, Schwartz J, Zanobetti A, Suh HH (2002) Air conditioning and source-specific particles as modifiers of the effect of PM10 on hospital admissions for heart and lung disease. Environ Health Perspect 110:43–49

    Article  CAS  Google Scholar 

  • Japan Environmental Council (2005) The state of the environment in Asia 2005/2006. Springer, Tokyo, p 3

    Book  Google Scholar 

  • Jeran Z, Byrne AR, Batic F (1995) Transplanted epiphytic lichens as biomonitors of air-contamination by natural radionuclides around the Zirovski vrh uranium mine, Slovenia. Lichenologist 27(5):375–385

    Google Scholar 

  • Jeran Z, Jacimovic R, Batic F, Mavsar R (2002) Lichens as integrating air pollution monitors. Environ Pollut 120:107–113

    Article  CAS  Google Scholar 

  • Jerina DM, Thakkar DR, Yagi H, Levin W, Wood AW, Conney AH (1978) Carcinogenicity of benzo(a)pyrene derivatives: the bay region theory. Pure Appl Chem 50:1033–1044

    Article  CAS  Google Scholar 

  • Jorge-Villar SE, Edwards HGM (2009) Lichen colonization of an active volcanic environment: a Raman spectroscopic study of extremophile biomolecular protective strategies. J Raman Spectrosc 41:63–67

    Article  CAS  Google Scholar 

  • Joshi S (2009) Diversity of lichens in Pidari and Milam regions of Kumaon Himalaya. Ph. D. thesis. Kumaon University, Nainital

    Google Scholar 

  • Joshi S, Upreti DK (2008) Lichenometric studies in vicinity of Pindari Glacier in the Bageshwar district of Uttarakhand, India. Curr Sci 99(2):231–235

    Google Scholar 

  • Joshi S, Upreti DK, Punetha N (2008) Change in the lichen flora of Pindari Glacier Valley Uttarakhand (India) during the last three decades. Ann For 16(1):168–169

    Google Scholar 

  • Joshi S, Upreti DK, Das P (2011) Lichen diversity assessment in Pindari glacier valley of Uttarakhand, India. Geophytology 41(1–2):25–41

    Google Scholar 

  • Joshi S, Upreti DK, Das P, Nayaka S (2012) Lichenometry: a technique to date natural hazards. Sci India Popular Issue V(II):1–16. www.earthscienceindia.info

  • Jovan S (2008) Lichen bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California. General technical report PNW-GTR-737. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, 115 p

    Google Scholar 

  • Junshum P, Somporn C, Traichaiyaporn S (2008) Biological indices for classification of water quality around Mae Moh power plant. Int J Sci Technol (Thailand, Maejo) 2(01):24–36

    CAS  Google Scholar 

  • Kardish N, Ronen R, Bubrick P, Garty J (1987) The influence of air pollution on the concentration of ATP and on chlorophyll degradation in the lichen Ramalina duriaei (De Not.) Bagl. New Phytol 106:697–706

    Article  CAS  Google Scholar 

  • Kathuria V (2002) Vehicular pollution control in Delhi, India. Transp Res Part D 7(5):373–387

    Article  Google Scholar 

  • Kathuria V (2004) Impact of CNG on vehicular pollution in Delhi – a note. Transp Res Part D 9(5):409–417

    Article  Google Scholar 

  • Kauppi M (1980) Fluorescence microscopy and microfluorometry for the examination of pollution damage in lichens. Ann Bot Fenn 17:163–173

    CAS  Google Scholar 

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke oven, diesel, and gasoline engines highway tunnels and wood combustion emissions. Atmos Environ 29(4):533–542

    Article  CAS  Google Scholar 

  • Kholia H, Mishra GK, Upreti DK, Tiwari L (2011) Distribution of lichens on fallen twigs of Quercus leucotrichophora and Quercus semecarpifolia in and around Nainital city, Uttarakhand, India. Geophytology 41(1–2):61–73

    Google Scholar 

  • Kim JW (1990) Environmental aspects of transnational corporation activities in pollution-intensive industries in the Republic of Korea: a case study of the Ulsan/Onsan industrial complexes. In: Environmental aspects of transnational corporation activities in selected Asian and Pacific developing countries. ESCAP/UNCTC Publication Series B, No. 15. United Nations, New York, pp 276–319

    Google Scholar 

  • Kim TY (1993) A study on the effects of air pollution in China on the Korean peninsula. Masters thesis, Graduate School of Environmental Studies, Seoul National University, Seoul

    Google Scholar 

  • Kim JW (2006) The environmental impact of industrialization in East Asia and strategies toward sustainable development. Sustain Sci 1:107–114. doi:10.1007/s11625-006-0006-5

    Article  Google Scholar 

  • Kleindienst TE (1994) Recent developments in the chemistry and biology of peroxyacetyl nitrate. Res Chem Intermed 20:335–384

    Article  CAS  Google Scholar 

  • Kondratyuk SY, Coppins BJ (1998) Lobarion lichens as indicators of the primeval forests of the eastern Carpathians. In: Darwin international workshop, Ukraine Phytosociological Center, Kiev, 25–30 May 1998

    Google Scholar 

  • Korenaga T, Liu X, Tsukiyama Y (2000) Dynamics analysis for emission sources of polycyclic aromatic hydrocarbons in Tokushima soils. J Health Sci 46(5):380–384

    Article  CAS  Google Scholar 

  • Kreuzer W, Schauer T (1972) The vertical distribution of Cs137 in Cladonia rangiformis and C. silvatica. Svensk Bot. Tidskr 66:226–238

    Google Scholar 

  • Kricke R, Loppi S (2002) Bioindication: the IAP approach. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens – monitoring lichens. Kluwer, Dordrecht, pp 21–37

    Chapter  Google Scholar 

  • Kulkarni AV (2007) Effect of global warming on the Himalayan cryosphere. Jalvigyan Sameeksha 22:93–108

    Google Scholar 

  • Kuusianen M (1996a) Epiphytic flora and diversity on basal trunks of six old-growth forests tree species in southern and middle boreal Finland. Lichenologist 28:443–463

    Google Scholar 

  • Kuusianen M (1996b) Cyanobacterial macrolichens of Populus tremula as indicators of forest continuity in Finland. Biol Conserv 75:43–49

    Article  Google Scholar 

  • Kwapulinski J, Seaward MRD, Bylinska EA (1985a) Uptake of 226Radium and 228Radium by the lichen genus Umbilicaria. Sci Tot Environ 41:135–141

    Article  CAS  Google Scholar 

  • Kwapulinski J, Seaward MRD, Bylinska EA (1985b) 137Caesium content of Umbilicaria-species, with particular reference to altitude. Sci Tot Environ 41:125–133

    Article  CAS  Google Scholar 

  • Laden F, Neas LM, Dockery DW, Schwartz J (2000) Association of fine particulate matter from different sources with daily mortality in six US cities. Environ Health Perspect 108:941–947

    Article  CAS  Google Scholar 

  • Lal B, Ambasht RS (1981) Impairment of chlorophyll content in the leaves of Diospyros melanoxylon in relation to fluoride pollution. Water Air Soil Pollut 16:361–365

    Article  CAS  Google Scholar 

  • Lalnunmawia H. (2010) Impact of tourism in India. www.itopc.org/travel-equisite/tourism-statistics.html. Accessed on 28 Nov 2011

  • Lane DA, Johnson ND, Hanley M, Schroeder WH, Ord DT (1992a) Gas and particle-phase concentrations of alpha-hexachlorocyclohexane, gamma-hexachlorocyclohexane, and hexachlorobenzene in Ontario air. Environ Sci Technol 26:126–133

    Article  CAS  Google Scholar 

  • Lane DA, Schroeder WH, Johnson ND (1992b) On the spatial and temporal variations in the atmospheric concentrations of hexachlorobenzene and hexachlorocyclohexane isomers at several locations in the province of Ontario, Canada. Atmos Environ A 26:31–42

    Article  Google Scholar 

  • Larsen RS, Bell JNB, James PW, Chimonides PJ, Rumsey FJ, Tremper A, Purvis OW (2007) Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environ Pollut 146:332–340

    Article  CAS  Google Scholar 

  • LeBlanc F, Robitaille G, Rao D (1974) Biological response of lichens and bryophytes to environmental pollution in the Murdochville copper Mine area, Quebec. J Hattori Bot Lab 38:405–433

    CAS  Google Scholar 

  • Lee SS (2005) One out of thirty Chinese poisoned by fluoride. http://www.hani.co.kr/kisa/section-004005000/2005/08/p004005000

  • Lee YH, Shyu TH, Chiang MY (2003) Fluoride accumulation and leaf injury of tea and weeds in the vicinity of a ceramics factory. Taiwanese J Agric Chem Food Sci 41:87–94

    CAS  Google Scholar 

  • Lee G, Jang Y, Lee H, Han JS, Kim KR, Lee M (2008) Characteristic behavior of peroxyacetyl nitrate (PAN) in Seoul megacity, Korea. Chemosphere 73:619–628

    Article  CAS  Google Scholar 

  • Lefohn AS (1991) Surface level ozone exposure and their effects on vegetation. Lewis Publishers, Boca Raton

    Google Scholar 

  • Li XS, Zhi JL, Gao RO (1995) Effect of fluoride exposure on intelligence in children. Fluoride 28(4):89–192

    CAS  Google Scholar 

  • Li P, Feng XB, Qiu GL, Shang LH, Li ZG (2009) Mercury pollution in Asia: a review of the contaminated sites. J Hazard Mater 168:591–601

    Article  CAS  Google Scholar 

  • Lidén K, Gustavsson M (1967) Relationships and seasonal variation of Cs-137 in lichen, reindeer and man in northern Sweden 1961 to 1965. In: Aberg B, Higate FP (eds) Radioecological concentration processes. Proceedings international symposium, 1966. Pergamon Press, Oxford, pp 193–207

    Google Scholar 

  • Lisowska M (2011) Lichen recolonisation in an urban-industrial area of southern Poland as a result of air quality improvement. Environ Monit Assess 179(1–4):177–190

    Article  CAS  Google Scholar 

  • Liu K, Colinvaux PA (1988) A 5200-year history of Amazon rain forest. J Biogeogr 15:231–248

    Article  Google Scholar 

  • Liu J, Diamond J (2005) China’s environment in a globalizing world. Nature 435:1179–1186

    Article  CAS  Google Scholar 

  • Liu H, Jacob DJ, Bey I, Yantosca RM, Duncan BN, Sachse GW (2003) Transport pathways for Asian pollution outflow over the Pacific: interannual and seasonal variations. J Geophys Res 108:8786

    Article  CAS  Google Scholar 

  • Lodenius M, Kiiskinen J, Tulisalo E (2010) Metal levels in an epiphytic lichen as indicators of air quality in a suburb of Helsinki, Finland. Boreal Environ Res 15:446–452

    CAS  Google Scholar 

  • Lohani BN, Evans JW, Everitt RR, Ludwig H, Carpenter RA, Tu S-L (1997) Environmental impact assessment for developing countries in Asia. Asian Development Bank, Manila

    Google Scholar 

  • Loppi S, Frati L (2006) Lichen diversity and lichen transplants as monitors of air pollution in a rural area of central Italy. Environ Monit Assess 114:361–375. doi:10.1007/s10661-006-4937-1

    Article  CAS  Google Scholar 

  • Loppi S, Pirintsos SA (2000) Effect of dust on epiphytic lichen vegetation in the Mediterranean area (Italy and Greece) Isreal. J Plant Sci 48:91–95

    Google Scholar 

  • Loppi S, Pirintsos SA (2003) Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystem (central Italy). Environ Poll 121:327–332

    Article  CAS  Google Scholar 

  • Loppi S, Pacioni G, Olivieri N, Di Giacomo F (1998) Accumulation of trace metals in the lichen Evernia prunastri transplanted at biomonitoring sites in Central Italy. Bryologist 101(3):451–454

    CAS  Google Scholar 

  • Loppi S, Ivanov D, Boccardi R (2002) Biodiversity of epiphytic lichens and air pollution in the town of Siena (Central Italy). Environ Pollut 116:123–128

    Article  CAS  Google Scholar 

  • Lozan JL, Grabl H, Hupfer P (2001) Summary: warning signals from climate in climate of 21st century: changes and risks. Wissenschaftliche Auswertungen, Berlin, pp 400–408

    Google Scholar 

  • LRTAP Convention (1998) Protocol to the 1979 convention on long-range transboundary air pollution on persistent organic pollutants. http://www.unece.org/env/lrtap/

  • Mackay D, Wania FA (1995) Global distribution model for persistent organic chemicals. Sci Total Environ 160/161:25–38

    Article  Google Scholar 

  • Mackay D, Shiu W-Y, Ma K-C (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. FL7 Lewis, Boca Raton

    Google Scholar 

  • Madkour SA, Laurence JA (2002) Egyptian plant species as new ozone indicators. Environ Pollut 120:339–353

    Article  CAS  Google Scholar 

  • Markert BA, Breure AM, Zechmeister HG (2003) Definitions, strategies and principles for bioindication/biomonitoring of the environment. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier, Oxford, pp 3–39

    Chapter  Google Scholar 

  • Martin JH (1991) Iron still comes from above. Nature 353:123

    Article  Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343

    Article  CAS  Google Scholar 

  • Martin JR, Koranda JJ (1971) Recent measurements of Cs-137 residence time in Alaskan vegetation. U.S. Atom. Energy Comm. Rep. CONF-71050, pp 1–34

    Google Scholar 

  • Martin RV, Jacob DJ, Yantosca RM, Chin M, Ginoux P (2003) Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J Geophys Res 108:4097

    Article  CAS  Google Scholar 

  • Masclet P, Hoyau V, Jaffrezo JL, Legrand M (1995) Evidence for the presence of polycyclic aromatic hydrocarbons in the polar atmosphere and in the polar ice of Greenland. Analusis 23:250–252

    CAS  Google Scholar 

  • Mason MG, Cameron I, Petterson DS, Home RW (1987) Effect of fluoride toxicity on production and quality of wine grapes. J Aust Inst Agric Sci 53:96–99

    CAS  Google Scholar 

  • Mastral AM, Lopez JM, Callen MS, Garcya T, Murillo R (2003) Spatial and temporal PAH concentrations in Zaragoza, Spain. Sci Total Environ 307:111–124

    Article  CAS  Google Scholar 

  • Mattsson LJS (1974) Cs-137 in the Reindeer Lichen Cladonia alpestris: deposition, retention and internal distribution 1961–1970. Health Phys 28:233–248

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  • Mc Cune B (1993) Gradients in epiphytic biomass in three Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. Bryologist 96:405–411

    Article  Google Scholar 

  • McGrath SP (1995) Chromium and nickel. In: Alloway BJ (ed) Heavy metals in soils, 2nd edn. Blackie/Academic and Professional, London, pp 152–174

    Chapter  Google Scholar 

  • Menard PB, Peterson PJ, Havas M, Steinnes E, Turner D (1987) Lead, cadmium and arsenic in the environment. In: Hutchison TC et al (eds) Environmental contamination. Wiley, New York, pp 43–48

    Google Scholar 

  • Menon S et al (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    Article  CAS  Google Scholar 

  • Meyerhof D, Marshall H (1990) The non-agricultural areas of Canada and radioactivity. In: Desmet G et al (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 48–55

    Google Scholar 

  • Miguel AH, Kirchstetter TW, Harley RA, Hering SV (1998) On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ Sci Technol 32:450–455

    Article  CAS  Google Scholar 

  • Millán MM, Artiñnano B, Alonso L, Castro M, Fernádez-Patier R, Goberna J (1992) Meso-meteorological cycles of air pollution in the Iberian Peninsula (MECAPIP) (Air pollution research report 44, EUR N-14834). European Commission, Brussels, DG XII/E-1

    Google Scholar 

  • Mishra SK, Upreti DK, Pandey V, Bajpai R (2003) Pollution monitoring with the help of lichens transplant technique in some commercial and industrial areas of Lucknow City. Pollut Res 22(2):221–225

    CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxic (Amsterdam, Netherlands) 86:205–215

    Article  CAS  Google Scholar 

  • Moraes RM, Klumpp A, Furlan CM, Klumpp G, Domingos M, Rinaldi MCS, Modesto IF (2002) Tropical fruit trees as bioindicators of industrial air pollution in southeast Brazil. Environ Int 28:367–374

    Article  CAS  Google Scholar 

  • Mukhopadhyaya K, Forssel O (2005) An empirical investigation of air pollution from fossil fuel combustion and its impact on health in India during 1973–1974 to 1996–1997. Ecol Econ 55:235–250

    Article  Google Scholar 

  • Naeher LP, Holford TR, Beckett WS, Belanger K, Triche EW, Bracken MB et al (1999) Healthy women’s PEF variations with ambient summer concentrations of PM10, PM25, SO4 2−, H+, and O3. Am J Respir Crit Care Med 60:117–125

    Article  Google Scholar 

  • Narayan D, Agrawal M, Pandey J, Singh J (1994) Changes in vegetation characteristics downwind of an aluminium factory in India. Ann Bot 73:557–565

    Article  Google Scholar 

  • Nash TH III (1971) Lichen sensitivity to hydrogen fluoride. Bull Torr Bot Club 98(2):103–106

    Article  CAS  Google Scholar 

  • Nash TH (1976) Sensitivity of lichens to nitrogen dioxide fumigations. Bryologist 79:103–106

    Article  CAS  Google Scholar 

  • Nash TH III (2008) Lichen biology, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nash TH, Gries C (1991) Lichens as indicators of air pollution. In: Hutzinger O (ed) The handbook of environmental chemistry, vol 4. Part C. Springer, Berlin

    Google Scholar 

  • Nash TH III, Sommerfield MR (1981) Elemental concentrations in lichens in the area of the four corner power plant, New Mexico. Environ Exp Bot 21:153–162

    Article  CAS  Google Scholar 

  • Nash TH III, Wirth V (1988) Lichens, bryophytes and air quality. Bibl Lichenol 30:1–298

    Google Scholar 

  • Nayaka S, Upreti DK (2005a) Status of lichen diversity in Western Ghats, India. Sahyadri E-News, p 16. http://wgbis.ces.iisc.ernet.in/biodiversity/sahyadri-news/newsletter/issue16/main_index.htm

  • Nayaka S, Upreti DK (2005b) Lichen flora of Pune City (India) with reference to air pollution (Abstract). In: IIIrd international conference on plants and environmental pollution, NBRI, Lucknow, 28 Nov–2 Dec 2005

    Google Scholar 

  • Nayaka S, Upreti DK, Gadgil M, Pandey V (2003) Distribution pattern and heavy metal accumulation in lichens of Bangalore city with special reference to lalbagh Garden. Curr Sci 84(5):674–680

    CAS  Google Scholar 

  • Nayaka S, Singh PK, Upreti DK (2005a) Fungicidal elements accumulated in Cryptothecia punctata(Ascomycetes) lichens of an Arecanut Orchard in South India. J Environ Biol 26(2):299–300

    CAS  Google Scholar 

  • Nayaka S, Upreti DK, Pandey V, Pant V (2005b) Manganese (Mn) in lichens growing on magnasite rocks in India. Bull Bri Lic Soc 97:66–68

    Google Scholar 

  • Nayaka S, Ranjan S, Saxena P, Pathre UV, Dk U, Singh R (2009) Assessing the vitality of Himalayan lichens by measuring their photosynthetic performances using chlorophyll fluorescence technique. Curr Sci 97(4):538–545

    CAS  Google Scholar 

  • Negra C, Ross DS, Lanzirotti A (2005) Oxidizing behavior of soil manganese: interactions among abundance, oxidation state and pH. Soil Sci Soc Am J 69:87–95

    Article  CAS  Google Scholar 

  • Neitlich P, Will-Wolf S (2000) The lichen community indicator in the forest Inventory and Analysis FHM program: using lichen communities to monitor forest health. Poster Forest Health Monitoring Workshop, Orange Beach, Albama, 14–17 Feb 2000

    Google Scholar 

  • Nevstrueva MA, Ramzaev PV, Ibatullin AA, Teplykh LA (1967) The nature of Cs-137 and Sr-90 transport over the lichen-reindeer-man food chain. In: Radioecology concentration processes. Proceedings of the international symposium, Stockholm, 1966, pp 209–215

    Google Scholar 

  • Nieboer E, Richardson DHS (1981) Lichens as monitors of atmospheric deposition. In: Eisenreich SJ (ed) Atmospheric pollutants in natural waters. Ann Arbor Science, Ann Arbor, pp 339–388

    Google Scholar 

  • Nieboer E, Puckett KJ, Richardson DHS, Tomassini FD, Grace B (1977) Ecological and physiochemical aspects of the accumulation of heavy metals and sulphur in lichens. In: Nieboer E, Puckett KJ, Richardson DHS (eds) International conference on heavy metals in the environment. Symposium proceedings, Toranto, vol 2, pp 331–352

    Google Scholar 

  • Nieboer E, Richardson DHS, Tomassini FD (1978) Mineral uptake and release by lichen: an overview. Bryologist 81:226–246

    Article  CAS  Google Scholar 

  • Niemi GJ, McDonald ME (2004) Application of ecological indicators. Annu Rev Ecol Evol Syst 35:89–111

    Article  Google Scholar 

  • Nifontova MG (2000) Concentrations of Long-lived Artificial Radionuclides in the Moss-Lichen Cover of Mountain Plant Communities. Russ J Ecol 31(3):182–185

    Article  Google Scholar 

  • Nikipelov BV, Drozhko EG, Romanov GN, Voronov AS, Spirin DA, Alexakhin RM, Smirnov EG, Suvorova LI, Tikhomirov FA, Buldakov LA, Shvedov VL, Tepyakovi IG, Shilin VP (1990) The Kyshtym accident: close-up (In Russian). Nature (USSR) 5:47–75

    Google Scholar 

  • Nimis PL (1990) Air quality indicators and indices: the use of plants as bioindicators for monitoring of air pollution. In: Colombo AG, Premazzi G (eds) Procedings of the workshop on indicators and indices for environmental impact assessment and risk analysis. Joint Research Centre, Ispra, pp 93–126

    Google Scholar 

  • Nimis PL (1996) Radiocaesium in plants of forest ecosystems. Studia Geobotanica 15:3–49

    Google Scholar 

  • Nimis PL (1999) Linee guida per la bioindicazione degli effetti dell’inquinamento tramite la biodiversità dei licheni epifiti. In: Piccini C, Salvat S (eds) Atti Workshop Biomonitoraggio Qualita` dell’Aria sul territorio Nazionale, Roma. ANPA, Roma, 1998, pp 267–277

    Google Scholar 

  • Nimis PL, Castello M, Perotti M (1990) Lichens as biomonitors of Sulphur dioxide pollution in La Spezia (Northern Italy). Lichenologist 22:333–344

    Article  Google Scholar 

  • Nimis PL, Castello M, Perotti M (1993) Lichens as bioindicators of heavy metal pollution: a case study at La Spezia (N Italy). In: Markert B (ed) Plants as biomonitors, indicators for heavy metals in the terrestrial environment. VCH, Weinheim, pp 265–284

    Google Scholar 

  • Niriagu JO, Azcue JM (1990) Environmental sources of arsenic in food. Adv Environ Sci Technol 23:103–127

    Google Scholar 

  • Nriagu JO, Pacyna J (1988) Quantitative assessment of worldwide contamination if air, water and soil by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • O’Neill MS, Loomis D, Borja-Aburto VH (2004) Ozone, area social conditions, and mortality in Mexico City. Environ Res 94:234–242

    Article  CAS  Google Scholar 

  • Odum EP (1996) Fundamentals of ecology, 1st Indian edn. Natraj Publishers, Dehradun

    Google Scholar 

  • Ou D, Liu M, Cheng S, Hou L, Xu S, Wang L (2010) Identification of the sources of polycyclic aromatic hydrocarbon based on molecular and isotopic characterization from the Yangtze estuarine and nearby coastal areas. J Geogr Sci 20(2):283–294

    Article  Google Scholar 

  • Paakola HE, Miettinen JK (1963) 90Sr and 137Cs in plants and animals in Finnish Lapland during 1960. Ann Acad Sci Fenn Ser A2:125–138

    Google Scholar 

  • Pacyna JM, Breivik K, Munch J, Fudala J (2003) European atmospheric emissions of selected persistent organic pollutants, 1970–1995. Atmos Environ 37:S119–S131

    Article  CAS  Google Scholar 

  • Panayotou T (2003) Economic growth and the environment. Chapter 2. In: Spring Seminar of the United Nations Economic Commission for Europe. Economic survey of Europe, Geneva, pp 45–72

  • Pandey GP (1981) A survey of fluoride pollution effects on the forest ecosystem around an aluminium factory in Mirzapur, U.P., India. Environ Conserv 8:131–137

    Article  CAS  Google Scholar 

  • Pandey GP (1985) Effects of gaseous hydrogen fluoride on leaves of Terminalia tomentosa and Buchannania lanzan trees. Environ Conserv 37:323–334

    CAS  Google Scholar 

  • Paoli L, Pisani T, Guttová A, Sardella G, Loppi S (2011) Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: relationship with the lichen diversity. Ecotoxicol Environ Saf 74(4):650–657

    Article  CAS  Google Scholar 

  • Papastefanou C, Manolopoulou M, Charalambous S (1988) Radiation measurements and radioecological aspects of fallout from the Chernobyl accident. J Environ Radioact 7:49–64

    Article  CAS  Google Scholar 

  • Papastefanou C, Manolopoulou M, Sawidis T (1992) Residence time and uptake rates of 137Cs in lichens and mosses at temperate latitude (40Nº). Environ Int 18:397–401

    Article  CAS  Google Scholar 

  • Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Seoul Korea. Atmos Environ 36:2917–2924

    Article  CAS  Google Scholar 

  • Patra AC, Sahoo SK, Tripathi RM, Puranik VD (2013) Distribution of radionuclides in surface soils, Singhbhum Shear Zone, India and associated dose. Environ Monit Assess. doi:10.1007/s10661-013-3138-y

    Google Scholar 

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansion and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankvogel, Tyrol Austria. Glob Chang Biol 13:147–156

    Article  Google Scholar 

  • Pawlik-Skowrońska BL, Sanita di Toppi MA, Favali F, Fossati J, Pirszel TS (2002) Lichens respond to heavy metals by phytochelatin synthesis. New Phytol 156:95–102

    Article  Google Scholar 

  • Perkins DF (1992) Relationship between fluoride contents and loss of lichens near an aluminium works. Water Air Soil Pollut 64:503–510

    Article  CAS  Google Scholar 

  • Pinho P, Augusto S, Branquinho C, Bio A, Pereira MJ, Soares A, Catarino F (2004) Mapping lichen diversity as a first step for air quality assessment. J Atm Chem 49:377–389

    Article  CAS  Google Scholar 

  • Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci USA 96:3447–3454. doi:10.1073/pnas.96.7.3447

    Article  CAS  Google Scholar 

  • Prasad MNV (1997) Trace metal. In: Prasad MNV (ed) Plant physiology. Wiley, New York, pp 207–249

    Google Scholar 

  • Preutthipan A, Udomsubpayakul U, Chaisupamongkollarp T, Pentamwa P (2004) Effect of PM10 pollution in Bangkok on children with and without asthma. Pediatr Pulmonol 37:187–192

    Article  Google Scholar 

  • Prospero JM (1999) Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. Proc Natl Acad Sci USA 96:3396–3403

    Article  CAS  Google Scholar 

  • Puckett KJ (1988) Bryophytes and lichens as monitors of metal deposition. In: Nash TH III (ed) Lichens, bryophytes and air quality, Bibliotheca Lichenologica 30. J. Cramer, Berlin, pp 231–267

    Google Scholar 

  • Pulak D, Joshi S, Rout J, Upreti DK (2012) Impact of a paper mill on surrounding epiphytic lichen communities using multivariate analysis. Indian J Ecol 39(1):38–43

    Google Scholar 

  • Purvis OW (2000) Lichens. The Natural History Museum, London

    Google Scholar 

  • Purvis OW, Dubbin W, Chimonides PDJ, Jones GC, Read H (2008) The multielement content of the lichen Parmelia sulcata, soil, and oak bark in relation to acidification and climate. Sci Total Environ 390:558–568

    Article  CAS  Google Scholar 

  • Rai H, Khare R, Gupta RK, Upreti DK (2011) Terricolous lichens as indicator of anthropogenic disturbances in a high altitude grassland in Garhwal (Western Himalaya), India. Botanica Orientalis. J Plant Sci 8:16–23

    Google Scholar 

  • Rani M, Shukla V, Upreti DK, Rajwar GS (2011) Periodical monitoring with lichen, Phaeophyscia hispidula (Ach.) Moberg in Dehradun city, Uttarakhand, India. Environmentalist 31:376–381. doi:10.1007/s10669-011-9349-2

    Article  Google Scholar 

  • Rao DN, LeBlanc F (1967) Influence of an iron sintering plant on corticolous epiphytes inWawa, Ontario. Bryologist 70:141–157

    Google Scholar 

  • Ravindra K, Sokhi R, Grieken RV (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921. doi:10.1016/j.atmosenv.2007.12.010

    Article  CAS  Google Scholar 

  • Ravindra K, Wauters E, Tyagi SK, Mor S, Van Grieken R (2006) Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi India. Environ Monit Assess 115:405–417

    Article  CAS  Google Scholar 

  • Riddell J, Padgett PE, Nash TH III (2010) Responses of the lichen Ramalina menziesii Tayl. to ozone fumigations. In: Nash TH et al. (eds.) Biology of Lichens-Symbiosis, Ecology, Environmental Monitoring, Systematics and Cyber Applications. Bibliotheca Lichenologica 105:113–123

    Google Scholar 

  • Rosenfeld D et al (2007) Inverse Relations Between Amounts of Air Pollution and Orographic Precipitation. Science 315:1396–1398

    Article  CAS  Google Scholar 

  • Ross LJ, Nash TH III (1983) Effect of ozone on gross photosynthesis of lichens. Environ Exp Bot 23(1):71–77

    Article  CAS  Google Scholar 

  • Ruoss E, Vonarburg C (1995) Lichen diversity and ozone impact in rural areas of central Switzerland. Cryptogam Bot 5:252–263

    Google Scholar 

  • Saipunkaew W, Wolseley PA, Chimonides PJ, Boonpragob K (2007) Epiphytic macrolichens as indicators of environmental alteration in northern Thailand. Environ Pollut 146:366–374

    Article  CAS  Google Scholar 

  • Salo A, Miettinen JK (1964) Strontium-90 and Caesium-137 in Arctic vegetation during 1961. Nature 201:1177–1179

    Article  CAS  Google Scholar 

  • Sanità di Toppi L, Musetti R, Vattuone Z, Pawlik-Skowrońska B, Fossati F, Bertoli L, Badiani M, Favali MA (2005) Cadmium distribution and effects on ultrastructure and chlorophyll status in photobionts and mycobionts of Xanthoria parietina. Microscop Res Tech 66:229–238

    Article  CAS  Google Scholar 

  • Sanz M-J, Gries C, Nash TH III (1992) Dose-response relationships for SO2 fumigations in the lichens Evernia prunastri (L.) Ach. and Ramalina fraxinea (L.) Ach. New Phytol 122:313–319

    Article  CAS  Google Scholar 

  • Sasaki J, Aschmann SM, Kwok ESC, Atkinson R, Arey J (1997) Product of the gas-phase OH and NO3 Radical-initiated reactions of naphthalene. Environ Sci Technol 31:3173–3179

    Article  CAS  Google Scholar 

  • Satya, Upreti DK (2009) Correlation among carbon, nitrogen, sulphur and physiological parameters of Rinodina sophodes found at Kanpur city, India. J Hazard Mater 169:1088–1092. doi:10.1016/j/jhazmat.2009.04.063

    Google Scholar 

  • Satya, Upreti DK, Patel DK (2012) Rinodina sophodes(Ach.) Massal.: a bioaccumulator of polycyclic aromatic hydrocarbons (PAHs) in Kanpur city, India. Environ Monit Assess 184:229–238

    Article  CAS  Google Scholar 

  • Sawidis T (1988) Uptake of radionuclides by plants after the Chernobyl accident. Environ Pollut 50

    Google Scholar 

  • Saxena S (2004) Lichen flora of Lucknow district with reference to Air Pollution studies in the area. Ph.D. thesis, Lucknow University, Lucknow

    Google Scholar 

  • Saxena S, Upreti DK, Sharma N (2007) Heavy metal accumulation in lichens growing in north side of Lucknow city. J Environ Biol 28(1):45–51

    Google Scholar 

  • Scheidegger C, Schroeter B (1995) Effects of ozone fumigation on epiphytic macrolichens: ultrastructure, CO2 gas exchange and chlorophyll fluorescence. Environ Pollut 88(3):345–354

    Article  CAS  Google Scholar 

  • Seaward MRD (1974) Some observations on heavy metal toxicity and tolerance in lichens. Lichenologist 6:158–164

    Article  Google Scholar 

  • Seaward MRD (1988) Lichen damage to ancient monuments: a case study. Lichenologist 10(3):291–295

    Article  Google Scholar 

  • Seaward MRD (1989) Lichens as monitors of recent changes in air pollution. Plants Today 1:64–69

    Google Scholar 

  • Seaward MRD (1992) Lichens, silent witnesses of the Chernobyl disaster. University of Bradford, Bradford

    Google Scholar 

  • Seaward MRD (1993) Lichens and sulphur dioxide air pollution field studies. Environ Rev 1:73–91

    Article  CAS  Google Scholar 

  • Seaward MRD (1997) Urban deserts bloom: a lichen renaissance. Bibliotheca Lichenologica 67:297–309

    Google Scholar 

  • Seaward MRD, Heslop JA, Green D, Bylinska EA (1988) Recent levels of radionuclides in lichens from southwest Poland with particular reference to 134Cs and 137Cs. J Environ Radioact 7:123–129

    Article  CAS  Google Scholar 

  • Sernander R (1926) Stockholms Natur. Almguist and Wiksella, Uppsala

    Google Scholar 

  • Shirazi AM, Muir PS, McCune B (1996) Environmental factors influencing the distribution of lichen Lobaria oregano and L. pulmonaria. Bryologist 99(1):12–18

    Article  Google Scholar 

  • Shukla V (2007) Lichens as bioindicator of air pollution. Final technical report. Science and Society Division, Department of Science and Technology, New Delhi. Project No. SSD/SS/063/2003

    Google Scholar 

  • Shukla V (2012) Physiological response and mechanism of metal tolerance in lichens of Garhwal Himalayas. Final technical report. Scientific and Engineering Research Council, Department of Science and Technology, New Delhi. Project No. SR/FT/LS-028/2008

    Google Scholar 

  • Shukla V, Upreti DK (2007a) Physiological response of the lichen Phaeophyscia hispidula (Ach.) Essl. to the Urban Environment of Pauri and Srinagar (Garhwal), Himalayas. Environ Pollut 150:295–299. doi:10.1016/j.envpol.2007.02.010

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK (2007b) Heavy metal accumulation in Phaeophyscia hispidula en route to Badrinath, Uttaranchal, India. Environ Monit Assess 131:365–369. doi:10.1007/s10661-006-9481-5

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK (2007c) Lichen diversity in and around Badrinath, Chamoli district (Uttarakhand). Phytotaxonomy 7:78–82

    Google Scholar 

  • Shukla V, Upreti DK (2008) Effect of metallic pollutants on the physiology of lichen, Pyxine subcinerea Stirton in Garhwal Himalayas. Environ Monit Assess 141:237–243. doi:10.1007/s10661-007-9891-z

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK (2009) Polycyclic Aromatic Hydrocarbon (PAH) accumulation in lichen, Phaeophyscia hispidula of DehraDun city, Garhwal Himalayas. Environ Monit Assess 149(1–4):1–7

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK (2011a) Changing lichen diversity in and around urban settlements of Garhwal Himalayas due to increasing anthropogenic activities. Environ Monit Assess 174(1–4):439–444. doi:10.1007/s10661-010-1468-6

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK (2011) Statistical correlation of metallic content and polycyclic aromatic hydrocarbon concentration to trace the source of PAH pollution. In: XXXIV All India Botanical Conference, Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, 10–12 October 2011

    Google Scholar 

  • Shukla V, Upreti DK (2012) Air quality monitoring with lichens in India: heavy metals and polycyclic aromatic hydrocarbon. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world, vol 2, Remediation of air and water pollution. Springer, New York, pp 277–294

    Chapter  Google Scholar 

  • Shukla V, Upreti DK, Nayaka S (2006) Heavy metal accumulation in lichens of Dehra Dun city, Uttaranchal, India. Indian J Environ Sci 10(2):165–169

    Google Scholar 

  • Shukla V, Upreti DK, Patel DK, Tripathi R (2010) Accumulation of polycyclic aromatic hydrocarbons in some lichens of Garhwal Himalayas, India. Int J Environ Waste Manag 5(1/2):104–113

    Article  CAS  Google Scholar 

  • Shukla V, Patel DK, Upreti DK, Yunus M (2012a) Lichens to distinguish urban from industrial PAHs. Environ Chem Lett 10:159–164. doi:10.1007/s10311-011-0336-0

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK, Patel DK (2012b) Physiological attributes of Phaeophyscia hispidula in heavy metal rich sites of Dehra Dun. India J Environ Biol 33:1051–1055

    CAS  Google Scholar 

  • Shukla V, Patel DK, Upreti DK, Yunus M, Prasad S (2013a) A comparison of heavy metals in lichen (Pyxine subcinerea), mango bark and soil. Int J Environ Sci Technol 10:37–46. doi:10.1007/s13762-012-0075-1

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK, Patel DK, Yunus M (2013b) Lichens reveal air PAH fractionation in the Himalaya. Environ Chem Lett. doi:10.1007/s10311-012-0372-4

    Google Scholar 

  • Sigal LL, Nash TH III (1983) Lichen communities on conifers in southern California: an ecological survey relative to oxidant air pollution. Ecology 64:1343–1354

    Article  Google Scholar 

  • Sillett SC, Neitlich P (1996) Emerging themes in epiphytic research in Westside forests with special reference to cyanolichens. Northwest Sci 70:54–60

    Google Scholar 

  • Sillett SC, Mc Cune B, Perk JE, Rambo TR, Ruchty A (2000) Dispersal limitations epiphytic lichen result in species dependent on old growth forests. Ecol Appl 10:789–799

    Article  Google Scholar 

  • Singh HB (1987) Reactive nitrogen in the troposphere. Environ Sci Technol 21(4):320–327

    Article  CAS  Google Scholar 

  • Singh JS (2011) Methanotrophs: the potential biological sink to mitigate the global methane load. Curr Sci 100(1):29–30

    CAS  Google Scholar 

  • Singh HB, Herlth D, Ohara D, Zahnle K, Bradshaw JD, Sandholm ST, Talbot R, Crutzen PJ, Kanakidou M (1992a) Relationship of peroxyacetyl nitrate to active and total odd nitrogen at Northern High-Latitudes – influence of reservoir species on NOx and O3. J. Geophys Res Atmos 97:16523–16530

    Article  CAS  Google Scholar 

  • Singh HB, Ohara D, Herlth D, Bradshaw JD, Sandholm ST, Gregory GL, Sachse GW, Blake DR, Crutzen J, Kanakidou MA (1992b) Atmospheric measurements of peroxyacetyl nitrate and other organic Nitrates at high-latitudes – possible sources and sinks. J Geophys Res-Atmos 97:16511–16522

    Article  CAS  Google Scholar 

  • Singh J, Agarwal M, Narayan D (1994) Effect of power plant emissions on plant community structure. Ecotoxicology 3:110

    Article  CAS  Google Scholar 

  • Singh HB, Herlth D, Kolyer R, Chatfield R, Viezee W, Salas LJ, Chen Y, Bradshaw JD, Sandholm ST, Talbot R, Gregory GL, Anderson B, Sachse GW, Browell E, Bachmeier AS, Blake DR, Heikes B, Jacob D, Fuelberg HE (1996) Impact of biomass burning emissions on the composition of the South Atlantic troposphere: reactive nitrogen and ozone. J Geophys Res 101(D19):24203–24219

    Article  CAS  Google Scholar 

  • Singh H, Chen Y, Tabazadeh A, Fukui Y, Bey I, Yantosca R, Jacob D, Arnold F, Wohlfrom K, Atlas E, Flocke F, Blake N, Heikes B, Snow J, Talbot R, Gregory G, Sachse G, Vay S, Kondo Y (2000a) Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic. J Geophys Res 105(D3):3795–3805

    Article  CAS  Google Scholar 

  • Singh HB, Viezee W, Chen Y, Bradshaw J, Sandholm S, Blake D, Blake N, Heikes B, Snow J, Talbot R, Browell E, Gregory G, Sachse G, Vay S (2000b) Biomass burning influences on the composition of the remote South Pacific troposphere: analysis based on observations from PEM-Tropics-A. Atmos Environ 34(4):635–644

    Article  CAS  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapthi B (2006) Metabolic adaptation to arsenic-induced oxidative stress in Pteris vittata L. and P. ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh J, Dubey AK, Singh RP (2011) Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Rev Environ Sci Biotechnol 10(1):63–77. doi:10.1007/s11157-010-9226-3

    Article  Google Scholar 

  • Sipman HJM (1997) Observations on the foliicolous lichen and bryophyte flora in the canopy of a semi-deciduous tropical forest. Abstracta Botanica 21:153–161

    Google Scholar 

  • Sloof JE, Wolterbeek BT (1992) Lichens as biomonitors for radiocesium following the Chernobyl accident. J Environ Radioact 16:229–242

    Article  CAS  Google Scholar 

  • Smith DJT, Harrison RM (1998) Polycyclic aromatic hydrocarbons in atmospheric particles. In: Harrison RM, Van Grieken R (eds) Atmospheric particles. Wiley, New York

    Google Scholar 

  • Smith G, Coulston J, Jepsen E, Prichard T (2003) A national ozone biomonitoring program e results from field surveys of ozone sensitive plants in northeastern forests (1994–2000). Environ Model Assess 87:271–291

    Article  CAS  Google Scholar 

  • Søchting U (2004) Flavoparmelia caperata – a probable indicator of increased temperatures in Denmark. Graphis Scripta 15:53–56

    Google Scholar 

  • Sokolik IN, Toon OB, Bergstrom RW (1998) Modeling of radiative characteristics of airborne mineral aerosols at infrared wavelengths. J Geophys Res 103:8813–8826

    Article  Google Scholar 

  • Sporn SG, Bos MM, Kessler M, Gradstein SR (2010) Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodivers Conserv 19:745–760. doi:10.1007/s10531-009-9731-2

    Article  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differently during arsenite and arsenate stress in Hydrilla verticillata (L.f) Royle. Environ Sci Technol 41:2930–2936

    Article  CAS  Google Scholar 

  • Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195. doi:10.1007/s10311-007-0095-0

    Article  CAS  Google Scholar 

  • St. Clair BS, St. Clair LL, Mangelson FN, Weber JD (2002a) Influence of growth form on the accumulation of airborne copper by lichens. Atmos Environ 36:5637–5644

    Article  CAS  Google Scholar 

  • St. Clair BS, St. Clair LL, Weber JD, Mangelson FN, Eggett LD (2002b) Element accumulation patterns in foliose and fruticose lichens from rock and bark substrates in Arizona. Bryologist 105:415–421

    Article  CAS  Google Scholar 

  • State G, Popescu IV, Radulescu C, Macris C, Stihi C, Gheboianu A, Dulama I, Niţescu O (2012) comparative studies of metal air pollution by atomic spectrometry techniques and biomonitoring with moss and lichens. Bull Environ Contam Toxicol 89(3):580–586. doi:10.1007/s00128-012-0713-9

    Article  CAS  Google Scholar 

  • Staudt AC, Jacob DJ, Logan JA, Bachiochi D, Krishnamurti TN, Sachse GW (2001) Continental sources, transoceanic transport, and interhemispheric exchange of carbon monoxide over the Pacific. J Geophys Res 106:32571–32590

    Article  CAS  Google Scholar 

  • Staudt AC, Jacob DJ, Ravetta F, Logan JA, Bachiochi D, Krishnamurti TN, Sandholm S, Ridley B, Singh HB, Talbot B (2003) Sources and chemistry of nitrogen oxides over the tropical Pacific. J Geophys Res 108:8239

    Article  CAS  Google Scholar 

  • Stephens ER (1973) Analysis of an important air pollutant – peroxyacetyl nitrate. J Chem Educ 50:351–354

    Article  CAS  Google Scholar 

  • Subbotina EN, Timofeeff NV (1961) On the accumulation coefficients, characterising the uptake by crust lichens of some dispersed elements from aqueous solutions (Russian, English summary). Bot Z 46:212

    Google Scholar 

  • Suresh Y, Sailaja Devi MM, Manjari V, Das UN (2000) Oxidant stress, antioxidants, and nitric oxide in traffic police of Hyderabad, India. Environ Pollut 109:321–325

    Article  CAS  Google Scholar 

  • Sutherland WJ, Armstrong-Brown S, Armstrong PR, Brereton T, Brickland J, Campell CD, Chamberlain DE, Cooke AI, Dulvy NK et al (2006) The identification of 100 ecological questions of high policy relevance in the UK. J Appl Ecol 43:617–627

    Article  Google Scholar 

  • Tarhanen S (1998) Ultrastructural responses of the lichen Bryoria fuscescens to simulated acid rain and heavy metal deposition. Ann Bot 82:735–746

    Article  CAS  Google Scholar 

  • Tegen I, Lacis A (1996) Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J Geophys Res 101:19237–19244

    Article  CAS  Google Scholar 

  • Teklemariam TA, Sparks JP (2004) Gaseous fluxes of peroxyacetyl nitrate (PAN) into plant leaves. Plant Cell Environ 27:1149–1158

    Article  CAS  Google Scholar 

  • Thomas PA, Gate TE (1999) Radionuclides in the lichen-caribou-human food chain near Uranium mining operations in Northern Saskatchewan, Canada. Environ Health Perspect 107(7):527–537

    Article  CAS  Google Scholar 

  • Thormann MN (2006) Lichens as indicators of forest health in Canada. For Chron 82(3):335–343

    Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Ecology 102:8245–8250

    CAS  Google Scholar 

  • Topcuoğlu S, Dawen AMV, Güngör N (1995) The natural depuration rate of 137Cs radionuclides in a lichen and moss species. J Environ Radioact 29(2):157–162. doi:10.1016/0265-931X(94)00069-9

    Article  Google Scholar 

  • Trass H (1973) Lichen sensitivity to the air pollution and index of poleotolerance (IP). Fol Crypt Estonia 3:19–22

    Google Scholar 

  • Tretiach M, Piccotto M, Baruffo L (2007) Effects of ambient NOx on chlorophyll a fluorescence in transplanted Flavoparmelia caperata (Lichen). Environ Sci Technol 41:2978–2984

    Article  CAS  Google Scholar 

  • Trivedi RC (1981) Use of diversity Index in evaluation of water quality. In: Zafar AR, Khan MA, Khan KR, Seenayya G (eds) Proceedings of the WHO workshop on biological indicators and indices of environmental pollution. Central Board of the Prevention and Control water Pollution, OSM University

    Google Scholar 

  • Truscott AM, Palmer SCF, McGowan GM, Cape JN, Smart S (2005) Vegetation composition of roadside verges in Scotland: the effects of nitrogen deposition, disturbance and management. Environ Pollut 136:109–118

    Article  CAS  Google Scholar 

  • Tsibulsky V, Sokolovsky V, Dutchak S (2001) MSC-E contribution to the HM and POP Emission Inventories. Technical note 7/2001, Meteorological synthesizing Centre-East, Moscow. Available from: http://www.msceast.org/publications.html

  • Tuominen Y, Jaakkola T (1973) Absorption and accumulation of mineral elements and radioactive nuclides. In: Ahamadjan V, Hale M (eds) The lichens. Academic, London, pp 185–223

    Chapter  Google Scholar 

  • Tyler G (1989) Uptake, retention and toxicity of heavy metals in lichens. A brief review. Water Air Soil Pollut 47(3–4):321–333

    Article  CAS  Google Scholar 

  • UNSCEAR (1993) Exposure from natural sources of radiation. United Nations, New York

    Google Scholar 

  • Upreti DK (1994) Lichens: the great benefactors. Appl Bot Abst 14(3):64–75

    Google Scholar 

  • Upreti DK, Nayaka S (2008) Need for creation of lichen garden and sanctuaries in India. Curr Sci 94(8):976–978

    Google Scholar 

  • Upreti DK, Pandey V (2000) Determination of heavy metals in lichens growing on different ecological habitats in Schirmacher Oasis, East Antarctica. Spectrosc Lett 33(3):435–444

    Article  CAS  Google Scholar 

  • Upreti DK, Chatterjee S, Divakar PK (2004) Lichen flora of Gangotri and Gomukh areas of Uttaranchal, India. Geophytology 34:15–21

    Google Scholar 

  • Upreti DK, Nayaka S, Bajpai A (2005) Do lichens still grow in Kolkata city? Curr Sci 88(3):338–339

    Google Scholar 

  • US EPA, 1998 (1990) Emissions Inventory of Section 112(c)(6) Pollutants: polycyclic organic matter (POM), TCDD, TCDF, PCBs, hexachlorobenzene, mercury, and alkylated lead: Final report. US Environmental Protection Agency Research, Triangle Park. Available from: http://www.epa.gov/ttn/atw/112c6/final2.pdf

  • US Energy Information Administration (1998) National energy modeling system (NEMS) data base. US Department of Energy, Washington World Bank (1993) Development and the environment. Oxford University Press, Oxford

    Google Scholar 

  • Usman M, Murata M, Zafar M, Adeel K, Amir NA (2011) A study on correlation between temperature increase and earthquake frequency with emphasis on winter and summer periods, Northern Pakistan. In: 2nd international conference on environmental science and technology IPCBEE, vol 6. IACSIT Press, Singapore

    Google Scholar 

  • Van der Gon HD, Van het Bolscher M, Visschedijk A, Zandveld P (2007) Emissions of persistent organic pollutants and eight candidate POPs from UNECE– Europe in 2000, 2010 and 2020 and the emission reduction resulting from the implementation of the UNECE POP protocol. Atmos Environ 41:9245–9261

    Article  CAS  Google Scholar 

  • van Dobben HF, ter Braak CJF (1999) Ranking of epiphytic lichen sensitivity to air pollution using survey data: a comparison of indicator scales. Lichenologist 31(1):27–39

    Google Scholar 

  • van Dobben HF, Wolterbeek HT, Wamelink GWW, Ter Braak CJF (2001) Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environ Pollut 112:163–169

    Article  Google Scholar 

  • van Geen A et al (2005) Reliability of a commercial kit to test groundwater for arsenic in Bangladesh. Environ Sci Technol 39(1):299–303

    Article  CAS  Google Scholar 

  • Van Haluwyn C, Lerond M (1986) Les lichens et la qualité de l’air. Evolution méthodologique et limites.Ministerè de l’Environnement, Service de la Recherche, des Etudes, et du Traitement de l’Information sur l’Environnement, Paris

    Google Scholar 

  • van Herk CM (2001) Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. Lichenologist 33:419–441

    Article  Google Scholar 

  • van Herk CM, Aptroot A (1999) Lecanora compallens and L. sinuosa, two new overlooked corticolous lichen species from western Europe. Lichenologist 31:543–553

    Article  Google Scholar 

  • van Herk CM, Aptroot A, van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–154

    Article  Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  Google Scholar 

  • Van Pul WAJ, de Leeuw FAAM, van Jaarsveld JA, van der Gaag MA, Sliggeras CJ (1998) The potential for long-range transboundary atmospheric transport. Chemosphere 37:113–141

    Article  Google Scholar 

  • Vasconcellos PC, Zacarias D, Pires MAF, Pool CS, Carvalho LRF (2003) Measurements of polycyclic aromatic hydrocarbons in airborne particles from the metropolitan area of Sao Paulo city, Brazil. Atmos Environ 37:3009–3018

    Article  CAS  Google Scholar 

  • Vestergaard N, Stephansen U, Rasmussen L, Pilegaard K (1986) Airborne heavy metal pollution in the environment of a Danish steel plant. Water Air Soil Pollut 27:363–377

    Article  CAS  Google Scholar 

  • Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96

    Article  Google Scholar 

  • Wadleigh MA, Blake DM (1999) Tracing sources of atmospheric sulphur using epiphytic lichens. Environ Pollut 106:265–271

    Article  CAS  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological response to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Watts AW, Ballestero TP, Garder KH (2006) Uptake of polycyclic aromatic hydrocarbon (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Chemosphere 62:1253–1260

    Article  CAS  Google Scholar 

  • Weinstein LH, Davison AW (2003) Native plant species suitable as bioindicators and biomonitors for airborne fluoride. Environ Pollut 125:3–11

    Article  CAS  Google Scholar 

  • Wenborn MJ, Coleman PJ, Passant NR, Lymberidi E, Sully J, Weir RA (1999) Speciated PAH Inventory for the UK, AEA Technology Environment, Oxfordshire. http://www.airquality.co.uk/archive/reports/cat08/0512011419_REPFIN_all_nov.pdf

  • Wilbanks TJ, Hunsaker DB, Petrich CH, Wright SB (1993) Potential to transfer the US NEPA experience in developing countries. In: Hildebrand SG, Cannon JB (eds) Environmental analysis: the NEPA experience. Lewis, Boca Raton

    Google Scholar 

  • Wilf P (1997) When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23(3):373–390

    Google Scholar 

  • Wilhelm M, Ritz B (2003) Residential proximity to traffic and adverse birth outcomes in Los Angeles County, California, 1994–1996. Environ Health Perspect 111:207–216

    Article  Google Scholar 

  • Wilhm JL (1967) Comparison of some diversity indices applied to populations of benthic macro invertebrates in a stream receiving organic wastes. J Water Pollut Cont Fed 39:1673–1683

    Google Scholar 

  • Winchester V (2004) Lichenometry. In: Goudie A, Routledge AS (eds) Encyclopedia of geomorphology. Routledge: International Association of Geomorphologists, London/New York, pp 619–620

    Google Scholar 

  • Wood C (2003) Environmental impact assessment in developing countries: an overview. In: Conference on new directions in impact assessment for development: methods and practice, University of Manchester, pp 24–25

    Google Scholar 

  • Wolfskeel DW, van Herk CM (2000) Heterodermia obscurata nieuw voor Nederland. Buxbaumiella 52:47–50

    Google Scholar 

  • Wolterbeek HT, Garty J, Reis MA, Freitas MC (2003) Biomonitors in use: lichens and metal air pollution. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier, Oxford, pp 377–419

    Chapter  Google Scholar 

  • Wuebbles DJ, Lei H, Lin J (2007) Intercontinental transport of aerosols and photochemical oxidants from Asia and its consequences. Environ Pollut 150:65–84

    Article  CAS  Google Scholar 

  • Xu SS, Liu WX, Tao S (2006) Emission of polycyclic aromatic hydrocarbons in China. Environ Sci Technol 40:702–708

    Article  CAS  Google Scholar 

  • Yassaa N, Meklati BY, Cecinato A, Marino F (2001) Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City area. Atmos Environ 35:1843–1851

    Article  CAS  Google Scholar 

  • Zambrano AG, Nash TH III, Herrera-Campos MA (2000) Lichen decline in Desierto de los Leones (Mexico City). Bryologist 103:428–441

    Article  Google Scholar 

  • Zhang JB, Tang XY (1994) Atmospheric PAN measurements and the formation of PAN in various systems. Environ Chem 1:30–39

    Google Scholar 

  • Zhang YX, Tao S (2008) Emission of polycyclic aromatic hydrocarbons (PAHs) from indoor straw burning and emission inventory updating in China. Ann N Y Acad Sci 1140:218–227

    Article  CAS  Google Scholar 

  • Zhang YX, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43:812–819

    Article  CAS  Google Scholar 

  • Zhang M, Song Y, Cai X (2007) A health-based assessment of particulate air pollution in urban areas of Beijing in 200-2004. Sci Total Environ 376:100–108

    Article  CAS  Google Scholar 

  • Zhang JB, Xu Z, Yang G, Wang B (2011) Peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in urban and suburban atmospheres of Beijing, China Atmos. Chem Phys Discuss 11:8173–8206

    Article  Google Scholar 

  • Zheng M, Fang M (2000) Particle-associated polycyclic aromatic hydrocarbons in the atmosphere of Hong Kong. Water Air Soil Pollut 117:175–189

    Article  CAS  Google Scholar 

  • Zullini A, Peretti E (1986) Lead pollution and moss-inhabiting nematodes of an industrial area. Water Air Soil Pollut 27:403–410

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Shukla, V., Upreti, D.K., Bajpai, R. (2014). Ecosystem Monitoring. In: Lichens to Biomonitor the Environment. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1503-5_5

Download citation

Publish with us

Policies and ethics