Advertisement

Ecosystem Monitoring

Chapter

Abstract

Monitoring the quality and sustainability of the ecosystem with lichens has been studied worldwide. Three major categories of assessment that have been identified so far for the role of lichens in ecosystem monitoring include air quality, climate and biodiversity. Both natural and man-made disturbances/disasters are responsible for imbalance in the ecosystem.

With increasing economic growth, environmental contamination, especially air pollution, is resulting in environmental degradation in the developing nations of Asia, especially India. In order to attain sustainable economic development, monitoring and eradication of environmental problems is important. The highest priority issues include monitoring of the quality of air, water and soil, deforestation and degradation of the natural environment.

Lichens are very useful for monitoring spatial and/or temporal deposition patterns of pollutants as they allow accumulation of pollutant throughout its thalli, and concentrations of pollutants in lichen thalli may be directly correlated with environmental levels of these elements. Lichens also meet other characteristics of the ideal sentinel organism: they are long lived, having wide geographical distribution, and accumulate and retain many trace elements to concentrations that highly exceed their physiological requirements. The details of the factors affecting the ecosystem, natural as well as anthropogenic, and role of lichens in ecosystem monitoring have been discussed.

Keywords

Lichen Thalli Lichen Diversity Radiocesium Lichen Biomonitoring Polycyclic Aromatic Hydrocarbons (PAHs) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdalla K (2006) Health and environmental benefits of clean fuels and vehicles. Keynote presentation. UN DESA, CairoGoogle Scholar
  2. Achotegui-Castells A, Sardans J, Ribas A, Peñuelas J (2012) Identifying the origin of atmospheric inputs of trace elements in the Prades Mountains (Catalonia) with bryophytes, lichens, and soil monitoring. Environ Monit Assess. doi: 10.1007/s10661-012-2579-z Google Scholar
  3. Adamova LI, Biazrov LG (1991) Heavy natural radionuclides in lichens from different ecosystems of the Western Caucasus (In Russian) – bioindication and biomonitoring. Nauka, Moscow, pp 125–129Google Scholar
  4. Ahmad MN, van den Berg LJL, Shah HU, Masood T, Büker P, Emberson L, Ashmore M (2012) Hydrogen fluoride damage to vegetation from peri-urban brick kilns in Asia: a growing but unrecognised problem? Environ Pollut 162:319–324CrossRefGoogle Scholar
  5. Aide M (2005) Elemental composition of soil nodules from two alfisols on an alluvial terrace in Missouri. Soil Sci 170:1022–1033. doi: 10.1097/01.ss.0000187351.16740.55 CrossRefGoogle Scholar
  6. Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719CrossRefGoogle Scholar
  7. Al TA, Blowes DW (1999) The hydrogeology of a tailing impoundment formed by central discharge of thickened tailing: implications for tailing management. J Conta Hydrol 38:489–505CrossRefGoogle Scholar
  8. Alauddin M (2003) Economic liberalization and environmental concerns: a South Asian perspective. South Asia 26(3):439–453CrossRefGoogle Scholar
  9. Alauddin M (2004) Environmentalizing economic development: a South Asian perspective. Ecol Econ 51:251–270CrossRefGoogle Scholar
  10. Ammann K, Herzig R, Liebendoerfer L, Urech M (1987) Multivariate correlation of deposition data of 8 different air pollutants to lichen data in a small town in Switzerland. Adv Aerobiol 87:401–406CrossRefGoogle Scholar
  11. Aptroot A, van Herk CM (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environ Pollut 146(2):293–298CrossRefGoogle Scholar
  12. Arb CV, Mueller C, Ammann K, Brunold C (1990) Lichen physiology and air pollution II. Statistical analysis of the correlation between SO2, NO2, NO and O3 and chlorophyll content, net photosynthesis, sulphate uptake and protein synthesis of Parmelia sulcata Taylor. New Phytol 115:431–437CrossRefGoogle Scholar
  13. Aragón G, Martínez I, Izquierdo P, Belinchón R, Escudero A (2010) Effects of forest management on epiphytic lichen diversity in Mediterranean forests. Appl Veg Sci 13:183–194. doi: 10.1111/j.1654-109X.2009.01060.x CrossRefGoogle Scholar
  14. Archer DE, Johnson K (2000) A model of the iron cycle in the ocean. Glob Biogeochem Cycle 14:269–279CrossRefGoogle Scholar
  15. Asta J, Rolley F (1999) Biodiversitéet bioindication lichénique: qualitéde l’air dans l’agglomération Grenobloise. Bull Int Assoc Fr Lichénol 3:121–126Google Scholar
  16. Asta J, Erhardt W, Ferretti M, Fornasier F, Kirschbaum U, Nimis PL, Purvis O, Pirintsos S, Scheidegger C, Van- Haluwyn C, Wirth V (2002) Mapping lichen diversity as an indicator of environmental quality. In: Nimis PL, Scheidegger C, Wolseley P (eds) Monitoring with lichens-monitoring lichens. Kluwer, Dordrecht, pp 273–279CrossRefGoogle Scholar
  17. Augusto S, Catarino F, Branquinho C (2007) Interpreting the dioxin and furan profiles in the lichen Ramalina canariensisSteiner for monitoring air pollution. Sci Total Environ 377:114–123CrossRefGoogle Scholar
  18. Augusto S, Maguas C, Matos J, Pereira MJ, Soares A, Branquihno C (2009) Spatial modeling of PAHs in lichens for fingerprinting of Multisource atmospheric pollution. Environ Sci Technol 43(20):7762–7769CrossRefGoogle Scholar
  19. Augusto S, Maguas C, Matos J, Pereira MJ, Branquihno C (2010) Lichens as an integrating tool for monitoring PAH atmospheric deposition: a comparison with soil, air and pine needles. Environ Pollut 158(2):483–489CrossRefGoogle Scholar
  20. Backor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53(2):214–222CrossRefGoogle Scholar
  21. Bačkor M, Gibalová A, Budová J, Mikeš J, Solár P (2006) Cadmium-induced stimulation of stress protein hsp70 in lichen photobiont Trebouxia erici. Plant Growth Regul 50:159–164CrossRefGoogle Scholar
  22. Baddeley MA, Ferry BW, Finegan EJ (1972) The effects of sulphur dioxide on lichen respiration. Lichenologist 5:283–291CrossRefGoogle Scholar
  23. Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R (1991) A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Pollut 60:79–300CrossRefGoogle Scholar
  24. Baeza A, Del Rio M, Jimenez A, Miro C, Paniagua J (1995) Influence of geology and soil particle size on the surface area/volume activity ratio for natural radionuclides. J Radioanal Nucl Chem 189(2):289–299CrossRefGoogle Scholar
  25. Bajpai R, Upreti DK (2012) Accumulation and toxic effect of arsenic and other heavy metals in a contaminated area of West Bengal, India, in the lichen Pyxine cocoes (Sw.) Nyl. Ecotoxicol Environ Saf 83:63–70CrossRefGoogle Scholar
  26. Bajpai R, Upreti DK, Mishra SK (2004) Pollution monitoring with the help of lichen transplant technique at some residential sites of Lucknow city, Uttar Pradesh. J Environ Biol 25(5):191–195Google Scholar
  27. Bajpai R, Upreti DK, Dwivedi SK (2009a) Arsenic accumulation in lichens of Mandav monuments, Dhar district, Madhya Pradesh, India. Environ Monit Assess 159:437–442. doi: 10.1007/s10661-008-0641-7 CrossRefGoogle Scholar
  28. Bajpai R, Upreti DK, Dwivedi SK, Nayaka S (2009b) Lichen as quantitative biomonitors of atmospheric heavy metals deposition in Central India. J Atmos Chem 63:235–246CrossRefGoogle Scholar
  29. Bajpai R, Upreti DK, Dwivedi SK (2010a) Passive monitoring of atmospheric heavy metals in a historical city of central India by Lepraria lobificans Nyl. Environ Monit Assess 166:477–484. doi: 10.1007/s10661-009-1016-4 CrossRefGoogle Scholar
  30. Bajpai R, Upreti DK, Nayaka S (2010b) Accumulation of arsenic and fluoride in lichen Pyxine cocoes (Sw.) Nyl., growing in the vicinity of coal-based thermal power plant at Raebareli, India. J Exper Sci 1(4):37–40Google Scholar
  31. Bajpai R, Upreti DK, Nayaka S, Kumari B (2010c) Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal based thermal power plant of Raebareli district, north India. J Hazard Mater 174:429–436CrossRefGoogle Scholar
  32. Bajpai R, Mishra GK, Mohabe S, Upreti DK, Nayaka S (2011) Determination of atmospheric heavy metals using two lichen species in Katni and Rewa cities. Indian J Environ Biol 32:195–199Google Scholar
  33. Bajpai R, Pandey AK, Deeba F, Upreti DK, Nayaka S, Pandey V (2012) Physiological effects of arsenate on transplant thalli of the lichen Pyxine cocoes (Sw.) Nyl. Environ Sci Pollut Res 19:1494–1502CrossRefGoogle Scholar
  34. Bajpai R, Shukla V, Upreti DK (2013) Impact assessment of anthropogenic activities on air quality, using lichen Remototrachyna awasthii as biomonitors. Int J Environ Sci Technol. doi: 10.1007/s13762-012-0156-1 Google Scholar
  35. Baker DA (1983) Uptake of cations and their transport within the plants. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients: uptake and utilization by plants. Academic, London, pp 3–19Google Scholar
  36. Balaguer L, Manrique E, Ascaso C (1997) Predictability of the combination effects of sulphur dioxide and nitrate on green algal lichen Ramalina farinacea. Can J Bot 75:1836–1842CrossRefGoogle Scholar
  37. Ballschmitter K, Wittlinger R (1991) Interhemispheric exchange of hexachlorocyclohexanes, hexachlorobenzene, polychlorobiphenyls, and 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane in the lower troposphere. Environ Sci Technol 25:1103–1111CrossRefGoogle Scholar
  38. Baptista MS, Teresa M, Vasconcelos SD, Carbral JP, Freitas CM, Pacheo AMG (2008) Copper, nickel, lead in lichens & tree bark transplants over different period of time. Environ Pollut 151:408–413CrossRefGoogle Scholar
  39. Barber JL, Sweetman AJ, Wijk D, Jones C (2005) Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes. Sci Total Environ 349:1–44CrossRefGoogle Scholar
  40. Bargagli R (1998) Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. Springer, Berlin, p 324Google Scholar
  41. Bargagli R, Nimis PL (2002) Guidelines for the use of epiphytic lichens as biomonitors of atmospheric deposition of trace elements. In: Monitoring with lichens-monitoring lichens, vol 7, pp 295–299Google Scholar
  42. Bari A, Rosso A, Minciardi MR, Troiani F, Piervittori R (2001) Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudevernia furfuracea thalli. Environ Monit Assess 69:205–220CrossRefGoogle Scholar
  43. Barták M, Solhaug KA, Vráblíková H, Gauslaa Y (2006) Curling during desiccation protects the foliose lichen Lobaria pulmonaria against photoinhibition. Oecologia. doi: 10.1007/s00442-006-0476-2 Google Scholar
  44. Bässler C, Müller J, Hothorn T, Kneib T, Badeck F, Dziock F (2010) Estimation of the extinction risk for high-montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators. Ecol Indic 10:341–352CrossRefGoogle Scholar
  45. Baumard P, Budzinski H, Michon Q, Garrigues P, Burgeot T, Bellocq J (1998) Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine Coastal Shelf Sci 47:77–90CrossRefGoogle Scholar
  46. Beckett RP, Brown DH (1983) Natural and experimentally-induced zinc and copper resistance in the lichen genus Peltigera. Ann Bot 52:43–50Google Scholar
  47. Beckett RP, Brown DH (1984) The control of Cd uptake in lichen genus Peltigera. J Exp Bot 35:1071–1082CrossRefGoogle Scholar
  48. Behling H (1998) Late Quaternary vegetational and climatic changes in Brazil. Rev Palaeobot Palynol 99(143):156Google Scholar
  49. Belandria G, Asta J (1986) Les lichens bioindicateurs: la pollution acide dans la région lyonnaise. Pollut Atmos 109:10–23Google Scholar
  50. Belvermis M, Kılıç Ö, Çotuk Y, Topcuoğlu S (2010) The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ Monit Assess 163:15–26CrossRefGoogle Scholar
  51. Berry WL, Wallace A (1981) Toxicity: the concept and relationship to the dose response curve. J Plant Nutr 3:13–19CrossRefGoogle Scholar
  52. Beschel R (1950) Flechten als Alteramasstab Rezenter Moränen. Zeitschrift für Glatscherkunde und Glazial-geiglogie 1:152–161Google Scholar
  53. Biazrov LG (1994) The radionuclides in lichen thalli in Chernobyl and East Urals areas after nuclear accidents. Phyton (Horn, Austria) 34(1):85–94Google Scholar
  54. Biazrov LG, Adamova LI (1990) Heavy metals in lichens of the Caucasusky and Ritzinsky reserves (In Russian) – the reserves of USSR – their real and future. Part 1: Topicals problems of reserve management. Abstracts of the all-union conference, Novgorod, pp 338–339Google Scholar
  55. Bidleman TF, Billings WN, Foreman WY (1986) Vapor-particle partitioning of semivolatile organic compounds: estimates from field collection. Environ Sci Technol 20:1038–1043CrossRefGoogle Scholar
  56. Bignal KL, Ashmore MR, Headley AD, Stewart K, Weigert K (2007) Ecological impacts of air pollution from road transport on local vegetation. Appl Geochem 22:1265–1271CrossRefGoogle Scholar
  57. Bignal KL, Ashmore MR, Headley AD (2008) Effects of air pollution from road transport on growth and physiology of six transplanted bryophyte species. Environ Pollut 156:332–340CrossRefGoogle Scholar
  58. Bird PM (1966) Radionuclides in foods. Can Med Assoc J 94:590–597Google Scholar
  59. Bird PM (1968) Studies of fallout of 137Cs in the Canadian North. Arch Environ Health 17:631–638CrossRefGoogle Scholar
  60. Blackman A, Harrington W (2000) The use of economic incentives in developing countries: lessons from international experience with industrial air pollution. J Environ Dev 9:5–44CrossRefGoogle Scholar
  61. Blasco M, Domeno C, Nerin C (2008) Lichen biomonitoring as feasible methodology to assess air pollution in natural ecosystems: combined study of quantitative PAHs analysis and lichen biodiversity in the Pyrenees mountain. Anal Bioanal Chem 391:759–771CrossRefGoogle Scholar
  62. Boileau LJR, Beckett PJ, Richardsons DHS (1982) Lichens and mosses as monitors of industrial activities associated with Uranium mining in northern Ontario, Canada. Part 1: field procedure, chemical analysis and inter-species comparison. Environ Pollut 4:69–84CrossRefGoogle Scholar
  63. Boonpragob K, Nash TH III, Fox CA (1989) Seasonal deposition patterns of acidic ions and ammonium to the lichen Ramalina menziesii Tayl. in southern California. Environ Exp Bot 29:187–197CrossRefGoogle Scholar
  64. Boudri JC, Hordijk L, Kroeze C, Amann M, Cofala J, Bertok I, Junfeng L, Lin D, Shuang Z, Runquing H, Panwar TS, Gupta S, Singh D et al (2002) The potential contribution of renewable energy in air pollution abatement in China and India. Energy Policy 30:409–424CrossRefGoogle Scholar
  65. Branquinho C (2001) Lichens. In: Prasad MNV (ed) Metals in the environment: analysis by biodiversity. Marcel Dekker, New York, pp 117–157Google Scholar
  66. Branquinho C, Brown DH, Magaus C, Catarino CL (1997) Metal uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species. Environ Exp Bot 37:95–105CrossRefGoogle Scholar
  67. Brewer RF (1960) The effects of hydrogen fluoride gas on seven citrus varieties. Am Soc Hortic Sci 75:236–243Google Scholar
  68. Brifett C (1999) Environmental impact assessment in East Asia. In: Petts J (ed) Handbook of environmental impact assessment, vol 2. Blackwell, OxfordGoogle Scholar
  69. Brodo IM (1961) Transplant experiments with corticolous lichens using a new technique. Ecology 42:838–841CrossRefGoogle Scholar
  70. Brodo IM (1964) Field studies of the effects of ionizing radiation on lichens. Bryologist 67:76–87Google Scholar
  71. Brown DH, Avalos A, Miller JE, Bargagli R (1994) Interactions of lichens with their mineral environment. Crypt Bot 4:135–142Google Scholar
  72. Bryselbout C, Henner P, Carsignol J, Lichtfouse E (2000) Polycyclic aromatic hydrocarbon in highway plants and soils. Evidence for a local distillation effect. Analusis 28(4):290–293CrossRefGoogle Scholar
  73. Buccolieri A, Buccolieri G, Dell’atti A, Perrone MR, Turnone A (2006) Natural sources and heavy metal. Annali di Chimica, 96 by Società Chimica ItalianaGoogle Scholar
  74. Budka D, Przybyiowicz WJ, Mesjasz- Przybyiowicz J (2004) Environmental pollution monitoring using lichens as bioindicators: a micro-PIXE study. Radiat Phys Chem 71:783–784CrossRefGoogle Scholar
  75. Bunce NJ, Liu L, Zhu J, Lane DA (1997) Reaction of naphthalene and its derivatives with hydroxyl radicals in the gas phase. Environ Sci Technol 31:2252–2259CrossRefGoogle Scholar
  76. Butler WL, Kitajima M (1975) Fluorescence quenching in photosystem II of chloroplasts. Biochem Biophys Acta 376:116–125CrossRefGoogle Scholar
  77. Button KJ, Rietveld P (1999) Transport and the environment. In: van den Bergh JCJM (ed) Handbook of environmental and resource economics. Edward Elgar, Cheltenham, pp 581–589Google Scholar
  78. C.P.C.B. (2005) Parivesh: proposed limits for Pah in India. Central pollution Control Board, Ministry of Environment and Forest, Delhi – 32. www.cpcb.nic.in
  79. Calderón-Garcidueňas L, Mora-Tiscareno A, Fordham LA, Valencia-Salazar G, Chung CJ, Rodriguez-Alcaraz A et al (2003) Respiratory damage in children exposed to urban pollution. Pediatr Pulmonol 3:148–161CrossRefGoogle Scholar
  80. Carignan V, Villard MA (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78:45–61CrossRefGoogle Scholar
  81. Carreras HA, Gudiño GL, Pignata ML (1998) Comparative biomonitoring of atmospheric quality in five zones of Cardóba city (Argentina) employing the transplanted lichen Usnea sp. Environ Pollut 103:317–325CrossRefGoogle Scholar
  82. Central Pollution Control Board (1999) Parivesh: Newsletter, 6(1), June. CPCB, Ministry of Environment and Forests, DelhiGoogle Scholar
  83. Chakraborty P, Zhang G, Li J, Xu Y, Liu X, Tanabe S, Jones KC (2010) Selected organochlorine pesticides in the atmosphere of major Indian cities: levels, regional versus local variations, and sources. Environ Sci Technol 44(21):8038–8043CrossRefGoogle Scholar
  84. Chaphekar SB (2000) Phytomonitoring in industrial areas. In: Agrawal SB, Agrawal M (eds) Environmental pollution and plant responses. CRC Press, Boca Raton, pp 329–342Google Scholar
  85. Chapin FS, Körner C (1994) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Trends Ecol Evol 9:45–47CrossRefGoogle Scholar
  86. Charak S, Sheikh MA, Raina AK, Upreti DK (2009) Ecological impact of coal mines on lichens: a case study at Moghla coal mines kalakote (Rajouri), J & K. J Appl Nat Sci 1(1):24–26Google Scholar
  87. Cheng Z et al (2005) Limited temporal variability of arsenic concentrations in 20 wells monitored for 3 years in Araihazar, Bangladesh. Environ Sci Technol 39(13):4759–4766CrossRefGoogle Scholar
  88. Cheng J, Yuan T, Wu Q, Zhao W, Xie H, Ma Y, Ma J, Wang J (2007) PM10-bound polycyclic aromatic hydrocarbons (PAHs) and cancer risk estimation in the atmosphere surrounding an industrial area of Shanghai, China. Water Air Soil Pollut 183(1–4):437–446. doi: 1007/s11270-007-9392-2 CrossRefGoogle Scholar
  89. Chetwittayachan T, Shimazaki D, Yamamoto K (2002) A comparison of temporal variation of particle-bound polycyclic aromatic hydrocarbons (pPAHs) concentration in different urban environments: Tokyo, Japan, and Bangkok, Thailand. Atmos Environ 36:2027–2037CrossRefGoogle Scholar
  90. Clark BD (1999) Capacity building. In: Petts J (ed) Handbook of environmental impact assessment, vol 2. Blackwell, OxfordGoogle Scholar
  91. Clark AJ, Landolt W, Bucher JB, Strasser RJ (2000) Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. Environ Pollut 109:501–507CrossRefGoogle Scholar
  92. Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicator of air pollution assessment – a review. Environ Pollut 114:471–492CrossRefGoogle Scholar
  93. Cortes DR, Hites RA (2000) Detection of statistically significant trends in atmospheric concentrations of semivolatile compounds. Environ Sci Technol 34:2826–2829CrossRefGoogle Scholar
  94. Cortes DR, Basu I, Sweet CW, Brice KA, Hoff RM, Hites RA (1998) Temporal trends in gas-phase concentrations of chlorinated pesticides measured at the shores of the Great Lakes. Environ Sci Technol 32:1920–1927CrossRefGoogle Scholar
  95. Coskun M, Steinnes E, Coskun M, Cayir A (2009) Comparison of epigeic moss (Hypnum cupressiforme) and lichen (Cladonia rangiformis) as biomonitor species of atmospheric metal deposition. Bull Environ Contam Toxicol 82:1–5CrossRefGoogle Scholar
  96. Crespo A, Divakar PK, Arguello A, Gasca C, Hawksworth DL (2004) Molecular studies on Punctelia species of the Iberian Peninsula, with an emphasis on specimens newly colonizing Madrid. Lichenologist 36(5):299–308CrossRefGoogle Scholar
  97. Cropper ML, Simon NB, Alberini A, Arora S, Sharma PK (1997) The health benefits of air pollution control in Delhi. Am J Agric Econ 79:1625–1629CrossRefGoogle Scholar
  98. Curran TP (2000) Sustainable development: new ideas for a new century. Seminar at the Graduate School of Environmental Studies. Seoul National University, SeoulGoogle Scholar
  99. Daly GL, Wania F (2005) Organic contaminants in mountains. Environ Sci Technol 39(2):385–398CrossRefGoogle Scholar
  100. Das G, Das AK, Das JN, Guo N, Majumdar R, Raj S (1986) Studies on the plant responses to air pollution, occurrence of lichen in relation to Calcutta city. Indian Biol 17(2):26–29Google Scholar
  101. Das P, Joshi S, Rout J, Upreti DK (2012) Shannon diversity index (H) as an ecological indicator of environmental pollution – a GIS approach. J Funct Environ Bot 2(1):22–26CrossRefGoogle Scholar
  102. Das P, Joshi S, Rout J, Upreti DK (2013) Impact of anthropogenic factors on abundance variability among Lichen species in southern Assam, north east India. Trop Ecol 54:65–70Google Scholar
  103. Davies L, Bates JW, Bell JNB, James PW, Purvis OW (2007) Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environ Pollut 146:299–310CrossRefGoogle Scholar
  104. Deb MK, Thakur M, Mishra RK, Bodhankar N (2002) Assessment of atmospheric arsenic levels in airborne dust particulates of an urban city of Central India. Water Air Soil Pollut 140:57–71CrossRefGoogle Scholar
  105. Delfino RJ, Murphy-Moulton AM, Becklake MR (1998) Emergency room visits for respiratory illnesses among the elderly in Montreal: association with low level ozone exposure. Environ Res Sect A 76:67–77CrossRefGoogle Scholar
  106. Dentener FJ, Carmichael GR, Zhang Y, Lelieveld J, Crutzen PJ (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J Geophys Res 101:22869–22889CrossRefGoogle Scholar
  107. Derwent R, Collins W, Johnson C, Stevenson D (2002) Viewpoint. Global ozone concentrations and regional air quality. Environ Sci Technol 36:379A–382ACrossRefGoogle Scholar
  108. De Sloover J, Le Blanc F (1968) Mapping of atmospheric pollution on the basis of lichen sensitivity. In: Misra R, Gopal B (eds) Proceedings of the symposium on recent advances on tropical ecology. International Society for Tropical Ecology, Varanasi, pp 42–56Google Scholar
  109. Dickerson RR, Kondragunta S, Stenchikov G, Civerolo KL, Doddridge BG, Holben BN (1997) The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 278:827–830CrossRefGoogle Scholar
  110. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME et al (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329:1753–1759CrossRefGoogle Scholar
  111. Domeňo C, Blasco M, Sanchez C, Nerin C (2006) A fast extraction technique for extracting polycyclic aromatic hydrocarbons (PAHs) from lichen samples used as biomonitors of air pollution: dynamic sonication versus other methods. Anal Chim Acta 569:103–112CrossRefGoogle Scholar
  112. Dubey AK, Pandey V, Upreti DK, Singh J (1999) Accumulation of lead by lichens growing in and around Faizabad, U.P., India. J Environ Biol 20(3):223–225Google Scholar
  113. Dutkiewicz VA, Alvi S, Ghauri BM, Choudhary MI, Husain L (2009) Black carbon aerosols in urban air in South Asia. Atmos Environ 43:1737–1744CrossRefGoogle Scholar
  114. Eckl P, Hofmann W, Türk R (1986) Uptake of natural and man-made radionuclides by lichens and mushrooms. Radiat Environ Biophys 25:43–54CrossRefGoogle Scholar
  115. Egger R, Schlee D, Turk R (1994a) Changes of physiological and biochemical parameters in the lichen Hypogymnia physodes (L.) Nyl due to the action of air-pollutants – a field study. Phyton-Annales Rei Botanicae 34:229–242Google Scholar
  116. Egger R, Schlee D, Türk R (1994b) Changes of physiological and biochemical parameters in the lichen Hypogymnia physodes (L.) Nyl. due to the action of air pollutants – a field study. Phyton 34(2):229–242Google Scholar
  117. Ellis KM, Smith JN (1987) Dynamic model for radionuclide uptake in lichen. J Environ Radioact 5:185–208CrossRefGoogle Scholar
  118. Ellis CJ, Coppins BJ, Dawson TP (2007) Predicted response of lichen epiphyte Lecanora populicolato climate change scenarios in a clean-air region of Northern Britain. Biol Conserv 135:396–404CrossRefGoogle Scholar
  119. Emberson LD, Ashmore MR, Murray F, Kuylenstierna JCI, Percy KE, Izuta T, Zheng Y, Shimizu H, Sheu BH, Liu CP, Agrawal M, Wahid A, Abdel-Latif NM, Van Tienhoven M, Bauer LI, Domingos M (2001) Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut 130:107–118CrossRefGoogle Scholar
  120. Emberson L, Ashmore M, Murray F (eds) (2003) Air pollution effects on crops and forests. Imperial College Press, LondonGoogle Scholar
  121. Essington M (2004) Soil and water chemistry – an integrative approach. CRC Press, Boca RatonGoogle Scholar
  122. Eversman S, Sigal LL (1987) Effects of SO2, O3, and SO2 and O3 in combination on photosynthesis and ultrastructure of two lichen species. Can J Bot 65(9):1806–1818CrossRefGoogle Scholar
  123. Faiz A, Weaver CS, Walsh MP (1996) Air pollution from motor vehicles. International Bank for Reconstruction and Development/World Bank, Washington, DCCrossRefGoogle Scholar
  124. Farmer AM, Bates JW, Bell JNB (1991) Seasonal variations in acidic pollutant inputs and their effects on the chemistry of stemflow, bark and epiphyte tissues in three oak woodlands in N.W. Britain. New Phytol 118:441–451CrossRefGoogle Scholar
  125. Farmer AM, Bates JW, Bell JNB (1992) Ecophysiological effects of acid rain on bryophytes and lichens. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon, OxfordGoogle Scholar
  126. Feige GB, Niemann L, Jahnke S (1990) Lichens and mosses: silent chronists of the Chernobyl accident. Bibl Lichenol 38:63–77Google Scholar
  127. Fendorf SE (1995) Surface reactions of chromium in soils and waters. Geoderma 67:55–71CrossRefGoogle Scholar
  128. Fernandez P, Vilanova RM, Grimalt JO (1999) Sediment fluxes of polycyclic aromatic hydrocarbons in European high altitude mountain lakes. Environ Sci Technol 33:3716–3722CrossRefGoogle Scholar
  129. Fields RD (1988) Physiological responses of lichens to air pollutant fumigations. In: Nash TH III, Wirth V (eds) Lichens, bryophytes and air quality, Bibliotheca Lichenologica 30. J. Cramer, Berlin/Stuttgart, pp 175–200Google Scholar
  130. Flesher JW, Horn J, Lehner AF (2002) Role of the Bay- and L-regions in the metabolic activation and carcinogenicity of Picene and Dibenz[a,h]anthracene. Polycycl Aromat Compd 22:737–745CrossRefGoogle Scholar
  131. Foell W, Green C, Amann M, Bhattacharya S, Carmichael G et al (1995) Energy use, emissions, and air pollution reduction strategies in Asia. Water Air Soil Pollut 85:2277–2282CrossRefGoogle Scholar
  132. Foster JB (1993) Let them eat pollution: capitalism and the world environment. Monthly Review, January, pp 10–20Google Scholar
  133. Frati L, Caprasecca E, Santoni S, Gaggi C, Guttova A, Gaudino S, Pati A, Rosamilia S, Pirintsos SA, Loppi S (2006) Effects of NO2 and NH3 from road traffic on epiphytic lichens. Environ Pollut 142:58–64CrossRefGoogle Scholar
  134. Freitas MC (1994) Heavy metals in Parmelia sulcatacollected in the neighbourhood of a coal-fired power station. Biol Trace Elem Res 43–45:207–212CrossRefGoogle Scholar
  135. Freitas MC (1995) Elemental bioaccumulators in air pollution studies. J Radioanal Nucl Chem 192:171–181CrossRefGoogle Scholar
  136. Furlan CM, Moraes RM, Bulbovas P, Sanz MJ, Domingos M, Salatino A (2008) Tibouchina pulchra (Cham.) Cogn., a native Atlantic Forest species, as a bio-indicator of ozone: visible injury. Environ Pollut 152:361–365CrossRefGoogle Scholar
  137. Gaare E (1990) Lichen content of radiocesium after the Chernobyl accident in mountains in southern Norway. In: Desmet G et al (eds) Transfer of radionuclides in natural and seminatural environments. Elsevier, London/New York, pp 492–501Google Scholar
  138. Gagnon ZE, Karnosky DF (1992) Physiological response of three species of Sphagnum to ozone exposure. J Bryol 17:81–91Google Scholar
  139. Gailey FAY, Smith GH, Rintoul LJ, Lloyd OL (1985) Metal deposition patterns in central Scotland, as determined by lichen transplants. Environ Monit Assess 5:291–309CrossRefGoogle Scholar
  140. Galarneau E, Makar PA, Sassi M, Diamond ML (2007) Estimation of atmospheric emissions of six semivolatile polycyclic aromatic hydrocarbons in Southern Canada and the United States by use of an emissions processing system. Environ Sci Technol 41:4205–4213CrossRefGoogle Scholar
  141. Garćia AZ, Coyotzin CM, Amaro AR, Veneroni DL, Martínez CL, Iglesias GS (2009) Distribution and sources of bioaccumulative air pollutants at Mezquital Valley, Mexico, as reflected by the atmospheric plant Tillandsia recurvata L. Atmos Chem Phys 9:6479–6494CrossRefGoogle Scholar
  142. Garty J (1993) Plants as biomonitors. In: Markert B (eds) VCH Verlagsgesellschaft mbh, Germany, pp 193–263Google Scholar
  143. Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20(4):309–371CrossRefGoogle Scholar
  144. Garty J, Galun M, Kessel M (1979) Localization of heavy metal and other elements accumulated in the lichen thallus. New Phytol 82:159–168CrossRefGoogle Scholar
  145. Gasparatos D (2012) Fe–Mn concretions and nodules to sequester heavy metals in soils. In: Lichtfouse E et al (eds) Environmental chemistry for a sustainable world, vol 2: remediation of air and water pollution, pp 443–474. doi  10.1007/978-94-007-2439-6_11
  146. Geebelen W, Hoffman M (2001) Evaluation of bio-indication methods using epiphytes by correlating with SO2-pollution parameters. Lichenologist 33:249–260CrossRefGoogle Scholar
  147. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem Biophys Acta 990:87–92CrossRefGoogle Scholar
  148. George C (2000) Comparative review of environmental assessment procedures and practice. In: Lee N, George C (eds) Environmental assessment in developing and transitional countries. Wiley, ChichesterGoogle Scholar
  149. Gilbert OL (1971) The effect of airborne fluorides on lichens. Lichenologist 5:26–32CrossRefGoogle Scholar
  150. Giordani P (2007) Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environ Pollut 146:317–323CrossRefGoogle Scholar
  151. Giordani P, Brunialti G, Alleteo D (2002) Effects of atmospheric pollution on lichen biodiversity (LB) in a Mediterranean region (Liguria, northwest Italy). Environ Pollut 118:53–64CrossRefGoogle Scholar
  152. Giordano S, Sorbo S, Adamo P, Basile A, Spagnuolo V, Cobianchi CR (2004) Biodiversity and trace element content of epiphytic bryophytes in urban and extra-urban sites of southern Italy. Plant Ecol 170:1–14CrossRefGoogle Scholar
  153. Gob F, Oetit F, Bravard JP, Ozer A, Gob A (2003) Lichenometric application to historical and subrecent dynamics and sediment transport of a Corsican stream (Figarella River, France). Quat Sci Rev 22:2111–2124CrossRefGoogle Scholar
  154. Godinho RM, Wolterbeek HT, Verburg T, Freitas MC (2008) Bioaccumulation behaviour of lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environ Pollut 151:318–325CrossRefGoogle Scholar
  155. Gombert S, Asta J, Seaward MRD (2002) Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area. Environ Pollut 123:281–290CrossRefGoogle Scholar
  156. Gorham E (1959) A comparison of lower and higher plants as accumulators of radioactive fall-out. Can J Bot 37:327–329CrossRefGoogle Scholar
  157. Goyal R, Seaward MRD (1982) Metal uptake in terricolous lichens. III Translocation in the thallus of Peltigera canina. New Phytol 90:85–98CrossRefGoogle Scholar
  158. Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448–1448CrossRefGoogle Scholar
  159. Gries C, Sanz M-J, Nash TH III (1995) The effect of SO2 fumigation on CO2 gas exchange, chlorophyll fluorescence and chlorophyll degradation in different lichen species from western North America. Cryptogam Bot 5:239–246Google Scholar
  160. Grosjean D (2003) Ambient PAN and PPN in southern California from 1960 to the SCOS97- NARSTO. Atmos Environ 37:S221–S238CrossRefGoogle Scholar
  161. Guidotti M, Stella D, Owczarek M, DeMarco A, De Simone C (2003) Lichens as polycyclic aromatic hydrocarbon bioaccumulators used in atmospheric pollution studies. J Chromatogr 985(1–2):185–190Google Scholar
  162. Guidotti M, Stella D, Dominici C, Blasi G, Owazasek M, Vitali M, Protano C (2009) Monitoring of traffic related pollution in a province of central Italy with transplanted lichen Pseudevernia furfuracea. Bull Environ Contam Toxicol 83:852–858CrossRefGoogle Scholar
  163. Guttikunda SK, Carmichael GR, Calori G, Eck C, Woo JH (2003) The contribution of megacities to regional sulfur pollution in Asia. Atmos Environ 37:11–22CrossRefGoogle Scholar
  164. Haas JR, Bailey EH, Purvis OW (1998) Bioaccumulation of metals by lichens: uptake of aqueous uranium by Peltigera membranacea as a function of time and pH. Am Miner 83:1494–1502Google Scholar
  165. Haffner E, Lomsky B, Hynek V, Hallgren JE, Batic F, Pfanz H (2001) Air pollution and lichen physiology. Physiological responses of different lichens in a transplant experiment following an SO2-gradient. Water Air Soil Pollut 131:185–201CrossRefGoogle Scholar
  166. Hafner WD, Carlson DL, Hites RA (2005) Influence of local human population on atmospheric polycyclic aromatic hydrocarbon concentrations. Environ Sci Technol 39:7374–7379CrossRefGoogle Scholar
  167. Hale ME (1983) The biology of lichens, 3rd edn. Edward Arnold, LondonGoogle Scholar
  168. Halek F, Kianpour-rad M, Kavousi A (2010) Characterization and source apportionment of polycyclic aromatic hydrocarbons in the ambient air (Tehran, Iran). Environ Chem Lett 8:39–44CrossRefGoogle Scholar
  169. Han X, Naeher LP (2006) A review of traffic-related air pollution exposure assessment studies in the developing world. Environ Int 32:106–120CrossRefGoogle Scholar
  170. Handley R, Overstreet R (1968) Uptake of carrier-free Cs-137 by Ramalina reticulata. Plant Physiol 43:1401CrossRefGoogle Scholar
  171. Hansen ES (2008) The application of lichenometry in dating glacier deposits. Geografisk Tidsskrift-Danish J Geogr 108(1):143–151CrossRefGoogle Scholar
  172. Hanson WC (1967) Cesium-137 in Alaskan lichens, caribou and Eskimos. Health Phys 13:383–389CrossRefGoogle Scholar
  173. Hanson WC (1971) Fallout radionuclide distribution in lichen communities near Thule. J Arctic Inst N Am 24(4):269–276Google Scholar
  174. Hanson WC, Eberhardt LL (1971) Cycling and compartimentalizing of radionuclides in northern Alaskan lichen communities. SAEC, COO-2122-5. Memorial Institute of Pacific Northwest Laboratory, Ecos. Department, Battelle, Richland, Washington, DCGoogle Scholar
  175. Harmens H, Foan L, Simon V, Millis G (2013) Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review. Environ Pollut 173:245–254CrossRefGoogle Scholar
  176. Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ Sci Technol 30:825–832CrossRefGoogle Scholar
  177. Harvey RG, Halonen M (1968) Interaction between carcinogenic hydrocarbons and nucleosides. Cancer Res 28:2183–2186Google Scholar
  178. Hauck M (2008) Epiphytic lichens indicate recent increase in air pollution in the Mongolian capital Ulan Bator. Lichenologist 40(2):165–168CrossRefGoogle Scholar
  179. Hauck M (2009) Global warming and alternative causes of decline in arctic-alpine and boreal-montane lichens in North-Western Central Europe. Glob Chang Biol 15:2653–2661. doi: 10.1111/j.1365-2486.2009.01968.x CrossRefGoogle Scholar
  180. Hawksworth DL (1971) Lichens as litmus for air pollution: a historical review. Int J Environ Stud 1:281–296CrossRefGoogle Scholar
  181. Hawksworth DL (1973) Mapping studies. In: Ferry BW, Baddeley MS, Hawksworth DL (eds) Air pollution and lichens. Athlone Press, London, pp 38–76Google Scholar
  182. Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichen. Nature 227:145–148CrossRefGoogle Scholar
  183. Heald CL, Jacob DJ, Fiore AM, Emmons LK, Gille JC, Deeter MN, Warner J, Edwards DP, Crawford JH, Hamlin AJ, Sachse GW, Browell EV, Avery MA, Vay SA, Westberg DJ, Blake DR, Singh HB, Sandholm ST, Talbot RW, Fuelberg HE (2003) Asian outflow and transpacific transport of carbon monoxide and ozone pollution: an integrated satellite, aircraft and model perspective. J Geophys Res 108(D24):4804CrossRefGoogle Scholar
  184. Heald CL, Jacob DJ, Park RJ, Alexander B, Fairlie TD, Yantosca RM, Chu DA (2006) Transpacific transport of Asian anthropogenic aerosols and its impact on surface air quality in the United States. J Geophys Res 111:14310CrossRefGoogle Scholar
  185. Herzig R, Urech M (1991) Flechten als Bioindikatoren. Integriertes biologisches Messsystem der Luftverschmutzung für das Schweizer Mittelland. Bibl Lichenol 43:1–283Google Scholar
  186. Herzig R, Liebendorfer L, Urech M, Ammann K, Cuecheva M, Landolt W (1989) Passive biomonitoring with lichens as a part of an integrated biological measuring system for monitoring air-pollution in Switzerland. Int J Environ Anal Chem 35:43–57CrossRefGoogle Scholar
  187. Holopainen T (1984) Types and distribution of ultra structural symptoms in epiphytic lichens in several urban and industrial environments in Finland. Ann Bot Fennici 21:213–229Google Scholar
  188. Holopainen T, Kärenlampi L (1985) Characteristic ultrastructural symptoms caused in lichens by experimental exposure to nitrogen compounds and fluorides. Ann Bot Fenn 22:333–342Google Scholar
  189. Hov Ø (1984) Modelling of the long-range transport of peroxyacetylnitrate to Scandinavia. J Atmos Chem 1:187–202CrossRefGoogle Scholar
  190. Hutchinson-Benson E, Svoboda J, Taylor HW (1985) The latitudinal inventory of 137Cs in vegetation and topsoil in northern Canada, 1980. Can J Bot 63:784–791Google Scholar
  191. Hviden T, Lillegraven A (1961) 137Cs and 90Sr in precipitation, soil and animals in Norway. Nature 192:1144–1146CrossRefGoogle Scholar
  192. Hyvärinen M, Koopmann R, Hormi O, Tuomi J (2000) Phenols in reproductive and somatic structures of lichens: a case of optimal defence? Oikos 91:371–375CrossRefGoogle Scholar
  193. IEA (International Energy Agency) (1999) World Energy Outlook-1999 insights. Looking at energy subsidies. Getting the Price Right, OCEDGoogle Scholar
  194. Innes JL (1985) Lichenometry. Prog Phys Geogr 9:187–254CrossRefGoogle Scholar
  195. Insarov GE (2010) Epiphytic montane lichens exposed to background air pollution and climate change: monitoring and conservation aspects. Int J Ecol Environ Sci 36(1):29–35Google Scholar
  196. Insarov GE, Semenov SM, Insarova I (1999) A system to monitor climate change with epilithic lichens. Environ Monit Assess 55:279–298CrossRefGoogle Scholar
  197. Intergovernmental Panel on Climate Change (IPCC) (2001) Climate change 2001: the scientific basis. In: Contribution of working group I to the third IPCC assessment report 944. Cambridge University Press, New YorkGoogle Scholar
  198. Iqbal A, Oanh NTK (2011) Assessment of acid deposition over Dhaka division using CAMx-MM5 modelling system. Atmos Pollut Res 2:52–462CrossRefGoogle Scholar
  199. Iurian AR, Hofmann W, Lettner H, Türk R, Cosma C (2011) Long term study of Cs-137 concentrations in lichens and mosses. Rom J Phys 56(7–8):983–992Google Scholar
  200. Ivanovich M, Harmon RS (1982) Uranium series disequilibrium – applications to environmental problems. Clarendon, OxfordGoogle Scholar
  201. Janssen NAH, Schwartz J, Zanobetti A, Suh HH (2002) Air conditioning and source-specific particles as modifiers of the effect of PM10 on hospital admissions for heart and lung disease. Environ Health Perspect 110:43–49CrossRefGoogle Scholar
  202. Japan Environmental Council (2005) The state of the environment in Asia 2005/2006. Springer, Tokyo, p 3CrossRefGoogle Scholar
  203. Jeran Z, Byrne AR, Batic F (1995) Transplanted epiphytic lichens as biomonitors of air-contamination by natural radionuclides around the Zirovski vrh uranium mine, Slovenia. Lichenologist 27(5):375–385Google Scholar
  204. Jeran Z, Jacimovic R, Batic F, Mavsar R (2002) Lichens as integrating air pollution monitors. Environ Pollut 120:107–113CrossRefGoogle Scholar
  205. Jerina DM, Thakkar DR, Yagi H, Levin W, Wood AW, Conney AH (1978) Carcinogenicity of benzo(a)pyrene derivatives: the bay region theory. Pure Appl Chem 50:1033–1044CrossRefGoogle Scholar
  206. Jorge-Villar SE, Edwards HGM (2009) Lichen colonization of an active volcanic environment: a Raman spectroscopic study of extremophile biomolecular protective strategies. J Raman Spectrosc 41:63–67CrossRefGoogle Scholar
  207. Joshi S (2009) Diversity of lichens in Pidari and Milam regions of Kumaon Himalaya. Ph. D. thesis. Kumaon University, NainitalGoogle Scholar
  208. Joshi S, Upreti DK (2008) Lichenometric studies in vicinity of Pindari Glacier in the Bageshwar district of Uttarakhand, India. Curr Sci 99(2):231–235Google Scholar
  209. Joshi S, Upreti DK, Punetha N (2008) Change in the lichen flora of Pindari Glacier Valley Uttarakhand (India) during the last three decades. Ann For 16(1):168–169Google Scholar
  210. Joshi S, Upreti DK, Das P (2011) Lichen diversity assessment in Pindari glacier valley of Uttarakhand, India. Geophytology 41(1–2):25–41Google Scholar
  211. Joshi S, Upreti DK, Das P, Nayaka S (2012) Lichenometry: a technique to date natural hazards. Sci India Popular Issue V(II):1–16. www.earthscienceindia.info
  212. Jovan S (2008) Lichen bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California. General technical report PNW-GTR-737. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, 115 pGoogle Scholar
  213. Junshum P, Somporn C, Traichaiyaporn S (2008) Biological indices for classification of water quality around Mae Moh power plant. Int J Sci Technol (Thailand, Maejo) 2(01):24–36Google Scholar
  214. Kardish N, Ronen R, Bubrick P, Garty J (1987) The influence of air pollution on the concentration of ATP and on chlorophyll degradation in the lichen Ramalina duriaei (De Not.) Bagl. New Phytol 106:697–706CrossRefGoogle Scholar
  215. Kathuria V (2002) Vehicular pollution control in Delhi, India. Transp Res Part D 7(5):373–387CrossRefGoogle Scholar
  216. Kathuria V (2004) Impact of CNG on vehicular pollution in Delhi – a note. Transp Res Part D 9(5):409–417CrossRefGoogle Scholar
  217. Kauppi M (1980) Fluorescence microscopy and microfluorometry for the examination of pollution damage in lichens. Ann Bot Fenn 17:163–173Google Scholar
  218. Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke oven, diesel, and gasoline engines highway tunnels and wood combustion emissions. Atmos Environ 29(4):533–542CrossRefGoogle Scholar
  219. Kholia H, Mishra GK, Upreti DK, Tiwari L (2011) Distribution of lichens on fallen twigs of Quercus leucotrichophora and Quercus semecarpifolia in and around Nainital city, Uttarakhand, India. Geophytology 41(1–2):61–73Google Scholar
  220. Kim JW (1990) Environmental aspects of transnational corporation activities in pollution-intensive industries in the Republic of Korea: a case study of the Ulsan/Onsan industrial complexes. In: Environmental aspects of transnational corporation activities in selected Asian and Pacific developing countries. ESCAP/UNCTC Publication Series B, No. 15. United Nations, New York, pp 276–319Google Scholar
  221. Kim TY (1993) A study on the effects of air pollution in China on the Korean peninsula. Masters thesis, Graduate School of Environmental Studies, Seoul National University, SeoulGoogle Scholar
  222. Kim JW (2006) The environmental impact of industrialization in East Asia and strategies toward sustainable development. Sustain Sci 1:107–114. doi: 10.1007/s11625-006-0006-5 CrossRefGoogle Scholar
  223. Kleindienst TE (1994) Recent developments in the chemistry and biology of peroxyacetyl nitrate. Res Chem Intermed 20:335–384CrossRefGoogle Scholar
  224. Kondratyuk SY, Coppins BJ (1998) Lobarion lichens as indicators of the primeval forests of the eastern Carpathians. In: Darwin international workshop, Ukraine Phytosociological Center, Kiev, 25–30 May 1998Google Scholar
  225. Korenaga T, Liu X, Tsukiyama Y (2000) Dynamics analysis for emission sources of polycyclic aromatic hydrocarbons in Tokushima soils. J Health Sci 46(5):380–384CrossRefGoogle Scholar
  226. Kreuzer W, Schauer T (1972) The vertical distribution of Cs137 in Cladonia rangiformis and C. silvatica. Svensk Bot. Tidskr 66:226–238Google Scholar
  227. Kricke R, Loppi S (2002) Bioindication: the IAP approach. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens – monitoring lichens. Kluwer, Dordrecht, pp 21–37CrossRefGoogle Scholar
  228. Kulkarni AV (2007) Effect of global warming on the Himalayan cryosphere. Jalvigyan Sameeksha 22:93–108Google Scholar
  229. Kuusianen M (1996a) Epiphytic flora and diversity on basal trunks of six old-growth forests tree species in southern and middle boreal Finland. Lichenologist 28:443–463Google Scholar
  230. Kuusianen M (1996b) Cyanobacterial macrolichens of Populus tremula as indicators of forest continuity in Finland. Biol Conserv 75:43–49CrossRefGoogle Scholar
  231. Kwapulinski J, Seaward MRD, Bylinska EA (1985a) Uptake of 226Radium and 228Radium by the lichen genus Umbilicaria. Sci Tot Environ 41:135–141CrossRefGoogle Scholar
  232. Kwapulinski J, Seaward MRD, Bylinska EA (1985b) 137Caesium content of Umbilicaria-species, with particular reference to altitude. Sci Tot Environ 41:125–133CrossRefGoogle Scholar
  233. Laden F, Neas LM, Dockery DW, Schwartz J (2000) Association of fine particulate matter from different sources with daily mortality in six US cities. Environ Health Perspect 108:941–947CrossRefGoogle Scholar
  234. Lal B, Ambasht RS (1981) Impairment of chlorophyll content in the leaves of Diospyros melanoxylon in relation to fluoride pollution. Water Air Soil Pollut 16:361–365CrossRefGoogle Scholar
  235. Lalnunmawia H. (2010) Impact of tourism in India. www.itopc.org/travel-equisite/tourism-statistics.html. Accessed on 28 Nov 2011
  236. Lane DA, Johnson ND, Hanley M, Schroeder WH, Ord DT (1992a) Gas and particle-phase concentrations of alpha-hexachlorocyclohexane, gamma-hexachlorocyclohexane, and hexachlorobenzene in Ontario air. Environ Sci Technol 26:126–133CrossRefGoogle Scholar
  237. Lane DA, Schroeder WH, Johnson ND (1992b) On the spatial and temporal variations in the atmospheric concentrations of hexachlorobenzene and hexachlorocyclohexane isomers at several locations in the province of Ontario, Canada. Atmos Environ A 26:31–42CrossRefGoogle Scholar
  238. Larsen RS, Bell JNB, James PW, Chimonides PJ, Rumsey FJ, Tremper A, Purvis OW (2007) Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environ Pollut 146:332–340CrossRefGoogle Scholar
  239. LeBlanc F, Robitaille G, Rao D (1974) Biological response of lichens and bryophytes to environmental pollution in the Murdochville copper Mine area, Quebec. J Hattori Bot Lab 38:405–433Google Scholar
  240. Lee SS (2005) One out of thirty Chinese poisoned by fluoride. http://www.hani.co.kr/kisa/section-004005000/2005/08/p004005000
  241. Lee YH, Shyu TH, Chiang MY (2003) Fluoride accumulation and leaf injury of tea and weeds in the vicinity of a ceramics factory. Taiwanese J Agric Chem Food Sci 41:87–94Google Scholar
  242. Lee G, Jang Y, Lee H, Han JS, Kim KR, Lee M (2008) Characteristic behavior of peroxyacetyl nitrate (PAN) in Seoul megacity, Korea. Chemosphere 73:619–628CrossRefGoogle Scholar
  243. Lefohn AS (1991) Surface level ozone exposure and their effects on vegetation. Lewis Publishers, Boca RatonGoogle Scholar
  244. Li XS, Zhi JL, Gao RO (1995) Effect of fluoride exposure on intelligence in children. Fluoride 28(4):89–192Google Scholar
  245. Li P, Feng XB, Qiu GL, Shang LH, Li ZG (2009) Mercury pollution in Asia: a review of the contaminated sites. J Hazard Mater 168:591–601CrossRefGoogle Scholar
  246. Lidén K, Gustavsson M (1967) Relationships and seasonal variation of Cs-137 in lichen, reindeer and man in northern Sweden 1961 to 1965. In: Aberg B, Higate FP (eds) Radioecological concentration processes. Proceedings international symposium, 1966. Pergamon Press, Oxford, pp 193–207Google Scholar
  247. Lisowska M (2011) Lichen recolonisation in an urban-industrial area of southern Poland as a result of air quality improvement. Environ Monit Assess 179(1–4):177–190CrossRefGoogle Scholar
  248. Liu K, Colinvaux PA (1988) A 5200-year history of Amazon rain forest. J Biogeogr 15:231–248CrossRefGoogle Scholar
  249. Liu J, Diamond J (2005) China’s environment in a globalizing world. Nature 435:1179–1186CrossRefGoogle Scholar
  250. Liu H, Jacob DJ, Bey I, Yantosca RM, Duncan BN, Sachse GW (2003) Transport pathways for Asian pollution outflow over the Pacific: interannual and seasonal variations. J Geophys Res 108:8786CrossRefGoogle Scholar
  251. Lodenius M, Kiiskinen J, Tulisalo E (2010) Metal levels in an epiphytic lichen as indicators of air quality in a suburb of Helsinki, Finland. Boreal Environ Res 15:446–452Google Scholar
  252. Lohani BN, Evans JW, Everitt RR, Ludwig H, Carpenter RA, Tu S-L (1997) Environmental impact assessment for developing countries in Asia. Asian Development Bank, ManilaGoogle Scholar
  253. Loppi S, Frati L (2006) Lichen diversity and lichen transplants as monitors of air pollution in a rural area of central Italy. Environ Monit Assess 114:361–375. doi: 10.1007/s10661-006-4937-1 CrossRefGoogle Scholar
  254. Loppi S, Pirintsos SA (2000) Effect of dust on epiphytic lichen vegetation in the Mediterranean area (Italy and Greece) Isreal. J Plant Sci 48:91–95Google Scholar
  255. Loppi S, Pirintsos SA (2003) Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystem (central Italy). Environ Poll 121:327–332CrossRefGoogle Scholar
  256. Loppi S, Pacioni G, Olivieri N, Di Giacomo F (1998) Accumulation of trace metals in the lichen Evernia prunastri transplanted at biomonitoring sites in Central Italy. Bryologist 101(3):451–454Google Scholar
  257. Loppi S, Ivanov D, Boccardi R (2002) Biodiversity of epiphytic lichens and air pollution in the town of Siena (Central Italy). Environ Pollut 116:123–128CrossRefGoogle Scholar
  258. Lozan JL, Grabl H, Hupfer P (2001) Summary: warning signals from climate in climate of 21st century: changes and risks. Wissenschaftliche Auswertungen, Berlin, pp 400–408Google Scholar
  259. LRTAP Convention (1998) Protocol to the 1979 convention on long-range transboundary air pollution on persistent organic pollutants. http://www.unece.org/env/lrtap/
  260. Mackay D, Wania FA (1995) Global distribution model for persistent organic chemicals. Sci Total Environ 160/161:25–38CrossRefGoogle Scholar
  261. Mackay D, Shiu W-Y, Ma K-C (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. FL7 Lewis, Boca RatonGoogle Scholar
  262. Madkour SA, Laurence JA (2002) Egyptian plant species as new ozone indicators. Environ Pollut 120:339–353CrossRefGoogle Scholar
  263. Markert BA, Breure AM, Zechmeister HG (2003) Definitions, strategies and principles for bioindication/biomonitoring of the environment. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier, Oxford, pp 3–39CrossRefGoogle Scholar
  264. Martin JH (1991) Iron still comes from above. Nature 353:123CrossRefGoogle Scholar
  265. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343CrossRefGoogle Scholar
  266. Martin JR, Koranda JJ (1971) Recent measurements of Cs-137 residence time in Alaskan vegetation. U.S. Atom. Energy Comm. Rep. CONF-71050, pp 1–34Google Scholar
  267. Martin RV, Jacob DJ, Yantosca RM, Chin M, Ginoux P (2003) Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J Geophys Res 108:4097CrossRefGoogle Scholar
  268. Masclet P, Hoyau V, Jaffrezo JL, Legrand M (1995) Evidence for the presence of polycyclic aromatic hydrocarbons in the polar atmosphere and in the polar ice of Greenland. Analusis 23:250–252Google Scholar
  269. Mason MG, Cameron I, Petterson DS, Home RW (1987) Effect of fluoride toxicity on production and quality of wine grapes. J Aust Inst Agric Sci 53:96–99Google Scholar
  270. Mastral AM, Lopez JM, Callen MS, Garcya T, Murillo R (2003) Spatial and temporal PAH concentrations in Zaragoza, Spain. Sci Total Environ 307:111–124CrossRefGoogle Scholar
  271. Mattsson LJS (1974) Cs-137 in the Reindeer Lichen Cladonia alpestris: deposition, retention and internal distribution 1961–1970. Health Phys 28:233–248CrossRefGoogle Scholar
  272. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668CrossRefGoogle Scholar
  273. Mc Cune B (1993) Gradients in epiphytic biomass in three Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. Bryologist 96:405–411CrossRefGoogle Scholar
  274. McGrath SP (1995) Chromium and nickel. In: Alloway BJ (ed) Heavy metals in soils, 2nd edn. Blackie/Academic and Professional, London, pp 152–174CrossRefGoogle Scholar
  275. Menard PB, Peterson PJ, Havas M, Steinnes E, Turner D (1987) Lead, cadmium and arsenic in the environment. In: Hutchison TC et al (eds) Environmental contamination. Wiley, New York, pp 43–48Google Scholar
  276. Menon S et al (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253CrossRefGoogle Scholar
  277. Meyerhof D, Marshall H (1990) The non-agricultural areas of Canada and radioactivity. In: Desmet G et al (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 48–55Google Scholar
  278. Miguel AH, Kirchstetter TW, Harley RA, Hering SV (1998) On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ Sci Technol 32:450–455CrossRefGoogle Scholar
  279. Millán MM, Artiñnano B, Alonso L, Castro M, Fernádez-Patier R, Goberna J (1992) Meso-meteorological cycles of air pollution in the Iberian Peninsula (MECAPIP) (Air pollution research report 44, EUR N-14834). European Commission, Brussels, DG XII/E-1Google Scholar
  280. Mishra SK, Upreti DK, Pandey V, Bajpai R (2003) Pollution monitoring with the help of lichens transplant technique in some commercial and industrial areas of Lucknow City. Pollut Res 22(2):221–225Google Scholar
  281. Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxic (Amsterdam, Netherlands) 86:205–215CrossRefGoogle Scholar
  282. Moraes RM, Klumpp A, Furlan CM, Klumpp G, Domingos M, Rinaldi MCS, Modesto IF (2002) Tropical fruit trees as bioindicators of industrial air pollution in southeast Brazil. Environ Int 28:367–374CrossRefGoogle Scholar
  283. Mukhopadhyaya K, Forssel O (2005) An empirical investigation of air pollution from fossil fuel combustion and its impact on health in India during 1973–1974 to 1996–1997. Ecol Econ 55:235–250CrossRefGoogle Scholar
  284. Naeher LP, Holford TR, Beckett WS, Belanger K, Triche EW, Bracken MB et al (1999) Healthy women’s PEF variations with ambient summer concentrations of PM10, PM25, SO4 2−, H+, and O3. Am J Respir Crit Care Med 60:117–125CrossRefGoogle Scholar
  285. Narayan D, Agrawal M, Pandey J, Singh J (1994) Changes in vegetation characteristics downwind of an aluminium factory in India. Ann Bot 73:557–565CrossRefGoogle Scholar
  286. Nash TH III (1971) Lichen sensitivity to hydrogen fluoride. Bull Torr Bot Club 98(2):103–106CrossRefGoogle Scholar
  287. Nash TH (1976) Sensitivity of lichens to nitrogen dioxide fumigations. Bryologist 79:103–106CrossRefGoogle Scholar
  288. Nash TH III (2008) Lichen biology, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  289. Nash TH, Gries C (1991) Lichens as indicators of air pollution. In: Hutzinger O (ed) The handbook of environmental chemistry, vol 4. Part C. Springer, BerlinGoogle Scholar
  290. Nash TH III, Sommerfield MR (1981) Elemental concentrations in lichens in the area of the four corner power plant, New Mexico. Environ Exp Bot 21:153–162CrossRefGoogle Scholar
  291. Nash TH III, Wirth V (1988) Lichens, bryophytes and air quality. Bibl Lichenol 30:1–298Google Scholar
  292. Nayaka S, Upreti DK (2005a) Status of lichen diversity in Western Ghats, India. Sahyadri E-News, p 16. http://wgbis.ces.iisc.ernet.in/biodiversity/sahyadri-news/newsletter/issue16/main_index.htm
  293. Nayaka S, Upreti DK (2005b) Lichen flora of Pune City (India) with reference to air pollution (Abstract). In: IIIrd international conference on plants and environmental pollution, NBRI, Lucknow, 28 Nov–2 Dec 2005Google Scholar
  294. Nayaka S, Upreti DK, Gadgil M, Pandey V (2003) Distribution pattern and heavy metal accumulation in lichens of Bangalore city with special reference to lalbagh Garden. Curr Sci 84(5):674–680Google Scholar
  295. Nayaka S, Singh PK, Upreti DK (2005a) Fungicidal elements accumulated in Cryptothecia punctata(Ascomycetes) lichens of an Arecanut Orchard in South India. J Environ Biol 26(2):299–300Google Scholar
  296. Nayaka S, Upreti DK, Pandey V, Pant V (2005b) Manganese (Mn) in lichens growing on magnasite rocks in India. Bull Bri Lic Soc 97:66–68Google Scholar
  297. Nayaka S, Ranjan S, Saxena P, Pathre UV, Dk U, Singh R (2009) Assessing the vitality of Himalayan lichens by measuring their photosynthetic performances using chlorophyll fluorescence technique. Curr Sci 97(4):538–545Google Scholar
  298. Negra C, Ross DS, Lanzirotti A (2005) Oxidizing behavior of soil manganese: interactions among abundance, oxidation state and pH. Soil Sci Soc Am J 69:87–95CrossRefGoogle Scholar
  299. Neitlich P, Will-Wolf S (2000) The lichen community indicator in the forest Inventory and Analysis FHM program: using lichen communities to monitor forest health. Poster Forest Health Monitoring Workshop, Orange Beach, Albama, 14–17 Feb 2000Google Scholar
  300. Nevstrueva MA, Ramzaev PV, Ibatullin AA, Teplykh LA (1967) The nature of Cs-137 and Sr-90 transport over the lichen-reindeer-man food chain. In: Radioecology concentration processes. Proceedings of the international symposium, Stockholm, 1966, pp 209–215Google Scholar
  301. Nieboer E, Richardson DHS (1981) Lichens as monitors of atmospheric deposition. In: Eisenreich SJ (ed) Atmospheric pollutants in natural waters. Ann Arbor Science, Ann Arbor, pp 339–388Google Scholar
  302. Nieboer E, Puckett KJ, Richardson DHS, Tomassini FD, Grace B (1977) Ecological and physiochemical aspects of the accumulation of heavy metals and sulphur in lichens. In: Nieboer E, Puckett KJ, Richardson DHS (eds) International conference on heavy metals in the environment. Symposium proceedings, Toranto, vol 2, pp 331–352Google Scholar
  303. Nieboer E, Richardson DHS, Tomassini FD (1978) Mineral uptake and release by lichen: an overview. Bryologist 81:226–246CrossRefGoogle Scholar
  304. Niemi GJ, McDonald ME (2004) Application of ecological indicators. Annu Rev Ecol Evol Syst 35:89–111CrossRefGoogle Scholar
  305. Nifontova MG (2000) Concentrations of Long-lived Artificial Radionuclides in the Moss-Lichen Cover of Mountain Plant Communities. Russ J Ecol 31(3):182–185CrossRefGoogle Scholar
  306. Nikipelov BV, Drozhko EG, Romanov GN, Voronov AS, Spirin DA, Alexakhin RM, Smirnov EG, Suvorova LI, Tikhomirov FA, Buldakov LA, Shvedov VL, Tepyakovi IG, Shilin VP (1990) The Kyshtym accident: close-up (In Russian). Nature (USSR) 5:47–75Google Scholar
  307. Nimis PL (1990) Air quality indicators and indices: the use of plants as bioindicators for monitoring of air pollution. In: Colombo AG, Premazzi G (eds) Procedings of the workshop on indicators and indices for environmental impact assessment and risk analysis. Joint Research Centre, Ispra, pp 93–126Google Scholar
  308. Nimis PL (1996) Radiocaesium in plants of forest ecosystems. Studia Geobotanica 15:3–49Google Scholar
  309. Nimis PL (1999) Linee guida per la bioindicazione degli effetti dell’inquinamento tramite la biodiversità dei licheni epifiti. In: Piccini C, Salvat S (eds) Atti Workshop Biomonitoraggio Qualita` dell’Aria sul territorio Nazionale, Roma. ANPA, Roma, 1998, pp 267–277Google Scholar
  310. Nimis PL, Castello M, Perotti M (1990) Lichens as biomonitors of Sulphur dioxide pollution in La Spezia (Northern Italy). Lichenologist 22:333–344CrossRefGoogle Scholar
  311. Nimis PL, Castello M, Perotti M (1993) Lichens as bioindicators of heavy metal pollution: a case study at La Spezia (N Italy). In: Markert B (ed) Plants as biomonitors, indicators for heavy metals in the terrestrial environment. VCH, Weinheim, pp 265–284Google Scholar
  312. Niriagu JO, Azcue JM (1990) Environmental sources of arsenic in food. Adv Environ Sci Technol 23:103–127Google Scholar
  313. Nriagu JO, Pacyna J (1988) Quantitative assessment of worldwide contamination if air, water and soil by trace metals. Nature 333:134–139CrossRefGoogle Scholar
  314. O’Neill MS, Loomis D, Borja-Aburto VH (2004) Ozone, area social conditions, and mortality in Mexico City. Environ Res 94:234–242CrossRefGoogle Scholar
  315. Odum EP (1996) Fundamentals of ecology, 1st Indian edn. Natraj Publishers, DehradunGoogle Scholar
  316. Ou D, Liu M, Cheng S, Hou L, Xu S, Wang L (2010) Identification of the sources of polycyclic aromatic hydrocarbon based on molecular and isotopic characterization from the Yangtze estuarine and nearby coastal areas. J Geogr Sci 20(2):283–294CrossRefGoogle Scholar
  317. Paakola HE, Miettinen JK (1963) 90Sr and 137Cs in plants and animals in Finnish Lapland during 1960. Ann Acad Sci Fenn Ser A2:125–138Google Scholar
  318. Pacyna JM, Breivik K, Munch J, Fudala J (2003) European atmospheric emissions of selected persistent organic pollutants, 1970–1995. Atmos Environ 37:S119–S131CrossRefGoogle Scholar
  319. Panayotou T (2003) Economic growth and the environment.  Chapter 2. In: Spring Seminar of the United Nations Economic Commission for Europe. Economic survey of Europe, Geneva, pp 45–72
  320. Pandey GP (1981) A survey of fluoride pollution effects on the forest ecosystem around an aluminium factory in Mirzapur, U.P., India. Environ Conserv 8:131–137CrossRefGoogle Scholar
  321. Pandey GP (1985) Effects of gaseous hydrogen fluoride on leaves of Terminalia tomentosa and Buchannania lanzan trees. Environ Conserv 37:323–334Google Scholar
  322. Paoli L, Pisani T, Guttová A, Sardella G, Loppi S (2011) Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: relationship with the lichen diversity. Ecotoxicol Environ Saf 74(4):650–657CrossRefGoogle Scholar
  323. Papastefanou C, Manolopoulou M, Charalambous S (1988) Radiation measurements and radioecological aspects of fallout from the Chernobyl accident. J Environ Radioact 7:49–64CrossRefGoogle Scholar
  324. Papastefanou C, Manolopoulou M, Sawidis T (1992) Residence time and uptake rates of 137Cs in lichens and mosses at temperate latitude (40Nº). Environ Int 18:397–401CrossRefGoogle Scholar
  325. Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Seoul Korea. Atmos Environ 36:2917–2924CrossRefGoogle Scholar
  326. Patra AC, Sahoo SK, Tripathi RM, Puranik VD (2013) Distribution of radionuclides in surface soils, Singhbhum Shear Zone, India and associated dose. Environ Monit Assess. doi: 10.1007/s10661-013-3138-y Google Scholar
  327. Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansion and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankvogel, Tyrol Austria. Glob Chang Biol 13:147–156CrossRefGoogle Scholar
  328. Pawlik-Skowrońska BL, Sanita di Toppi MA, Favali F, Fossati J, Pirszel TS (2002) Lichens respond to heavy metals by phytochelatin synthesis. New Phytol 156:95–102CrossRefGoogle Scholar
  329. Perkins DF (1992) Relationship between fluoride contents and loss of lichens near an aluminium works. Water Air Soil Pollut 64:503–510CrossRefGoogle Scholar
  330. Pinho P, Augusto S, Branquinho C, Bio A, Pereira MJ, Soares A, Catarino F (2004) Mapping lichen diversity as a first step for air quality assessment. J Atm Chem 49:377–389CrossRefGoogle Scholar
  331. Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci USA 96:3447–3454. doi: 10.1073/pnas.96.7.3447 CrossRefGoogle Scholar
  332. Prasad MNV (1997) Trace metal. In: Prasad MNV (ed) Plant physiology. Wiley, New York, pp 207–249Google Scholar
  333. Preutthipan A, Udomsubpayakul U, Chaisupamongkollarp T, Pentamwa P (2004) Effect of PM10 pollution in Bangkok on children with and without asthma. Pediatr Pulmonol 37:187–192CrossRefGoogle Scholar
  334. Prospero JM (1999) Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. Proc Natl Acad Sci USA 96:3396–3403CrossRefGoogle Scholar
  335. Puckett KJ (1988) Bryophytes and lichens as monitors of metal deposition. In: Nash TH III (ed) Lichens, bryophytes and air quality, Bibliotheca Lichenologica 30. J. Cramer, Berlin, pp 231–267Google Scholar
  336. Pulak D, Joshi S, Rout J, Upreti DK (2012) Impact of a paper mill on surrounding epiphytic lichen communities using multivariate analysis. Indian J Ecol 39(1):38–43Google Scholar
  337. Purvis OW (2000) Lichens. The Natural History Museum, LondonGoogle Scholar
  338. Purvis OW, Dubbin W, Chimonides PDJ, Jones GC, Read H (2008) The multielement content of the lichen Parmelia sulcata, soil, and oak bark in relation to acidification and climate. Sci Total Environ 390:558–568CrossRefGoogle Scholar
  339. Rai H, Khare R, Gupta RK, Upreti DK (2011) Terricolous lichens as indicator of anthropogenic disturbances in a high altitude grassland in Garhwal (Western Himalaya), India. Botanica Orientalis. J Plant Sci 8:16–23Google Scholar
  340. Rani M, Shukla V, Upreti DK, Rajwar GS (2011) Periodical monitoring with lichen, Phaeophyscia hispidula (Ach.) Moberg in Dehradun city, Uttarakhand, India. Environmentalist 31:376–381. doi: 10.1007/s10669-011-9349-2 CrossRefGoogle Scholar
  341. Rao DN, LeBlanc F (1967) Influence of an iron sintering plant on corticolous epiphytes inWawa, Ontario. Bryologist 70:141–157Google Scholar
  342. Ravindra K, Sokhi R, Grieken RV (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921. doi: 10.1016/j.atmosenv.2007.12.010 CrossRefGoogle Scholar
  343. Ravindra K, Wauters E, Tyagi SK, Mor S, Van Grieken R (2006) Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi India. Environ Monit Assess 115:405–417CrossRefGoogle Scholar
  344. Riddell J, Padgett PE, Nash TH III (2010) Responses of the lichen Ramalina menziesii Tayl. to ozone fumigations. In: Nash TH et al. (eds.) Biology of Lichens-Symbiosis, Ecology, Environmental Monitoring, Systematics and Cyber Applications. Bibliotheca Lichenologica 105:113–123Google Scholar
  345. Rosenfeld D et al (2007) Inverse Relations Between Amounts of Air Pollution and Orographic Precipitation. Science 315:1396–1398CrossRefGoogle Scholar
  346. Ross LJ, Nash TH III (1983) Effect of ozone on gross photosynthesis of lichens. Environ Exp Bot 23(1):71–77CrossRefGoogle Scholar
  347. Ruoss E, Vonarburg C (1995) Lichen diversity and ozone impact in rural areas of central Switzerland. Cryptogam Bot 5:252–263Google Scholar
  348. Saipunkaew W, Wolseley PA, Chimonides PJ, Boonpragob K (2007) Epiphytic macrolichens as indicators of environmental alteration in northern Thailand. Environ Pollut 146:366–374CrossRefGoogle Scholar
  349. Salo A, Miettinen JK (1964) Strontium-90 and Caesium-137 in Arctic vegetation during 1961. Nature 201:1177–1179CrossRefGoogle Scholar
  350. Sanità di Toppi L, Musetti R, Vattuone Z, Pawlik-Skowrońska B, Fossati F, Bertoli L, Badiani M, Favali MA (2005) Cadmium distribution and effects on ultrastructure and chlorophyll status in photobionts and mycobionts of Xanthoria parietina. Microscop Res Tech 66:229–238CrossRefGoogle Scholar
  351. Sanz M-J, Gries C, Nash TH III (1992) Dose-response relationships for SO2 fumigations in the lichens Evernia prunastri (L.) Ach. and Ramalina fraxinea (L.) Ach. New Phytol 122:313–319CrossRefGoogle Scholar
  352. Sasaki J, Aschmann SM, Kwok ESC, Atkinson R, Arey J (1997) Product of the gas-phase OH and NO3 Radical-initiated reactions of naphthalene. Environ Sci Technol 31:3173–3179CrossRefGoogle Scholar
  353. Satya, Upreti DK (2009) Correlation among carbon, nitrogen, sulphur and physiological parameters of Rinodina sophodes found at Kanpur city, India. J Hazard Mater 169:1088–1092. doi: 10.1016/j/jhazmat.2009.04.063 Google Scholar
  354. Satya, Upreti DK, Patel DK (2012) Rinodina sophodes(Ach.) Massal.: a bioaccumulator of polycyclic aromatic hydrocarbons (PAHs) in Kanpur city, India. Environ Monit Assess 184:229–238CrossRefGoogle Scholar
  355. Sawidis T (1988) Uptake of radionuclides by plants after the Chernobyl accident. Environ Pollut 50Google Scholar
  356. Saxena S (2004) Lichen flora of Lucknow district with reference to Air Pollution studies in the area. Ph.D. thesis, Lucknow University, LucknowGoogle Scholar
  357. Saxena S, Upreti DK, Sharma N (2007) Heavy metal accumulation in lichens growing in north side of Lucknow city. J Environ Biol 28(1):45–51Google Scholar
  358. Scheidegger C, Schroeter B (1995) Effects of ozone fumigation on epiphytic macrolichens: ultrastructure, CO2 gas exchange and chlorophyll fluorescence. Environ Pollut 88(3):345–354CrossRefGoogle Scholar
  359. Seaward MRD (1974) Some observations on heavy metal toxicity and tolerance in lichens. Lichenologist 6:158–164CrossRefGoogle Scholar
  360. Seaward MRD (1988) Lichen damage to ancient monuments: a case study. Lichenologist 10(3):291–295CrossRefGoogle Scholar
  361. Seaward MRD (1989) Lichens as monitors of recent changes in air pollution. Plants Today 1:64–69Google Scholar
  362. Seaward MRD (1992) Lichens, silent witnesses of the Chernobyl disaster. University of Bradford, BradfordGoogle Scholar
  363. Seaward MRD (1993) Lichens and sulphur dioxide air pollution field studies. Environ Rev 1:73–91CrossRefGoogle Scholar
  364. Seaward MRD (1997) Urban deserts bloom: a lichen renaissance. Bibliotheca Lichenologica 67:297–309Google Scholar
  365. Seaward MRD, Heslop JA, Green D, Bylinska EA (1988) Recent levels of radionuclides in lichens from southwest Poland with particular reference to 134Cs and 137Cs. J Environ Radioact 7:123–129CrossRefGoogle Scholar
  366. Sernander R (1926) Stockholms Natur. Almguist and Wiksella, UppsalaGoogle Scholar
  367. Shirazi AM, Muir PS, McCune B (1996) Environmental factors influencing the distribution of lichen Lobaria oregano and L. pulmonaria. Bryologist 99(1):12–18CrossRefGoogle Scholar
  368. Shukla V (2007) Lichens as bioindicator of air pollution. Final technical report. Science and Society Division, Department of Science and Technology, New Delhi. Project No. SSD/SS/063/2003Google Scholar
  369. Shukla V (2012) Physiological response and mechanism of metal tolerance in lichens of Garhwal Himalayas. Final technical report. Scientific and Engineering Research Council, Department of Science and Technology, New Delhi. Project No. SR/FT/LS-028/2008Google Scholar
  370. Shukla V, Upreti DK (2007a) Physiological response of the lichen Phaeophyscia hispidula (Ach.) Essl. to the Urban Environment of Pauri and Srinagar (Garhwal), Himalayas. Environ Pollut 150:295–299. doi: 10.1016/j.envpol.2007.02.010 CrossRefGoogle Scholar
  371. Shukla V, Upreti DK (2007b) Heavy metal accumulation in Phaeophyscia hispidula en route to Badrinath, Uttaranchal, India. Environ Monit Assess 131:365–369. doi: 10.1007/s10661-006-9481-5 CrossRefGoogle Scholar
  372. Shukla V, Upreti DK (2007c) Lichen diversity in and around Badrinath, Chamoli district (Uttarakhand). Phytotaxonomy 7:78–82Google Scholar
  373. Shukla V, Upreti DK (2008) Effect of metallic pollutants on the physiology of lichen, Pyxine subcinerea Stirton in Garhwal Himalayas. Environ Monit Assess 141:237–243. doi: 10.1007/s10661-007-9891-z CrossRefGoogle Scholar
  374. Shukla V, Upreti DK (2009) Polycyclic Aromatic Hydrocarbon (PAH) accumulation in lichen, Phaeophyscia hispidula of DehraDun city, Garhwal Himalayas. Environ Monit Assess 149(1–4):1–7CrossRefGoogle Scholar
  375. Shukla V, Upreti DK (2011a) Changing lichen diversity in and around urban settlements of Garhwal Himalayas due to increasing anthropogenic activities. Environ Monit Assess 174(1–4):439–444. doi: 10.1007/s10661-010-1468-6 CrossRefGoogle Scholar
  376. Shukla V, Upreti DK (2011) Statistical correlation of metallic content and polycyclic aromatic hydrocarbon concentration to trace the source of PAH pollution. In: XXXIV All India Botanical Conference, Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, 10–12 October 2011Google Scholar
  377. Shukla V, Upreti DK (2012) Air quality monitoring with lichens in India: heavy metals and polycyclic aromatic hydrocarbon. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world, vol 2, Remediation of air and water pollution. Springer, New York, pp 277–294CrossRefGoogle Scholar
  378. Shukla V, Upreti DK, Nayaka S (2006) Heavy metal accumulation in lichens of Dehra Dun city, Uttaranchal, India. Indian J Environ Sci 10(2):165–169Google Scholar
  379. Shukla V, Upreti DK, Patel DK, Tripathi R (2010) Accumulation of polycyclic aromatic hydrocarbons in some lichens of Garhwal Himalayas, India. Int J Environ Waste Manag 5(1/2):104–113CrossRefGoogle Scholar
  380. Shukla V, Patel DK, Upreti DK, Yunus M (2012a) Lichens to distinguish urban from industrial PAHs. Environ Chem Lett 10:159–164. doi: 10.1007/s10311-011-0336-0 CrossRefGoogle Scholar
  381. Shukla V, Upreti DK, Patel DK (2012b) Physiological attributes of Phaeophyscia hispidula in heavy metal rich sites of Dehra Dun. India J Environ Biol 33:1051–1055Google Scholar
  382. Shukla V, Patel DK, Upreti DK, Yunus M, Prasad S (2013a) A comparison of heavy metals in lichen (Pyxine subcinerea), mango bark and soil. Int J Environ Sci Technol 10:37–46. doi: 10.1007/s13762-012-0075-1 CrossRefGoogle Scholar
  383. Shukla V, Upreti DK, Patel DK, Yunus M (2013b) Lichens reveal air PAH fractionation in the Himalaya. Environ Chem Lett. doi: 10.1007/s10311-012-0372-4 Google Scholar
  384. Sigal LL, Nash TH III (1983) Lichen communities on conifers in southern California: an ecological survey relative to oxidant air pollution. Ecology 64:1343–1354CrossRefGoogle Scholar
  385. Sillett SC, Neitlich P (1996) Emerging themes in epiphytic research in Westside forests with special reference to cyanolichens. Northwest Sci 70:54–60Google Scholar
  386. Sillett SC, Mc Cune B, Perk JE, Rambo TR, Ruchty A (2000) Dispersal limitations epiphytic lichen result in species dependent on old growth forests. Ecol Appl 10:789–799CrossRefGoogle Scholar
  387. Singh HB (1987) Reactive nitrogen in the troposphere. Environ Sci Technol 21(4):320–327CrossRefGoogle Scholar
  388. Singh JS (2011) Methanotrophs: the potential biological sink to mitigate the global methane load. Curr Sci 100(1):29–30Google Scholar
  389. Singh HB, Herlth D, Ohara D, Zahnle K, Bradshaw JD, Sandholm ST, Talbot R, Crutzen PJ, Kanakidou M (1992a) Relationship of peroxyacetyl nitrate to active and total odd nitrogen at Northern High-Latitudes – influence of reservoir species on NOx and O3. J. Geophys Res Atmos 97:16523–16530CrossRefGoogle Scholar
  390. Singh HB, Ohara D, Herlth D, Bradshaw JD, Sandholm ST, Gregory GL, Sachse GW, Blake DR, Crutzen J, Kanakidou MA (1992b) Atmospheric measurements of peroxyacetyl nitrate and other organic Nitrates at high-latitudes – possible sources and sinks. J Geophys Res-Atmos 97:16511–16522CrossRefGoogle Scholar
  391. Singh J, Agarwal M, Narayan D (1994) Effect of power plant emissions on plant community structure. Ecotoxicology 3:110CrossRefGoogle Scholar
  392. Singh HB, Herlth D, Kolyer R, Chatfield R, Viezee W, Salas LJ, Chen Y, Bradshaw JD, Sandholm ST, Talbot R, Gregory GL, Anderson B, Sachse GW, Browell E, Bachmeier AS, Blake DR, Heikes B, Jacob D, Fuelberg HE (1996) Impact of biomass burning emissions on the composition of the South Atlantic troposphere: reactive nitrogen and ozone. J Geophys Res 101(D19):24203–24219CrossRefGoogle Scholar
  393. Singh H, Chen Y, Tabazadeh A, Fukui Y, Bey I, Yantosca R, Jacob D, Arnold F, Wohlfrom K, Atlas E, Flocke F, Blake N, Heikes B, Snow J, Talbot R, Gregory G, Sachse G, Vay S, Kondo Y (2000a) Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic. J Geophys Res 105(D3):3795–3805CrossRefGoogle Scholar
  394. Singh HB, Viezee W, Chen Y, Bradshaw J, Sandholm S, Blake D, Blake N, Heikes B, Snow J, Talbot R, Browell E, Gregory G, Sachse G, Vay S (2000b) Biomass burning influences on the composition of the remote South Pacific troposphere: analysis based on observations from PEM-Tropics-A. Atmos Environ 34(4):635–644CrossRefGoogle Scholar
  395. Singh N, Ma LQ, Srivastava M, Rathinasabapthi B (2006) Metabolic adaptation to arsenic-induced oxidative stress in Pteris vittata L. and P. ensiformis L. Plant Sci 170:274–282CrossRefGoogle Scholar
  396. Singh J, Dubey AK, Singh RP (2011) Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Rev Environ Sci Biotechnol 10(1):63–77. doi: 10.1007/s11157-010-9226-3 CrossRefGoogle Scholar
  397. Sipman HJM (1997) Observations on the foliicolous lichen and bryophyte flora in the canopy of a semi-deciduous tropical forest. Abstracta Botanica 21:153–161Google Scholar
  398. Sloof JE, Wolterbeek BT (1992) Lichens as biomonitors for radiocesium following the Chernobyl accident. J Environ Radioact 16:229–242CrossRefGoogle Scholar
  399. Smith DJT, Harrison RM (1998) Polycyclic aromatic hydrocarbons in atmospheric particles. In: Harrison RM, Van Grieken R (eds) Atmospheric particles. Wiley, New YorkGoogle Scholar
  400. Smith G, Coulston J, Jepsen E, Prichard T (2003) A national ozone biomonitoring program e results from field surveys of ozone sensitive plants in northeastern forests (1994–2000). Environ Model Assess 87:271–291CrossRefGoogle Scholar
  401. Søchting U (2004) Flavoparmelia caperata – a probable indicator of increased temperatures in Denmark. Graphis Scripta 15:53–56Google Scholar
  402. Sokolik IN, Toon OB, Bergstrom RW (1998) Modeling of radiative characteristics of airborne mineral aerosols at infrared wavelengths. J Geophys Res 103:8813–8826CrossRefGoogle Scholar
  403. Sporn SG, Bos MM, Kessler M, Gradstein SR (2010) Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodivers Conserv 19:745–760. doi: 10.1007/s10531-009-9731-2 CrossRefGoogle Scholar
  404. Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differently during arsenite and arsenate stress in Hydrilla verticillata (L.f) Royle. Environ Sci Technol 41:2930–2936CrossRefGoogle Scholar
  405. Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195. doi: 10.1007/s10311-007-0095-0 CrossRefGoogle Scholar
  406. St. Clair BS, St. Clair LL, Mangelson FN, Weber JD (2002a) Influence of growth form on the accumulation of airborne copper by lichens. Atmos Environ 36:5637–5644CrossRefGoogle Scholar
  407. St. Clair BS, St. Clair LL, Weber JD, Mangelson FN, Eggett LD (2002b) Element accumulation patterns in foliose and fruticose lichens from rock and bark substrates in Arizona. Bryologist 105:415–421CrossRefGoogle Scholar
  408. State G, Popescu IV, Radulescu C, Macris C, Stihi C, Gheboianu A, Dulama I, Niţescu O (2012) comparative studies of metal air pollution by atomic spectrometry techniques and biomonitoring with moss and lichens. Bull Environ Contam Toxicol 89(3):580–586. doi: 10.1007/s00128-012-0713-9 CrossRefGoogle Scholar
  409. Staudt AC, Jacob DJ, Logan JA, Bachiochi D, Krishnamurti TN, Sachse GW (2001) Continental sources, transoceanic transport, and interhemispheric exchange of carbon monoxide over the Pacific. J Geophys Res 106:32571–32590CrossRefGoogle Scholar
  410. Staudt AC, Jacob DJ, Ravetta F, Logan JA, Bachiochi D, Krishnamurti TN, Sandholm S, Ridley B, Singh HB, Talbot B (2003) Sources and chemistry of nitrogen oxides over the tropical Pacific. J Geophys Res 108:8239CrossRefGoogle Scholar
  411. Stephens ER (1973) Analysis of an important air pollutant – peroxyacetyl nitrate. J Chem Educ 50:351–354CrossRefGoogle Scholar
  412. Subbotina EN, Timofeeff NV (1961) On the accumulation coefficients, characterising the uptake by crust lichens of some dispersed elements from aqueous solutions (Russian, English summary). Bot Z 46:212Google Scholar
  413. Suresh Y, Sailaja Devi MM, Manjari V, Das UN (2000) Oxidant stress, antioxidants, and nitric oxide in traffic police of Hyderabad, India. Environ Pollut 109:321–325CrossRefGoogle Scholar
  414. Sutherland WJ, Armstrong-Brown S, Armstrong PR, Brereton T, Brickland J, Campell CD, Chamberlain DE, Cooke AI, Dulvy NK et al (2006) The identification of 100 ecological questions of high policy relevance in the UK. J Appl Ecol 43:617–627CrossRefGoogle Scholar
  415. Tarhanen S (1998) Ultrastructural responses of the lichen Bryoria fuscescens to simulated acid rain and heavy metal deposition. Ann Bot 82:735–746CrossRefGoogle Scholar
  416. Tegen I, Lacis A (1996) Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J Geophys Res 101:19237–19244CrossRefGoogle Scholar
  417. Teklemariam TA, Sparks JP (2004) Gaseous fluxes of peroxyacetyl nitrate (PAN) into plant leaves. Plant Cell Environ 27:1149–1158CrossRefGoogle Scholar
  418. Thomas PA, Gate TE (1999) Radionuclides in the lichen-caribou-human food chain near Uranium mining operations in Northern Saskatchewan, Canada. Environ Health Perspect 107(7):527–537CrossRefGoogle Scholar
  419. Thormann MN (2006) Lichens as indicators of forest health in Canada. For Chron 82(3):335–343Google Scholar
  420. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Ecology 102:8245–8250Google Scholar
  421. Topcuoğlu S, Dawen AMV, Güngör N (1995) The natural depuration rate of 137Cs radionuclides in a lichen and moss species. J Environ Radioact 29(2):157–162. doi: 10.1016/0265-931X(94)00069-9 CrossRefGoogle Scholar
  422. Trass H (1973) Lichen sensitivity to the air pollution and index of poleotolerance (IP). Fol Crypt Estonia 3:19–22Google Scholar
  423. Tretiach M, Piccotto M, Baruffo L (2007) Effects of ambient NOx on chlorophyll a fluorescence in transplanted Flavoparmelia caperata (Lichen). Environ Sci Technol 41:2978–2984CrossRefGoogle Scholar
  424. Trivedi RC (1981) Use of diversity Index in evaluation of water quality. In: Zafar AR, Khan MA, Khan KR, Seenayya G (eds) Proceedings of the WHO workshop on biological indicators and indices of environmental pollution. Central Board of the Prevention and Control water Pollution, OSM UniversityGoogle Scholar
  425. Truscott AM, Palmer SCF, McGowan GM, Cape JN, Smart S (2005) Vegetation composition of roadside verges in Scotland: the effects of nitrogen deposition, disturbance and management. Environ Pollut 136:109–118CrossRefGoogle Scholar
  426. Tsibulsky V, Sokolovsky V, Dutchak S (2001) MSC-E contribution to the HM and POP Emission Inventories. Technical note 7/2001, Meteorological synthesizing Centre-East, Moscow. Available from: http://www.msceast.org/publications.html
  427. Tuominen Y, Jaakkola T (1973) Absorption and accumulation of mineral elements and radioactive nuclides. In: Ahamadjan V, Hale M (eds) The lichens. Academic, London, pp 185–223CrossRefGoogle Scholar
  428. Tyler G (1989) Uptake, retention and toxicity of heavy metals in lichens. A brief review. Water Air Soil Pollut 47(3–4):321–333CrossRefGoogle Scholar
  429. UNSCEAR (1993) Exposure from natural sources of radiation. United Nations, New YorkGoogle Scholar
  430. Upreti DK (1994) Lichens: the great benefactors. Appl Bot Abst 14(3):64–75Google Scholar
  431. Upreti DK, Nayaka S (2008) Need for creation of lichen garden and sanctuaries in India. Curr Sci 94(8):976–978Google Scholar
  432. Upreti DK, Pandey V (2000) Determination of heavy metals in lichens growing on different ecological habitats in Schirmacher Oasis, East Antarctica. Spectrosc Lett 33(3):435–444CrossRefGoogle Scholar
  433. Upreti DK, Chatterjee S, Divakar PK (2004) Lichen flora of Gangotri and Gomukh areas of Uttaranchal, India. Geophytology 34:15–21Google Scholar
  434. Upreti DK, Nayaka S, Bajpai A (2005) Do lichens still grow in Kolkata city? Curr Sci 88(3):338–339Google Scholar
  435. US EPA, 1998 (1990) Emissions Inventory of Section 112(c)(6) Pollutants: polycyclic organic matter (POM), TCDD, TCDF, PCBs, hexachlorobenzene, mercury, and alkylated lead: Final report. US Environmental Protection Agency Research, Triangle Park. Available from: http://www.epa.gov/ttn/atw/112c6/final2.pdf
  436. US Energy Information Administration (1998) National energy modeling system (NEMS) data base. US Department of Energy, Washington World Bank (1993) Development and the environment. Oxford University Press, OxfordGoogle Scholar
  437. Usman M, Murata M, Zafar M, Adeel K, Amir NA (2011) A study on correlation between temperature increase and earthquake frequency with emphasis on winter and summer periods, Northern Pakistan. In: 2nd international conference on environmental science and technology IPCBEE, vol 6. IACSIT Press, SingaporeGoogle Scholar
  438. Van der Gon HD, Van het Bolscher M, Visschedijk A, Zandveld P (2007) Emissions of persistent organic pollutants and eight candidate POPs from UNECE– Europe in 2000, 2010 and 2020 and the emission reduction resulting from the implementation of the UNECE POP protocol. Atmos Environ 41:9245–9261CrossRefGoogle Scholar
  439. van Dobben HF, ter Braak CJF (1999) Ranking of epiphytic lichen sensitivity to air pollution using survey data: a comparison of indicator scales. Lichenologist 31(1):27–39Google Scholar
  440. van Dobben HF, Wolterbeek HT, Wamelink GWW, Ter Braak CJF (2001) Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environ Pollut 112:163–169CrossRefGoogle Scholar
  441. van Geen A et al (2005) Reliability of a commercial kit to test groundwater for arsenic in Bangladesh. Environ Sci Technol 39(1):299–303CrossRefGoogle Scholar
  442. Van Haluwyn C, Lerond M (1986) Les lichens et la qualité de l’air. Evolution méthodologique et limites.Ministerè de l’Environnement, Service de la Recherche, des Etudes, et du Traitement de l’Information sur l’Environnement, ParisGoogle Scholar
  443. van Herk CM (2001) Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. Lichenologist 33:419–441CrossRefGoogle Scholar
  444. van Herk CM, Aptroot A (1999) Lecanora compallens and L. sinuosa, two new overlooked corticolous lichen species from western Europe. Lichenologist 31:543–553CrossRefGoogle Scholar
  445. van Herk CM, Aptroot A, van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–154CrossRefGoogle Scholar
  446. van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150CrossRefGoogle Scholar
  447. Van Pul WAJ, de Leeuw FAAM, van Jaarsveld JA, van der Gaag MA, Sliggeras CJ (1998) The potential for long-range transboundary atmospheric transport. Chemosphere 37:113–141CrossRefGoogle Scholar
  448. Vasconcellos PC, Zacarias D, Pires MAF, Pool CS, Carvalho LRF (2003) Measurements of polycyclic aromatic hydrocarbons in airborne particles from the metropolitan area of Sao Paulo city, Brazil. Atmos Environ 37:3009–3018CrossRefGoogle Scholar
  449. Vestergaard N, Stephansen U, Rasmussen L, Pilegaard K (1986) Airborne heavy metal pollution in the environment of a Danish steel plant. Water Air Soil Pollut 27:363–377CrossRefGoogle Scholar
  450. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96CrossRefGoogle Scholar
  451. Wadleigh MA, Blake DM (1999) Tracing sources of atmospheric sulphur using epiphytic lichens. Environ Pollut 106:265–271CrossRefGoogle Scholar
  452. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological response to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  453. Watts AW, Ballestero TP, Garder KH (2006) Uptake of polycyclic aromatic hydrocarbon (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Chemosphere 62:1253–1260CrossRefGoogle Scholar
  454. Weinstein LH, Davison AW (2003) Native plant species suitable as bioindicators and biomonitors for airborne fluoride. Environ Pollut 125:3–11CrossRefGoogle Scholar
  455. Wenborn MJ, Coleman PJ, Passant NR, Lymberidi E, Sully J, Weir RA (1999) Speciated PAH Inventory for the UK, AEA Technology Environment, Oxfordshire. http://www.airquality.co.uk/archive/reports/cat08/0512011419_REPFIN_all_nov.pdf
  456. Wilbanks TJ, Hunsaker DB, Petrich CH, Wright SB (1993) Potential to transfer the US NEPA experience in developing countries. In: Hildebrand SG, Cannon JB (eds) Environmental analysis: the NEPA experience. Lewis, Boca RatonGoogle Scholar
  457. Wilf P (1997) When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23(3):373–390Google Scholar
  458. Wilhelm M, Ritz B (2003) Residential proximity to traffic and adverse birth outcomes in Los Angeles County, California, 1994–1996. Environ Health Perspect 111:207–216CrossRefGoogle Scholar
  459. Wilhm JL (1967) Comparison of some diversity indices applied to populations of benthic macro invertebrates in a stream receiving organic wastes. J Water Pollut Cont Fed 39:1673–1683Google Scholar
  460. Winchester V (2004) Lichenometry. In: Goudie A, Routledge AS (eds) Encyclopedia of geomorphology. Routledge: International Association of Geomorphologists, London/New York, pp 619–620Google Scholar
  461. Wood C (2003) Environmental impact assessment in developing countries: an overview. In: Conference on new directions in impact assessment for development: methods and practice, University of Manchester, pp 24–25Google Scholar
  462. Wolfskeel DW, van Herk CM (2000) Heterodermia obscurata nieuw voor Nederland. Buxbaumiella 52:47–50Google Scholar
  463. Wolterbeek HT, Garty J, Reis MA, Freitas MC (2003) Biomonitors in use: lichens and metal air pollution. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier, Oxford, pp 377–419CrossRefGoogle Scholar
  464. Wuebbles DJ, Lei H, Lin J (2007) Intercontinental transport of aerosols and photochemical oxidants from Asia and its consequences. Environ Pollut 150:65–84CrossRefGoogle Scholar
  465. Xu SS, Liu WX, Tao S (2006) Emission of polycyclic aromatic hydrocarbons in China. Environ Sci Technol 40:702–708CrossRefGoogle Scholar
  466. Yassaa N, Meklati BY, Cecinato A, Marino F (2001) Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City area. Atmos Environ 35:1843–1851CrossRefGoogle Scholar
  467. Zambrano AG, Nash TH III, Herrera-Campos MA (2000) Lichen decline in Desierto de los Leones (Mexico City). Bryologist 103:428–441CrossRefGoogle Scholar
  468. Zhang JB, Tang XY (1994) Atmospheric PAN measurements and the formation of PAN in various systems. Environ Chem 1:30–39Google Scholar
  469. Zhang YX, Tao S (2008) Emission of polycyclic aromatic hydrocarbons (PAHs) from indoor straw burning and emission inventory updating in China. Ann N Y Acad Sci 1140:218–227CrossRefGoogle Scholar
  470. Zhang YX, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43:812–819CrossRefGoogle Scholar
  471. Zhang M, Song Y, Cai X (2007) A health-based assessment of particulate air pollution in urban areas of Beijing in 200-2004. Sci Total Environ 376:100–108CrossRefGoogle Scholar
  472. Zhang JB, Xu Z, Yang G, Wang B (2011) Peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in urban and suburban atmospheres of Beijing, China Atmos. Chem Phys Discuss 11:8173–8206CrossRefGoogle Scholar
  473. Zheng M, Fang M (2000) Particle-associated polycyclic aromatic hydrocarbons in the atmosphere of Hong Kong. Water Air Soil Pollut 117:175–189CrossRefGoogle Scholar
  474. Zullini A, Peretti E (1986) Lead pollution and moss-inhabiting nematodes of an industrial area. Water Air Soil Pollut 27:403–410CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Environmental SciencesBabasaheb Bhimrao Ambedkar UniversityLucknowIndia
  2. 2.Lichenology LaboratoryCSIR - National Botanical Research InstituteLucknowIndia

Personalised recommendations