Skip to main content

Secondary Metabolites and Its Isolation and Characterisation

  • Chapter
  • First Online:
Book cover Lichens to Biomonitor the Environment

Abstract

Secondary metabolites are known to protect lichens against increasing environmental stresses such as light exposure, water potential changes, microbial and herbivore interactions and other changes associated with changes in environmental conditions. Toxitolerant lichens show resistance to ambient environmental levels of pollutants which may be phenotypic or genotypic. In recent years, more attention is being paid to the chemical characterisation of the phenotype. The metabolome consists of two types of compounds, the primary metabolites and the secondary metabolites. The primary metabolites are compounds involved in the basic functions of the living cell, such as respiration and biosynthesis of compounds needed for a living cell, while some secondary metabolites are species specific, which play a role in the interaction of a cell with its environment and may be used as tool to protect lichens from external biotic and abiotic factors, including its defence against elevated pollutant concentration. As metabolic profiles in lichens may be used as pollution indicators (biosensors) and have great potential for the risk assessment of ecosystem. Therefore, isolation and characterisation of metabolites may provide direct evidence about the air quality-induced metabolomic changes in lichens. This chapter provides insight into various chromatographic techniques and modern spectroscopic techniques involved in characterisation of lichen substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadjian V, Jacobs JB (1981) Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature 289:169–172

    Google Scholar 

  • Alaimo MG, Dongarra G, Melati MR, Monna F, Varrico D (2000) Recognition of environmental trace metal contamination using pine needles as bioindicators. The urban area of Palermo (Italy). Environ Geol 39(8):914–924

    CAS  Google Scholar 

  • Armaleo D (1995) Factors affecting depside and depsidone biosynthesis in a cultured lichen fungus. Cryptogam Bot 5:14–21

    Google Scholar 

  • Armaleo D, Zhang Y, Cheung S (2008) Light might regulate divergently depside and depsidone accumulation in the lichen Parmotrema hypotropum by affecting thallus temperature and water potential. Mycologia 100:565–576

    CAS  Google Scholar 

  • Asahina Y, Shibata S (1954) Chemistry of lichen substances. Japan Society for the Promotion of Science, Tokyo

    Google Scholar 

  • Aue WP, Bartholdi E, Ernst RR (1976) Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J Chem Phys 64:2229–2246

    CAS  Google Scholar 

  • Backers GE, Shaefer T (1971) Applications of the intramolecular NOE in structural organic chemistry. Chem Rev 71:617

    Google Scholar 

  • Badhe PD (1976) Free amino acids in two species of Anaptychia (lichens). The Bryologist 79:354–355

    Google Scholar 

  • Badhe PD, Patwardhan PG (1972) Qualitative and quantitative determination of free amino acids in Parmelia wallichiana and Leptogium azureum. Bryologist 75:368–369

    CAS  Google Scholar 

  • Barber M, Bordoli RS, Garner GV, Gordon DB, Sedgwick RD, Tetler LW, Tyler AN (1981) Fast-atom-bombardment mass spectra of enkephalins. Biochem J 197:401–404

    CAS  Google Scholar 

  • Beart JE, Lilley TH, Haslam E (1985) Plant polyphenols secondary metabolism and chemical defence: some observations. Phytochemistry 24(1):33–38

    CAS  Google Scholar 

  • Begora MD, Fahselt D (2001) Usnic acid and atranorin concentrations in lichens in relation to bands of UV irradiance. Bryologist 104:134–140

    CAS  Google Scholar 

  • Benn R, Gunther H (1983) Modern Pulse Methods in High-Resolution NMR Spectroscopy. Angew Chem Int Ed Engl 22(5):350–380

    Google Scholar 

  • Bennett JW, Ciegler A (1983) Secondary metabolism and differentiation in fungi. Marcel Dekker, Inc., New York, p 478

    Google Scholar 

  • Bjerke JW, Dahl T (2002) Distribution patterns of usnic acid-producing lichens along local radiation gradients in West Greenland. Nova Hedwig 75:487–506

    Google Scholar 

  • Bjerke JW, Lerfall K, Elvebakk A (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem Photobiol Sci 1:678–685

    CAS  Google Scholar 

  • Bjerke JW, Joly D, Nilsen L, Brossard T (2004) Spatial trends in usnic acid concentrations of the lichen Flavocetraria nivalis along local climatic gradients in the Arctic (Kongsfjorden, Svalbard). Polar Biol 27:409–417

    Google Scholar 

  • Bjerke JW, Elvebakk A, Dominiguez E, Dahlback A (2005) Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis. Phytochemistry 66:337–344

    CAS  Google Scholar 

  • Boustie J, Grube M (2005) Lichens – a promising source of bioactive secondary metabolites. Plant Genet Resour Characterization Util 3:273–287

    CAS  Google Scholar 

  • Burnouf-Radosevich M, Delfel EL (1986) High-performance liquid chromatography of triterpene saponins. J Chromatogr 368:433–438

    CAS  Google Scholar 

  • Cocchietto M, Skert N, Nimis PL, Sava G (2002) A review of usnic acid, an interesting natural compound. Naturwissenschaften 89:137–146

    CAS  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    CAS  Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment – a review. Environ Pollut 114:471–492

    CAS  Google Scholar 

  • Cooper-Driver G, Bhattacharya M (1998) Role of phenolics in plant evolution. Phytochemistry 49(5):1165–1174

    CAS  Google Scholar 

  • Cuellar M, Quilhot W, Rubio C, Soto C, Espinoza L, Carrasco H (2008) Phenolics, depsides, triterpenes from Chilean lichen Pseudocyphellaria nudata (Zahlbr.) D.J. Galloway. J Chilean Chem Soc 53(3):1624–1625

    CAS  Google Scholar 

  • Culberson CF (1969) Chemical and botanical guide to lichen products. University of North Carolina Press, Chapel Hill

    Google Scholar 

  • Culberson CF (1970) Supplement to “chemical and botanical guide to lichen products”. Bryologist 73:177–377

    CAS  Google Scholar 

  • Culberson CF (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. J Chromatogr 72:113–125

    CAS  Google Scholar 

  • Culberson CF (1974) Conditions for the use of Merck silica gel 60 F254 plates in the standardized thin-layer chromatographic technique for lichen products. J Chromatogr B 97:107–108

    CAS  Google Scholar 

  • Culberson CF, Elix JA (1989) Lichen substances. In: Dey PM, Harbourne JB (eds) Methods in plant biochemistry, vol 1, Plant phenolics. Academic, London, pp 509–535

    Google Scholar 

  • Culberson CF, Johnson A (1976) A standardized two – dimensional thin layer chromatographic method for lichen products. J Chromatogr 128:253–259

    CAS  Google Scholar 

  • Culberson CF, Culberson WL, Arwood DA (1977) Physiography and fumarprotocetraric acid production in the Cladonia chlorophaea group in North Carolina. Bryologist 80:71–75

    Google Scholar 

  • Culberson CF, Culberson WL, Johnson A (1981) A standardized TLC analysis of ß–orcinol depsidones. Bryologist 84:16–29

    CAS  Google Scholar 

  • Culberson CF, Culberson WL, Johnson A (1993) Occurrence and histological distribution of usnic acid in the Ramalina siliquosa species complex. Bryologist 96:181–184

    CAS  Google Scholar 

  • Dall A, Morris HR (1983) Glycoprotein structure determination by mass spectroscopy. Carbohydr Res 115:41

    Google Scholar 

  • Dayan FE, Romagini JG (2001) Lichens as a potential source of pesticides. Pestic Outlook 12:229–232

    CAS  Google Scholar 

  • Dayan FE, Romagini JG (2002) Structural diversity of lichen metabolites and their potential for use. In: Upadhyaya R (ed) Advances in microbial toxin research and its biotechnological exploration. Kluwer Academic/Plenum Publisher, New York, p 151

    Google Scholar 

  • Deduke C, Timsina B, Piercey-Normore MD (2012) Effect of environmental change on secondary metabolite production in lichen-forming fungi. In: Young S (ed) International perspectives on global environmental change. InTech, ISBN: 978-953-307-815-1. Intech publisher, Europe. Available from: http://www.intechopen.com/books/international-perspectives-on-global-environmental-change/effect-ofenvironmental-change-on-secondary-metabolite-production-in-lichen-forming-fungi

  • Ernst RR, Anderson WA (1966) Applications of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 37:93–102

    CAS  Google Scholar 

  • Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487

    CAS  Google Scholar 

  • Frisvad JC, Anderson B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240

    CAS  Google Scholar 

  • Gauslaa Y (2005) Lichen palatability depends on investments in herbivore defence. Oecologia 143:94–105

    Google Scholar 

  • Golojuch ST, Lawrey JD (1988) Quantitative variation in vulpinic and pinastric acids produced by Tuckermannopsis pinastri (lichen-forming Ascomycotina, Parmeliaceae). Am J Bot 75:1871–1875

    CAS  Google Scholar 

  • Gunther H (1992) NMR spectroscopy, 2nd edn. Wiley, Chichester, U.K.

    Google Scholar 

  • Hafellner J (1997) A world monograph of Brigantiaea (lichenized Ascomycotina, Lecanorales). Symb Bot Ups 32(1):35–74

    Google Scholar 

  • Hager A, Brunauer G, Türk R, Stocker-Wörgötter E (2008) Production and bioactivity of common lichen metabolites as exemplified by Heterodea muelleri (Hampe) Nyl. J Chem Ecol 34:113–120

    CAS  Google Scholar 

  • Hagerman AE, Robbins CT (1987) Implications of soluble tannin–protein complexes for tannin analysis and plant defense mechanisms. J Chem Ecol 13(5):1243–1259

    CAS  Google Scholar 

  • Hamada N (1982) The effect of temperature on the content of the medullary depsidone salazinic acid in Ramalina siliquosa (lichens). Can J Bot 60:383–385

    Google Scholar 

  • Hamada N (1991) Environmental factors affecting the content of usnic acid in the lichen mycobiont of Ramalina siliquosa. Bryologist 94:57–59

    CAS  Google Scholar 

  • Haslam E (1989) Plant polyphenols. University Press Publishers, Cambridge

    Google Scholar 

  • Hauck M (2008) Metal homeostasis in Hypogymnia physodes is controlled by lichen substances. Environ Pollut 153:304–308

    CAS  Google Scholar 

  • Hauck M, Huneck S (2007a) Lichen substances affect metal adsorption in Hypogymnia physodes. J Chem Ecol 33:219–223

    CAS  Google Scholar 

  • Hauck M, Huneck S (2007b) The putative role of fumarprotocetraric acid in the manganese tolerance of the lichen Lecanora conizaeoides. Lichenologist 39:301–304

    Google Scholar 

  • Hauck M, Jürgens SR (2008) Usnic acid controls the acidity tolerance of lichens. Environ Pollut 156:115–122

    CAS  Google Scholar 

  • Hauck M, Jürgens SR, Brinkmann M, Herminghaus S (2008) Surface hydrophobicity causes SO2 tolerance in lichens. Ann Bot 101:531–539

    Google Scholar 

  • Hauck M, Jürgens SR, Huneck S, Leuschner C (2009a) High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pKa1 values of these lichen substances. Environ Pollut 157:2776–2780

    CAS  Google Scholar 

  • Hauck M, Jürgens SR, Willenbruch K, Huneck S, Leuschner C (2009b) Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens. Ann Bot 103:13–22

    CAS  Google Scholar 

  • Hawksworth DL (1976) Lichen chemotaxonomy. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 139–184

    Google Scholar 

  • Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulfur dioxide air pollution in England and Wales using epiphytic lichens. Nature 227:145–148

    CAS  Google Scholar 

  • Heide R, Provatoroff N, Traas PC, Valois PJ, Plasse N, Wobben HJ, Timmer R (1975) Qualitative analysis of the odoriferous fraction of oakmoss (Evernia prunastri (L.) Ach.). J Agric Food Chem 23(5):950–957

    Google Scholar 

  • Hesbacher S, Froberg L, Baur A, Baur B, Proksch P (1996) Chemical variation within and between individuals of the lichenized Ascomycete Tephromela atra. Biochem Syst Ecol 8:603–609

    Google Scholar 

  • Hirada N, Nakanishi K (1981) Circular dichroism spectroscopy. University Science, Mill Valley

    Google Scholar 

  • Howell RK (1970) Influence of air pollution on quantities of caffeic acid isolated from leaves of Phaseolus vulgaris. Phytopathology 60(11):1626–1629

    CAS  Google Scholar 

  • Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570

    CAS  Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin, pp 1–493

    Google Scholar 

  • Huneck S, Djerassi C, Becher D, Barber M, Ardenne M, Steinfelder K, Tummler R (1968) Flechteninhaltsstoffe – XXXI: Massenspektrometrie und ihre anwendung auf strukturelle und streochemische probleme – CXXIII Massenspektrometrie von depsiden, depsidonen, depsonen, dibenzofuranen und diphenylbutadienen mit positiven und negativen ionen. Tetrahedron 24:2707

    CAS  Google Scholar 

  • Hyvärinen M, Koopmann R, Hormi O, Tuomi J (2000) Phenols in reproductive and somatic structures of lichens: a case of optimal defence? Oikos 91:371–375

    Google Scholar 

  • Ingólfdóttir K (2002) Usnic acid. Phytochemistry 61:729–736

    Google Scholar 

  • Johansson S, Søchting U, Elix JA, Wardlaw JH (2005) Chemical variation in the lichen genus Letrouitia (Ascomycota, Letrouitiaceae). Mycol Prog 4:139–148

    Google Scholar 

  • Karolewski P, Giertych MJ (1994) Influence of toxic metal ions on phenols in needles and roots and on root respiration of scots Pine seedlings. Acta Sociaetatis Botanicorum Poloniae 63(1):29–35

    CAS  Google Scholar 

  • Kumar A, Wagner G, Ernst RR, Wüthrich K (1980) Studies of J-connectivities and selective 1H–1H Overhauser effects in H2O solutions of biological macromolecules by two-dimensional NMR experiments. Biochem Biophys Res Commun 96:1156

    CAS  Google Scholar 

  • LaGreca S (1999) A phylogenetic evaluation of the Ramalina americana chemotype complex (lichenized Ascomycota, Ramalinaceae) based on rDNA ITS sequence data. Bryologist 102:602–618

    Google Scholar 

  • Lawrey JD (1977) Adaptive significance of O-methylated lichen depsides and depsidones. Lichenologist 9:137–142

    CAS  Google Scholar 

  • Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:111–122

    CAS  Google Scholar 

  • Liao CRJ, Piercey-Normore MD, Sorenson JL, Gough KM (2010) In situ imaging of usnic acid in selected Cladonia spp. by vibrational spectroscopy. Analyst 135:3242–3248

    CAS  Google Scholar 

  • Liu H, Nakanishi K (1981) A micromethod for determining the branching points in oligosaccharides based on circular dichroism. J Am Chem Soc 103(23):7005–7006

    CAS  Google Scholar 

  • Luo H, Yamamoto Y, Kim JA, Jung JS, Koh YJ, Hur J-S (2009) Lecanoric acid, a secondary lichen substance with antioxidant properties from Umbilicaria antarctica in maritime Antarctica (King George Island). Polar Biol 32:1033–1040

    Google Scholar 

  • MacGillvray T, Helleur R (2001) Analysis of lichens under environmental stress using TMAH thermochemolysis-gas chromatography. J Anal Appl Pyrolosis 58–59:465–480

    Google Scholar 

  • Macheix JJ (1996) Les composes phenoliques des vegetaux: quelles perspectivesala fin du XXeme siecle? Acta Bot Gallica 143(6):473–479

    CAS  Google Scholar 

  • McEvoy M, Nybakken L, Solhaug KA, Gauslaa Y (2006) UV triggers the synthesis of the widely distributed secondary compound usnic acid. Mycol Prog 5:221–229

    Google Scholar 

  • McEvoy M, Gauslaa Y, Solhaug KA (2007a) Changes in pools of depsidones and melanins, and their function, during growth and acclimation under contrasting natural light in the lichen Lobaria pulmonaria. New Phytol 175:271–282

    CAS  Google Scholar 

  • McEvoy M, Solhaug KA, Gauslaa Y (2007b) Solar radiation screening in usnic acid containing cortices of the lichen Nephroma arcticum. Symbiosis 43:143–150

    Google Scholar 

  • McLafferty FW (1980) Interpretation of mass spectra, 3rd edn. University Science, Mill Valley

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Monna F, Aiuppa A, Varrica D, Dongarra G (1999) Pb isotope composition in lichens and aerosols from eastern Sicily: insights into the regional impact of volcanoes on the environment. Environ Sci Technol 33:2517–2523

    CAS  Google Scholar 

  • Moore D (1998) Fungal morphogenesis. Cambridge University Press, New York, 469

    Google Scholar 

  • Morris GA (1980) Sensitivity enhancement in N-15-NMR polarization transfer using the INEPT pulse sequence. J Am Chem Soc 102:428

    CAS  Google Scholar 

  • Morris GA (1986) Modern NMR techniques for structure elucidation. Magn Reson Chem 24:371

    CAS  Google Scholar 

  • Mosbach K (1969) Biosynthesis of lichen substances, products of a symbiotic association. Angew Chem Int Ed 8:240–250

    CAS  Google Scholar 

  • Muzika RM (1993) Terpenes and phenolics in response to nitrogen fertilization: a test of carbon/nutrient balance hypothesis. Chemoecology 4(1):3–7

    CAS  Google Scholar 

  • Narui T, Sawada K, Takatsuki S, Okuyama T, Culberson CF, Culberson WL, Shibata S (1998) NMR assignments of depsides and tridepsides of lichen family Umbilicariaceae. Phytochemistry 48(5):815–822

    CAS  Google Scholar 

  • Nishitoba Y, Nishimura H, Nishiyama J, Mizutani J (1987) Lichen acids, plant growth inhibitors from Usnea longissima. Phytochemistry 26:3181–3186

    CAS  Google Scholar 

  • Nybakken L, Julkunen-Tiitto R (2006) UV-B induces usnic acid in reindeer lichens. Lichenologist 38:477–485

    Google Scholar 

  • Nybakken L, Solhaug KA, Bilger W, Gauslaa Y (2004) The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140:211–216

    Google Scholar 

  • Penuelas J, Estiarte M, Kimball BA, Idso SB, Pinter PJ, Wall GW, Garcia RL, Hansaker DJ, LaMorte RL, Hendrix DL (1996) Variety of responses of plant phenolic concentration to CO2 enrichment. J Expt Bot 47(302):1463–1467

    CAS  Google Scholar 

  • Pisani JM, Distel RA (1998) Inter and intraspecific variations in production of spines and phenols in Prosopis caldemia and Prosopis flexuosa. J Chem Ecol 24(1):23–36

    CAS  Google Scholar 

  • Ramakrishnan S, Subramanian SS (1964) Amino acids of Roccella montagnei & Parmelia tinctorum. Indian J Chem 2:467

    CAS  Google Scholar 

  • Ramakrishnan S, Subramanian SS (1965) Amino-Acid Composition Cladonia rangiferina, Cladonia gracilis and Lobaria isidiosa. Curr Sci 34:345–347

    CAS  Google Scholar 

  • Ramakrishnan S, Subramanian SS (1966) Amino-acids of Lobaria subisidiosa, Umbilicaria pustulata, Parmelia nepalensis and Ramlina sinensis. Curr Sci 5:124–125

    Google Scholar 

  • Reverberi M, Ricelli A, Zjalic S, Fabbri AA, Fanelli C (2010) Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol 87:899–911

    CAS  Google Scholar 

  • Rhodes MJC (1994) Physical role for secondary metabolites in plants: some progress, many outstanding problems. Plant Mol Biol 24:1–20

    CAS  Google Scholar 

  • Seaward MRD (1993) Lichens and sulphur dioxide air pollution: field studies. Environ Rev 1:73–91

    CAS  Google Scholar 

  • Seo C, Choi Y, Ahn JS, Yim JH, Lee HK, Oh H (2009) PTP1B inhibitory effects of tridepside and related metabolites isolated from the Antarctic lichen Umbilicaria antarctica. J Enzyme Inhib Med Chem 24(5):1133–1137

    CAS  Google Scholar 

  • Shirtcliffe NJ, Pyatt FB, Newton MI, McHale G (2006) A lichen protected by a super-hydrophobic and breathable structure. J Plant Physiol 163:1193–1197

    CAS  Google Scholar 

  • Shukla V (2012) Physiological response and mechanism of metal tolerance in lichens of Garhwal Himalayas. Final technical report. Scientific and Engineering Research Council, Department of Science and Technology, New Delhi. Project No. SR/FT/LS-028/2008

    Google Scholar 

  • Shukla V (2002) Chemical study of macrolichens of Garhwal Himalayas. PhD thesis, Garhwal University Srinagar, Garhwal

    Google Scholar 

  • Shukla V, Negi S, Rawat MSM, Pant G, Nagatsu A (2004) Chemical Study of Ramalina africana (Ramaliniaceae) from Garhwal Himalayas. Biochem Syst Ecol 32:449–453

    CAS  Google Scholar 

  • Shukla V, Joshi GP, Rawat MSM (2010) Lichens as potential natural source of bioactive compounds. Phytochem Rev 9:303–314. doi:10.1007/s11101-010-9189-6

    CAS  Google Scholar 

  • Shultz H, Albroscheit G (1989) Characterization of oak moss products used in perfumery by high-performance liquid chromatography. J Chromatogr 466:301–306

    Google Scholar 

  • Solhaug KA, Gauslaa Y (1996) Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108:412–418

    Google Scholar 

  • Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV-induction of sun-screening pigments in lichens. New Phytol 158:91–100

    CAS  Google Scholar 

  • Spaink HP (1998) Flavonoids as regulators of plant development. New insights from studies of plant-rhizobia interactions. In: Romeo JT et al (eds) Phytochemical signals and plant-microbe interactions. Plenum Press Publishers, New York, pp 167–177

    Google Scholar 

  • Stocker-Wörgötter E (2001) Experimental studies of the lichen symbiosis: DNA- analyses, differentiation and secondary chemistry of selected mycobionts, artificial resynthesis of two- and tripartite symbioses. Symbiosis 30:207–227

    Google Scholar 

  • Strack D, Feige GB, Kroll R (1979) Screening of aromatic secondary lichen substances by high performance liquid chromatography. Z Naturforsch 34c:695–698

    CAS  Google Scholar 

  • Subramanian SS, Ramakrishnan S (1964) Amino acids of Peltigera canina. Curr Sci 33:522

    CAS  Google Scholar 

  • Swanson A, Fahselt D (1997) Effects of ultraviolet on polyphenolics of Umbilicaria americana. Can J Bot 75:284–289

    CAS  Google Scholar 

  • Verpoorte R, Choi YH, Kim HK (2009) NMR-based metabolomics at work in phytochemistry. Phytochem Rev 6:3–14. doi:10.1007/s11101-006-9031-3

    Google Scholar 

  • Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. Blackwell Scientific Publishers, New York

    Google Scholar 

  • Wehrli FW, Wirthlin T (1976) Interpretation of carbon-13 NMR spectra. Heydon, London

    Google Scholar 

  • White CS (1994) Monoterpenes: their effects on ecosystem nutrient cycling. J Chem Ecol 20(6):1381–1406

    CAS  Google Scholar 

  • Wider G, Macura S, Kumar A, Ernst RR, Wuthrich K (1984) Homonuclear two-dimensional 1H NMR of proteins. Experimental procedures. J Magn Reson 56:207–234

    CAS  Google Scholar 

  • Wojciechowski ZA, Goad LJ, Goodwin TW (1973) Sterols of lichen Pseudevernia furfuracea. Phytochemistry 12:1433

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Shukla, V., Upreti, D.K., Bajpai, R. (2014). Secondary Metabolites and Its Isolation and Characterisation. In: Lichens to Biomonitor the Environment. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1503-5_2

Download citation

Publish with us

Policies and ethics