Future Prospects

  • Bhupinder Dhir


The success of the phytoremediation technology depends upon its implementation at different sites and a potential to treat/remove various contaminants. Many field scale, site-specific and pilot scale studies have been conducted, though remediation conditions are different for each contaminant (Pilon-Smits 2005; Salt et al. 1998). Selection of the most efficient plant species to degrade a particular compound is the most important determining step in this technology.


Transgenic Plant Arbuscular Mycorrhizal Fungus Panicum Virgatum Endophytic Fungus Glycine Betaine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Adler T (1996) Botanical clean up crews. Sci News 150:42–43CrossRefGoogle Scholar
  2. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217CrossRefGoogle Scholar
  3. Bressano M, Curetti M, Giachero L, Gil SV, Cabello M, March G, Ducasse DA, Luna CM (2010) Mycorrhizal fungi symbiosis as a strategy against oxidative and environment stress in soybean plants. J Plant Physiol 167:1622–1626CrossRefGoogle Scholar
  4. Campos VM, Merino I, Casado R, Pacios LF, Gómez L (2008) Review. Phytoremediation of organic pollutants. Span J Agric Res 6(Special issue):38–47Google Scholar
  5. D’Souza MP, Pilon-Smits EAH, Terry N (2000) The physiology and biochemistry of selenium volatilization by plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 171–188Google Scholar
  6. Dhanker OP, Li YR, Barry PS, Jin SD, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and y-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145CrossRefGoogle Scholar
  7. Dhir B, Sharmila P, Saradhi PP (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Environ Sci Technol 39:754–781CrossRefGoogle Scholar
  8. Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168Google Scholar
  9. Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694CrossRefGoogle Scholar
  10. Dushenkov S, Kaplunik Y, Fleisher DKC, Ensley B (1997) Removal of uranium from water using terrestrial plants. Environ Sci Technol 31:3468–3474CrossRefGoogle Scholar
  11. Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114CrossRefGoogle Scholar
  12. Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167CrossRefGoogle Scholar
  13. Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminium induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiol 122:657–665CrossRefGoogle Scholar
  14. Flocco CG, Lindblom SD, Smits EA (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremediation 6:289–304CrossRefGoogle Scholar
  15. Francova K, Sura M, Macek T, Szekeres M, Bancos S, Demnerova K, Sylvestre M, Mackova M (2003) Preparation of plants containing bacterial enzyme for degradation of polychlorinated biphenyls. Freseniius Environ Bull 12:309–313Google Scholar
  16. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374CrossRefGoogle Scholar
  17. Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing soybean ferritin gene. Transgenic Res 7:173–180CrossRefGoogle Scholar
  18. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron accumulation in rice seed by soybean ferritin gene. Nat Biotechnol 17:282–286CrossRefGoogle Scholar
  19. Hannink N, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172CrossRefGoogle Scholar
  20. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192CrossRefGoogle Scholar
  21. Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839CrossRefGoogle Scholar
  22. Hildebrandt U, Regvar M, Both H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146CrossRefGoogle Scholar
  23. Jiang M, Cao L, Zhang R (2008) Effects of Acacia (Acacia auriculaeformis A. Cunn)- associated fungi on mustard (Brassica juncea (L.) Coss. var. Foliosa Bailey) growth in Cd- and Ni-contaminated soils. Lett Appl Microbiol 47(6):561–565CrossRefGoogle Scholar
  24. Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4(3):179–183CrossRefGoogle Scholar
  25. Karavangeli M, Labrou NE, Clonis YD, Tsaftaris A (2005) Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation. Biomol Eng 22:121–128CrossRefGoogle Scholar
  26. Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230CrossRefGoogle Scholar
  27. Kawahigashi H, Hirose S, Inui H, Ohkawa H, Ohkawa Y (2005a) Enhanced herbicide cross-tolerance in transgenic rice plants coexpressing human CYP1A1, CYP2B6, and CYP2C19. Plant Sci 168:773–781CrossRefGoogle Scholar
  28. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2005b) Phytoremediation of metolachlor by transgenic rice plants expressing human CYP2B6. J Agric Food Chem 53:9155–9160CrossRefGoogle Scholar
  29. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2007) Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnol Adv 25:75–84CrossRefGoogle Scholar
  30. Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46(1):57–71CrossRefGoogle Scholar
  31. Linacre NA, Whiting SN, Angle JS (2005) The impact of uncertainty on phytoremediation project costs. Int J Phytoremediation 7(4):259–269CrossRefGoogle Scholar
  32. Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147CrossRefGoogle Scholar
  33. Louie M, Kondor N, Witt JG (2003) Gene expression in cadmium-tolerant Datura innoxia: detection and characterization of cDNAs induced in response to Cd2+. Plant Mol Biol 52:81–89CrossRefGoogle Scholar
  34. Macek T et al (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–35CrossRefGoogle Scholar
  35. Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152CrossRefGoogle Scholar
  36. Mackova M, Macek T, Ocenaskova J, Burkhard J, Demnerova K, Pazlarova J (1997) Biodegradation of polychlorinated biphenyls by plant cells. Int Biodetermination Biodegradation 39:317–325CrossRefGoogle Scholar
  37. Mackova M et al (2007) Biotransformation of PCBs by plants and bacteria – consequences of plant-microbe interactions. Eur J Soil Biol 43:233–241CrossRefGoogle Scholar
  38. Malinowski DP, Belesky DP (2000) Adaptations of endophyte infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940CrossRefGoogle Scholar
  39. Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 201–219Google Scholar
  40. Mohammadi M, Chalavi V, Novakova-Sura M, Laliberte JF, Sylvestre M (2007) Expression of bacterial biphenyl-chlorobiphenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 97:496–505CrossRefGoogle Scholar
  41. Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067CrossRefGoogle Scholar
  42. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  43. Pilon-Smits EA et al (1999) Overexpression of ATP sulfurylase in indian mustard leads to increased selenium uptake, reduction and tolerance. Plant Physiol 119:123–132CrossRefGoogle Scholar
  44. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160CrossRefGoogle Scholar
  45. Reeves RD, Baker AJM (1999) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  46. Robineau T, Batard Y, Nedelkina S, Cabello-Hurtado F, LeRet M, Sorokine O et al (1998) The chemically inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics. Plant Physiol 118:1049–1056CrossRefGoogle Scholar
  47. Rugh CL, Bizily SP, Meagher RB (2000) Phytoremediation of environmental mercury pollution. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, pp 151–171Google Scholar
  48. Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biote-chnol 20:213–219CrossRefGoogle Scholar
  49. Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HMB, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219CrossRefGoogle Scholar
  50. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668CrossRefGoogle Scholar
  51. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365CrossRefGoogle Scholar
  52. Siminszky B, Corbin FT, Ward ER, Fleischmann TJ, Dewey RE (1999) Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Natl Acad Sci USA 96:1750–1755CrossRefGoogle Scholar
  53. Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130CrossRefGoogle Scholar
  54. Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010a) Phytore-mediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81(9):1084–1090CrossRefGoogle Scholar
  55. Soleimani M, Hajabbasi MA, Afyuni M, Mirlohi AF, Borggaard OK, Holm PE (2010b) Effect of endophytic fungi on Cd tolerance and bioaccumulation by Festuca arundinacea and Festuca Peratensis. Int J Phytoremediation 12(6):535–549CrossRefGoogle Scholar
  56. Song WY, Martinoia E, Lee J, Kim D, Kim DY, Vogt E, Shim D, Choi KS, Hwang I, Lee Y (2004) A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol 135:1027–1039CrossRefGoogle Scholar
  57. Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658CrossRefGoogle Scholar
  58. Thomas GJ, Lam TB, Wolf DCA (2003) Mathematical model of phytoremediation for petroleum contaminated soil: sensitivity analysis. Int J Phytoremediation 5(2):25–36Google Scholar
  59. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Nat Acad Sci USA 97:4991–4996CrossRefGoogle Scholar
  60. USEPA (2000) Introduction to phytoremediation. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  61. Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236CrossRefGoogle Scholar
  62. Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767–2776CrossRefGoogle Scholar
  63. Wang GD, Li QJ, Luo B, Chen XY (2004) Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotechnol 22:893–897CrossRefGoogle Scholar
  64. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598CrossRefGoogle Scholar
  65. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4CrossRefGoogle Scholar
  66. Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79CrossRefGoogle Scholar
  67. Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing g-glutamylcysteine synthetase. Plant Physiol 121:1169–1177CrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Bhupinder Dhir
    • 1
  1. 1.Department of GeneticsUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations