Skip to main content

Mechanism of Removal of Contaminants by Aquatic Plants

  • Chapter
  • First Online:

Abstract

Plants possess highly specific and efficient mechanisms to acquire essential micronutrients from the environment. Uptake and removal of contaminant varies for each category of aquatic macrophyte i.e. free-floating, submerged and emergent. The mode of uptake by plants is also different for organic and inorganic contaminant. Uptake of inorganic compounds (ionic or complexed form) is mediated by active or passive uptake mechanisms within the plant, whereas uptake of organic compounds is generally governed by hydrophobicity (log k ow) and polarity. Uptake of pollutants by plant roots is different for organic and inorganic compounds. Uptake of inorganic contaminants is facilitated by membrane transporters, while uptake of organic contaminants is driven by simple diffusion based on their chemical properties. Assimilated and absorbed contaminant is then transformed and detoxified by a variety of biochemical reactions in the plant system using versatile enzymatic machineries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Abedin MJ, Feldmann J, Medarg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  CAS  Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls. New Trends Promis Environ Sci Technol 44(8):2767–2776

    Article  Google Scholar 

  • Azqueta A, Shaposhnikov S, Collins AR (2009) DNA oxidation: investigating its key role in environmental mutagenesis with the comet assay. Mutat Res Genet Toxicol Environ Mutagen 674:101–108

    Article  CAS  Google Scholar 

  • Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999a) Environmental behavior of explosives in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants. Chemosphere 39:2057

    Article  CAS  Google Scholar 

  • Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999b) Environmental behavior of explosives in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere 38:3383

    Article  CAS  Google Scholar 

  • Bhadra R, Spanggord RJ, Wayment DG, Hughes JB, Shanks JV (1999) Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ Sci Technol 33:3354

    Article  CAS  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, 384

    Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1406

    Article  CAS  Google Scholar 

  • Burken JG, Ma XM, Struckhoff GC, Gilbertson AW (2005) Volatile organic compound fate in phytoremediation applications: natural and engineered systems. J Biosci 60:208–215

    Google Scholar 

  • Calderón-Preciado D, Matamoros V, Bayona JM (2011) Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network. Sci Total Environ 412–413:14–19

    Article  Google Scholar 

  • Cedergreen N, Madsen TV (2002) Nitrogen uptake by the floating macrophyte Lemna minor. New Phytol 155:285–292

    Article  Google Scholar 

  • Coleman JOD, Blake-Kalff MMA, Davies TGE (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144–151

    Article  Google Scholar 

  • Coleman JO, Frova C, Schroder P, Tussut M (2002) Exploiting plant metabolism for phytoremediation of persistent herbicides. Environ Sci Pollut Res Int 9:18–28

    Article  CAS  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab P, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810. doi:10.4061/2011/941810, 13 p

    Google Scholar 

  • Dhir B (2010) Use of aquatic plants in removing heavy metals from wastewater. Int J Environ Eng 2(1/2/3):185–201

    Article  Google Scholar 

  • Dhir B, Sharmila P, Saradhi PP (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Environ Sci Technol 39:754–781

    Article  CAS  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:63–168

    Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Article  CAS  Google Scholar 

  • Gao J, Garrison AW, Hoehamen C, Mazur CS, Wolfe NL (2000a) Uptake and phytotransformation of o, p DDT and p, p DDT by axenically cultivated aquatic plants. J Agric Food Chem 48:6121

    Article  CAS  Google Scholar 

  • Gao J, Garrison AW, Hoehamen C, Mazur CS, Wolfe NL (2000b) Uptake and phytotransformation of organophosphorous pesticide by axenically cultivated aquatic plants. J Agric Food Chem 48:6114

    Article  CAS  Google Scholar 

  • Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones WJ, Rennels D, Wolfe NL (2000) Phytodegradation of p, p′-DDT and the enantiomers of o, p′-DDT. Environ Sci Technol 34:1663

    Article  CAS  Google Scholar 

  • Gessler A, Schneider S, von Sengbusch D, Werber P, Hanemann U, Huber C, Rothe A, Kreutzer K, Rennenberg H (1998) Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol 138:275–285

    Article  CAS  Google Scholar 

  • Gobas EAPC, McNeil EJ, Lovett-Doust L, Haffner GD (1991) Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes. Environ Sci Technol 25:924

    Article  CAS  Google Scholar 

  • Hattink J, Goeij JJM, Wolterbeek HT (2000) Uptake kinetics of 99Tc in common duckweed. Environ Exp Bot 44:9

    Article  CAS  Google Scholar 

  • Hattink J, Harns AV, Goeij JJM (2003) Uptake, biotransformation and elimination of 99Tc in duckweed. Sci Total Environ 312:59

    Article  CAS  Google Scholar 

  • Henriksen GH, Raman DR, Walker LP, Spanswick RM (1992) Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-sensitive microelectrodes. Plant Physiol 99:734–747

    Article  CAS  Google Scholar 

  • Jacobson ME, Chiang SY, Gueriguian L, Weshtholm LR, Pierson J (2003) Transformation kinetics of trinitrotoluene conversion in aquatic plants. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 409–427

    Google Scholar 

  • Knuteson SL, Whitwell T, Klaine SJ (2002) Influence of plant age and size on simazine uptake and toxicity. J Environ Qual 31:2090

    Article  Google Scholar 

  • Komives T, Gullner G (2005) Phase 1 xenobiotic metabolic systems in plants. Z Naturforsch C 60:179–185

    CAS  Google Scholar 

  • Kvesitadze E, Sadunishvili T, Kvesitadze G (2009) Mechanisms of organic contaminants uptake and degradation in plants. World Acad Sci Eng Technol 31:454–464

    Google Scholar 

  • Lazof DB, Rufty TW, Redinbaugh MG (1992) Localization of nitrate absorption and translocation within morphological regions of the corn root. Plant Physiol 100:1251–1258

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Ká J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, San Diego, p 889

    Google Scholar 

  • Martinois E, Grill E, Tommasini R, Kreuz K, Amrehin N (1993) ATP dependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364:247–249

    Article  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Overview of phytotransformation and control of wastes. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 53–58

    Google Scholar 

  • Medina VF, Larson SL, Bergstedt AE, McCutcheon SC (2000) Phytoremoval of trinitrotoluene from water with batch kinetic studies. Water Res 34:2713

    Article  CAS  Google Scholar 

  • Morant M, Bak S, Moller BL, Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 2:151–162

    Article  Google Scholar 

  • Murray BJ, Haddrell AE, Peppe S, Davies JF, Reid JP, O’Sullivan D, Price HC, Kumar R, Saunders RW, Plane JMC, Umo NS, Wilson TW (2012) Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer. Atmos Chem Phys 12:8575–8587

    Google Scholar 

  • Ndimele PE (2010) A review on the phytoremediation of petroleum hydrocarbon. Pak J Biol Sci 13:715–722

    Article  CAS  Google Scholar 

  • Nwoko CO (2010) Trends in phytoremediation of toxic elemental and organic pollutants. Afr J Biotechnol 9(37):6010–6016

    CAS  Google Scholar 

  • Nzengung VA, Jeffers P (2001) Sequestration, phytoreduction and phytooxidation of halogenated organic chemicals by aquatic and terrestrial plants. Int J Phytoremediation 3:13

    Article  CAS  Google Scholar 

  • Nzengung VA, Lee NW, Rennels DE, McCutcheon SC, Wang C (1999) Use of aquatic plants and algae for decontamination of waters polluted with chlorinated alkanes. Int J Phytoremediation 1:203

    Article  CAS  Google Scholar 

  • Parvaiz A, Maryam S, Satyawati S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    Article  Google Scholar 

  • Pavlostathis SG, Comstock KK, Jacobson ME, Saunders FM (1998) Transformation of 2,4,6-trinitrotoluene by the aquatic plant Myriophyllum aquaticum. Environ Toxicol Chem 17:2266

    CAS  Google Scholar 

  • Petrucio MM, Esteves FA (2000) Uptake rates of nitrogen and phosphorus in water by Eichhornia crassipes and Salvinia auriculata. Rev Braz Biol 10:229–236

    Article  Google Scholar 

  • Popa K, Palamaru MN, Iordan AR, Humelnicu D, Drochioiu G, Cecal A (2006) Laboratory analyses of 60Co2+, 65Zn2+ and (55+59)Fe3+ radioactions uptake by Lemna minor. Isotopes Environ Health Stud 42:87

    Article  CAS  Google Scholar 

  • Rao TP, Ito O, Matsunga R (1993) Differences in uptake kinetics of ammonium and nitrate in legumes and cereals. Plant Soil 154:67–72

    Article  CAS  Google Scholar 

  • Reidenbach G, Horst WJ (1997) Nitrate-uptake capacity of different root zones of Zea mays (L.) in vitro and in situ. Plant Soil 196:295–300

    Article  CAS  Google Scholar 

  • Rice PJ, Anderson TA, Coats JR (1997) Phytoremediation of herbicide-contaminated surface water with aquatic plants. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. American Chemical Society, Washington, DC

    Google Scholar 

  • Sandermann H (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17:82–84

    Article  CAS  Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the green liver concept. Pharmacogenetics 4:225–241

    Article  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Google Scholar 

  • Shimp JF, Tracy JC, Davis LC, Lee E, Huang W, Erickson LE, Schnoor JL (1993) Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Crit Rev Environ Sci Technol 23:41–77

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161. doi:10.1155/2011/939161, 31 p

    Article  Google Scholar 

  • Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767–2776

    Article  Google Scholar 

  • Vymazal J, Kropfelova L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow, vol 14, Environmental pollution. Springer, Dordrecht

    Book  Google Scholar 

  • Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochimica Biophyica Acta 1758:1165–1175

    Article  CAS  Google Scholar 

  • Wang C, Liu ZQ (2007) Foliar uptake of pesticides: present status and future challenge. Pest Biochem Physiol 87:1–8

    Google Scholar 

  • Zhao F, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Ann Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

  • Zhu T, Sikora FJ (1994) Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands. In: Proceedings of 4th international conference on wetland systems for water pollution control, ICWS’94, Secretariat, Guangzhou, People’s Republic of China, pp 355–366

    Google Scholar 

  • Zhu YG, Smolders E (2000) Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J Exp Bot 51(351):1635–1645

    Article  CAS  Google Scholar 

  • Zhu YG, Shaw G, Nisbet AF, Wilkins BT (2000) Effect of potassium starvation on the uptake of radiocaesium by spring wheat (Triticum aestivum cv. Tonic). Plant Soil 220:27–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Dhir, B. (2013). Mechanism of Removal of Contaminants by Aquatic Plants. In: Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. Springer, India. https://doi.org/10.1007/978-81-322-1307-9_3

Download citation

Publish with us

Policies and ethics