Advertisement

Aquatic Plant Species and Removal of Contaminants

  • Bhupinder Dhir
Chapter

Abstract

The aquatic and wetland plant species possess exorbitant efficiency to remove various inorganic and organic contaminants including heavy metals, radionuclides, nutrients, explosives and hydrocarbons from wastewaters. The removal of contaminants varies from species to species and is also dependent upon concentration of the contaminant and duration of exposure. The present chapter highlights the variety of contaminants removed by aquatic plants and well-studied plant species are also emphasized (Fig. 2.1).

Keywords

Chemical Oxygen Demand Total Dissolve Solid Total Suspended Solid Biochemical Oxygen Demand Organic Contaminant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The pictures and data acquired from website Google are gratefully acknowledged.

Literature Cited

  1. Abdel-Ghani NT, Hegazy AK, El-Chaghaby GA (2009) Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: biosorption kinetics and equilibrium modeling. Int J Environ Sci Technol 6(2):243–248Google Scholar
  2. Abdelmalik WEY, El-Shinawy RMK, Ishak MM, Mahmoud KA (1980) Uptake of radionuclides by some aquatic macrophytes of Ismailia Canal, Egypt. Hydrobiology 69:3CrossRefGoogle Scholar
  3. AbdElnaby AM, Egorov MA (2012) Efficiency of different particle sizes of dried Salvinia natans in the removing of Cu(II) and oil pollutions from water. J Water Chem Technol 34:143–146CrossRefGoogle Scholar
  4. Adhikari T, Kumar R, Singh MV, Rao AS (2010) Phytoaccumulation of lead by selected wetland plant species. Commun Soil Sci Plant Anal 41:2623–2632CrossRefGoogle Scholar
  5. Afrous A, Manshouri M, Liaghat A, Pazira E, Sedghi H (2011) Mercury and arsenic accumulation by three species of aquatic plants in Dezful, Iran. Afr J Agric Res 6(24):5391–5397Google Scholar
  6. Ajayi TO, Ogunbayo AO (2012) Achieving environmental sustainability in wastewater treatment by phytore-mediation with water hyacinth (Eichhornia crassipes). J Sustain Dev 5:80–90Google Scholar
  7. Akinbile CO, Yusoff MS (2012) Assessing water hyacinth (Eichhornia crassipes), (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. Int J Phytoremediation 14(3):201–211CrossRefGoogle Scholar
  8. Albaldawi IA, Suja’ F, Abdullah SRS, Idris M (2011) Preliminary test of hydrocarbon exposure on Salvinia molesta in phytoremediation process. Revelation Sci 01:52–56Google Scholar
  9. Al-Baldawi IA, Abdullah SRS, Suja F, Anuar N, Idris M (2012) Preliminary test of hydrocarbon exposure on Azolla pinnata in phytoremediation process. In: International conference on environment, Energy and biotechnology IPCBEE, vol 33. IACSIT Press, Singapore, pp 244–247Google Scholar
  10. Al-Hamdani S (2008) Influence of different sodium chloride concentrations on selected physiological responses of Salvinia. J Aquat Plant Manage 46:172–175Google Scholar
  11. Al-Hamdani SH, Sirna CB (2008) Physiological responses of Salvinia minima to different phosphorus and nitrogen concentrations. Am Fern J 98:71–82CrossRefGoogle Scholar
  12. Alia NA, Bernal MP, Ater M (2004) Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquat Bot 80:163–176CrossRefGoogle Scholar
  13. Alonso-Castro AJ, Carranza-Álvarez C, la Torre MCA, Chávez-Guerrero L, García-De la Cruz RF (2009) Removal and accumulation of cadmium and lead by Typha latifolia exposed to single and mixed metal solutions. Arch Environ Contam Toxicol 57:688–696CrossRefGoogle Scholar
  14. Alvarado S, Gu’edez M, Lu’e-Mer’u MP, Nelson G, Alvaro A, Jes’us AC et al (2008) Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol 99:8436–8440CrossRefGoogle Scholar
  15. Amaya-Chávez A, Martínez-Tabche L, López-López E, Galar-Martínez M (2006) Methyl parathion toxicity to and removal efficiency by Typha latifolia in water and artificial sediments. Chemosphere 63(7):1124–1129CrossRefGoogle Scholar
  16. Anawar HM, Garcia-Sanchez A, Alam MT, Majibur RM (2008) Phytofiltration of water polluted with arsenic and heavy metals. Int J Environ Pollut 33:292–312CrossRefGoogle Scholar
  17. Ansede JH, Pellechia PJ, Yoch DC (1999) Selenium biotransformation by the salt marsh cordgrass Spartina alterniflora: evidence for dimethylseleniopropionate formation. Environ Sci Technol 33:2064CrossRefGoogle Scholar
  18. Arenas A, Marcó D, Torres G (2011) Evaluation of the plant Lemna minor for the bioremediation of water contaminated with mercury. Avances en ciencias e ingeniería 2:1–11Google Scholar
  19. Arora A, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microbiol Biotechnol 22:97CrossRefGoogle Scholar
  20. Arvind P, Prasad MNV (2005) Cadmium-zinc interactions in a hydroponic system using Ceratophyllum demersum: adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 17:3–20Google Scholar
  21. Aslam MM, Hassan S, Baig MA (2010) Removal of metals from the refinery wastewater through vertical flow constructed wetlands. Int J Agric Biol 12:796–798Google Scholar
  22. Azeez NM, Sabbar AA (2012) Efficiency of duckweed (Lemna minor) in phytotreatment of wastewater pollutants from basrah oil refinery. J Appl Phytotechnol Environ Sanit 1:163–172Google Scholar
  23. Bankstona JL, Solab DL, Komora AT, Dwyera DF (2002) Degradation of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood. Water Res 36:1539–1546CrossRefGoogle Scholar
  24. Barber JT, Sharma HA, Ensley HE (1995) Detoxification of phenol by the aquatic angiosperm, Lemna gibba. Chemosphere 31:3567CrossRefGoogle Scholar
  25. Begum A, HariKrishna S (2010) Bioaccumulation of trace metals by aquatic plants. Int J Chem Technol Res 2:250–254Google Scholar
  26. Benaroya RO, Tzin V, Tel-Or E, Zamski E (2004) Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol Biochem 42:639CrossRefGoogle Scholar
  27. Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146CrossRefGoogle Scholar
  28. Best EPH, Zappi ME, Fredrickson HL, Sprecher SL, Larson SL, Ochman M (1997) Screening of aquatic and wetland plant species for phytoremediation of explosives-contaminated groundwater from the Iowa army ammunition plant. Ann N Y Acad Sci 829:179CrossRefGoogle Scholar
  29. Best EP, Miller JL, Fredrickson HL, Larson SL, Zappi ME (1998) Explosives removal from groundwater of the Iowa army ammunition plant in continuous-flow laboratory systems planted with aquatic and wetland plants. Army Engineer Waterways Experiment station Vicksburg ms Environmental Lab, VicksburgGoogle Scholar
  30. Best EP, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999a) Environmental behavior of explosives in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere 38(14):3383–3396CrossRefGoogle Scholar
  31. Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999b) Environmental behavior of explosives in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants. Chemosphere 39:2057CrossRefGoogle Scholar
  32. Bhadra R, Spanggord RJ, Wayment DG, Hughes JB, Shanks JV (1999) Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ Sci Technol 33:3354CrossRefGoogle Scholar
  33. Bhadra R, Wayment DG, Williams RK, Barman SN, Stone MB, Hughes JB, Shanks JV (2001) Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere 44:1259CrossRefGoogle Scholar
  34. Bolsunovski˘ AI, Ermakov AI, Burger M, Degermendzhi AG, Sobolev AI (2002) Accumulation of industrial radionuclides by the Yenisei River aquatic plants in the area affected by the activity of the mining and chemical plant. Radiat Biol Radioecol 42:194Google Scholar
  35. Bolsunovsky A, Zotina T, Bondareva L (2005) Accumulation and release of 241Am by a macrophyte of the Yenisei River (Elodea canadensis). J Environ Radioact 81:33CrossRefGoogle Scholar
  36. Borkar RP, Mahatme PS (2011) Wastewater treatment with vertical flow constructed wetland. Int J Environ Sci 2:590–603Google Scholar
  37. Bunluesin S, Kruatrachue M, Pokethitiyook P, Upatham S, Lanza GR (2007) Batch and continuous packed column studies of cadmium biosorption by Hydrilla verticillata biomass. J Biosci Bioeng 103:509–513CrossRefGoogle Scholar
  38. Buta E, Paulette L, Mihaiescu T, Buta M, Cantor M (2011) The influence of heavy metals on growth and development of Eichhornia crassipes species, cultivated in contaminated water. Horti Agrobot 39(2):135–141Google Scholar
  39. Calheiros CSC, Rangel AOSS, Castro PML (2007) Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res 41:1790–1798CrossRefGoogle Scholar
  40. Calheiros CSC, Rangel AOSS, Castro PML (2009) Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Int J Environ Sci Technol 6(2):243–248Google Scholar
  41. Carbonell AA, Aarabi MA, Delaune RD, Gambrell RP, Patrick WH Jr (1998) Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci Total Environ 217:189CrossRefGoogle Scholar
  42. Carvalho KM, Martin DF (2001) Removal of aqueous selenium by four aquatic plants. J Aquat Plant Manag 39:33–36Google Scholar
  43. Castro-Carrillo LA, Delgadillo-Martínez J, Ferrera-Cerrato R, Alarcón A (2008) Phenanthrene dissipation by Azolla caroliniana utilizing bioaugmentation with hydrocarbonoclastic microorganisms. Interciencia 33:1–7Google Scholar
  44. Chale FMM (2012) Nutrient removal in domestic wastewater using common reed (Phragmites mauritianus) in horizontal subsurface flow constructed wetlands. Tanzania J Nat Appl Sci 3:495–499, Online ISSN 1821–7249 2012Google Scholar
  45. Cheng J, Landesman I, Bergmann A, Classen JJ, Howard JW, Yamamoto YT (2002) Nutrient removal from swine lagoon liquid by Lemna minor 8627. Trans Asae 45(4):1003–1010Google Scholar
  46. Chris A, Masih J, Abraham G (2011) Growth, photosynthetic pigments and antioxidant responses of Azolla filiculoides to monocrotophos toxicity. J Chem Pharm Res 3(3):381–388Google Scholar
  47. Clijsters H, Cuypers A, Vangronsveld J (1999) Physiological response to heavy metals in higher plants, defence against oxidative stress. Zeitschrift fur Naturforsch 54c:730–734Google Scholar
  48. Cohen MF, Williams J, Yamasaki H (2002) Biodegradation of diesel fuel by an Azolla derived bacterial consortium. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng A37(9):1593–1606Google Scholar
  49. Cortes-Esquive JA, Giácoman-Vallejos G, Barceló-Quintal ID, Méndez-Novelo R, Ponce-Caballero MC (2012) Heavy metals removal from swine wastewater using constructed wetlands with horizontal sub-surface flow. J Environ Prot 3:871–877CrossRefGoogle Scholar
  50. Costa ML, Santos MC, Carrapiço F (1999) Biomass characterization of Azolla filiculoides grown in natural ecosystems and wastewater. Hydrobiologia 415:323–327CrossRefGoogle Scholar
  51. Davies LC, Carias CC, Novais JM, Martins-Dias S (2005) Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland. Ecol Eng 25:594–605CrossRefGoogle Scholar
  52. Day JA, Saunders FM (2004) Glycoside formation from chlorophenols in Lemna minor. Environ Toxicol Chem 25:613CrossRefGoogle Scholar
  53. DeBusk TA, Reddy KR (1987) Density requirements to maximise the productivity of water hyacinth (Eichhornia crassipes [Mart] Solms). In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia Publishing Inc, Orlando, FL, pp 673–680, 1032 pGoogle Scholar
  54. Del-Campo Marıń CM, Oron G (2007) Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters. Water Res 41:4579–4584CrossRefGoogle Scholar
  55. Delgado M, Bigeriego M, Guardiola E (1993) Uptake of Zn, Cr and Cd by water hyacinth. Water Res 27:269CrossRefGoogle Scholar
  56. Demirezen D, Aksoy A (2006) Common hydrophytes as bioindicators of iron and manganese pollution. Ecol Indicators 6:388–393CrossRefGoogle Scholar
  57. Deval CG, Mane AV, Joshi NP, Saratale GD (2012) Phytoremediation potential of aquatic macrophyte Azolla caroliniana with references to zinc plating effluent. Emir J Food Agric 24(3):208–223Google Scholar
  58. Dhir B (2010) Use of aquatic plants in removing heavy metals from wastewater. Int J Environ Eng 2(1/2/3):185–201CrossRefGoogle Scholar
  59. Dhir B, Srivastava S (2011) Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol Eng 37:893–896CrossRefGoogle Scholar
  60. Dhir B, Sharmila P, Saradhi PP (2008) Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Braz J Plant Physiol 20:61–70CrossRefGoogle Scholar
  61. Dhir B, Sharmila P, Saradhi PP (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Environ Sci Technol 39:754–781CrossRefGoogle Scholar
  62. Dixit S, Dhote S (2010) Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata. Environ Monit Assess 169(1–4):367–374CrossRefGoogle Scholar
  63. Dixit S, Tiwari S (2007) Effective utilization of an aquatic weed in an eco-friendly treatment of polluted water bodies. J Appl Sci Environ Manage 11(3):41–44Google Scholar
  64. Dixit S, Dhote S, Dubey R, Vaidya HM, Das RJ (2010) Sorption characteristics of heavy metal ions by aquatic weed. Desalination Water Treat 20:307–312CrossRefGoogle Scholar
  65. Dogan M, Saygideger SD, Colak U (2009) Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull Environ Contam Toxicol 83:249–254CrossRefGoogle Scholar
  66. Dordio AV, Carvalho PAJ, Estêvão CAJ, Pinto AP, Cristina C (2007) Removal of pharmaceuticals in constructed wetlands using Typha and LECA. A pilot study. http://dspace.uevora.pt/rdpc/bitstream/10174/1290/1/AnaDordio_Wetpol2007-2.pdf
  67. Dordio AV, Duarte C, Barreiros M, Carvalho AJ, Pinto AP, da Costa CT (2009) Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp.potential use for phytoremediation. Bioresour Technol 100(3):1156–1161CrossRefGoogle Scholar
  68. Dordio AV, Ferroa R, Teixeiraab D, Palaceac AJ, Pintoab AP, Diasac CMB (2011) Study on the use of Typha spp. for the phytotreatment of water contaminated with ibuprofen. Int J Environ Anal Chem 91:654–667CrossRefGoogle Scholar
  69. Dosnon-olette R, Couderchet M, Oturan MA, Oturan N, Eullaffroy P (2011) Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate. Int J Phytoremediation 13(6):601–612CrossRefGoogle Scholar
  70. El-Kheir WA, Ismail G, El-nour FA, Tawfik T, Hammad D (2007) Assessment of the efficiency of duckweed (Lemna gibba) in wastewater treatment. Int J Agric Biol 9:681–687Google Scholar
  71. El-Shinawy RMK, Abdel-Malik WEY (1980) Retention of radionuclides by some aquatic fresh water plants. Hydrobiology 69:125CrossRefGoogle Scholar
  72. Ena A, Carlozzi P, Pushparaj B, Paperi R, Carnevale S, Sacchi A (2007) Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill effluent. Grasas y Aceites 58(1), Enero-Marzo 34–39Google Scholar
  73. Ensley HE, Barber JT, Polita MA, Oliver AI (1994) Toxicity and metabolism of 2, 4-dichlorophenol by aquatic angiosperm Lemna gibba. Environ Toxicol Chem 13:325Google Scholar
  74. Espinoza-Quiñones FR, Módenes AN, Costa IL Jr, Palácio SM, Daniela NS, Trigueros EG, Kroumov AD, Silva EA (2009) Kinetics of lead bioaccumulation from a hydroponic medium by aquatic macrophytes Pistia stratiotes. Water Air Soil Pollut 203:29–37CrossRefGoogle Scholar
  75. Estrella-Gómeza NE, Sauri-Duchb E, Zapata-Pérezc O, Santamaría JM (2012) Glutathione plays a role in protecting leaves of Salvinia minima from Pb2+ damage associated with changes in the expression of SmGS genes and increased activity of GS. Environ Exp Bot 75:188–194CrossRefGoogle Scholar
  76. Fernandez RT, Whitwell T, Riley MB, Bernard CR (1999) Evaluating semiaquatic herbaceous perennials for use in herbicide phytoremediation. J Am Soc Horticult Sci 124:539Google Scholar
  77. Feuillebois R, Gum J, Woodring K, Carvalho-Knighton KM (2006) TNT remediation with Lemna minor. Georgia World Congress Center. The 231st ACS national meeting, Atlanta, GA, 26–30 Mar 2006Google Scholar
  78. Forni C, Patrizi C, Migliore L (2006) Floating aquatic macrophytes as a decontamination tool for antimicrobial drugs. In: Twardowska I et al (eds) Soil and water pollution monitoring, protection and remediation. Springer, pp 3–23Google Scholar
  79. Fornia C, Cascone A, Fioric M, Migliorea L (2002) Sulphadimethoxine and Azolla filiculoides Lam.: a model for drug remediation. Water Res 36:3398–3403CrossRefGoogle Scholar
  80. Foroughi M (2011a) Investigation of the influence of Ceratophyllum demersum to refine diluted compost latex. J Appl Sci Environ Manage 15(2):371–374Google Scholar
  81. Foroughi M (2011b) Role of Ceratophyllum demersum in recycling macro elements from wastewater. J Appl Sci Environ Manage 15(2):401–405Google Scholar
  82. Foroughi M, Najafi P, Toghiani S (2010) Trace elements removal from waster water by Ceratophyllum demersum. J Appl Sci Environ Manage 15:197–201Google Scholar
  83. Fritioff A, Greger M (2006) Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere 63:220–227CrossRefGoogle Scholar
  84. Fritioff A, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal. Environ Pollut 133:265–274CrossRefGoogle Scholar
  85. Gallardo-Williams MT, Whalen VA, Benson RF, Martin DF (2002) Accumulation and retention of lead by cattail (Typha domingensis), hydrilla (Hydrilla verticillata), and duckweed (Lemna obscura). J Environ Sci Health A Toxic Hazard Subst Environ Eng 37(8):1399–1408CrossRefGoogle Scholar
  86. Gao J, Garrison AW, Mazur CS, Wolfe NL, Hoehamer CF (2000a) Uptake and phytotransformation of o, p′-DDT and p, p′-DDT by axenically cultivated aquatic plants. J Agric Food Chem 48(12):6121–6127CrossRefGoogle Scholar
  87. Gao J, Garrison AW, Hoehamen C, Mazur CS, Wolfe NL (2000b) Uptake and phytotransformation of organophosphorous pesticide by axenically cultivated aquatic plants. J Agric Food Chem 48:6114CrossRefGoogle Scholar
  88. Gardner JL, Al-Hamdani SH (1997) Interactive effects of aluminum and humic substances on Salvinia. J Aquat Plant Manage 35:30–34Google Scholar
  89. Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones WJ, Rennels D, Wolfe NL (2000) Phytode-gradation of p, p′-DDT and the enantiomers of o, p′-DDT. Environ Sci Technol 34:1663CrossRefGoogle Scholar
  90. Ghabbour EA, Davies G, Lam YY, Vozzella ME (2004) Metal binding by humic acids isolated from water hyacinth plants (Eichhornia crassipes) [Mart.] (SolmLaubach: Pontedericeae) in the Nile Delta, Egypt. J Environ Pollut 131:445–451CrossRefGoogle Scholar
  91. Gobas EAPC, McNeil EJ, Lovett-Doust L, Haffner GD (1991) Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes. Environ Sci Technol 25:924CrossRefGoogle Scholar
  92. Gonzalez-Mendoza D, Ramoza-Perez F, Gremaldo-Juarez O, Escoboza-Garcia F, Soto-Ortiz R (2011) Physiological responses of Azolla caroliniana exposure to cadmium. World J Agric Sci 7(3):347–350Google Scholar
  93. Gopinath, Karthikeyan, Sivakumar, Magesh, Mohana-Sundaram, Poongodi, Ramesh, Rajamohan (2012) Studies on removal of malachite green from aqueous solution by sorption method sing water hyacinth – Eichornia crassipes roots. J Biodivers Environ Sci 2:1–8Google Scholar
  94. Gray JL, Sedlak DL (2005) The fate of estrogenic hormones in an engineered treatment wetland with dense macrophytes. Water Environ Res 77:24CrossRefGoogle Scholar
  95. Gross A, Kaplan D, Baker K (2007) Removal of chemical and microbiological contaminants from domestic greywater using a recycled vertical flow bioreactor (RVFB). Ecol Eng 3(1):107–114CrossRefGoogle Scholar
  96. Gupta M, Chandra P (1994) Lead contamination in Vallisnaria spiralis and Hydrilla verticillata (L.f.). Royle J Environ Sci Health A29:503–516Google Scholar
  97. Gupta M, Chandra P (1996) Bioaccumulation and physiological changes in Hydrilla verticillata (l.f.) Royle in response to mercury bull. Environ Contam Toxicol 56:319–326CrossRefGoogle Scholar
  98. Gupta M, Rai UN, Tripathi RD, Chandra P (1995) Lead induced changes in glutathione and phytochelatin in Hydrilla verticillate. Chemosphere 30:2011–2020CrossRefGoogle Scholar
  99. Hadad HR, Mufarrege MM, Pinciroli M, Di Luca GA, Maine MA (2010) Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland. Arch Environ Contam Toxicol 58(3):666–675CrossRefGoogle Scholar
  100. Haeba M, Bláha L (2011) Comparison of different endpoints responses in aquatic plant Lemna minor exposed to ketoconazole. Egypt J Nat Toxins 8(1, 2):49–57Google Scholar
  101. Hafez N, Abdalla S, Ramadan YS (1998) Accumulation of phenol by Potamogeton crispus from aqueous industrial waste. Bull Environ Contam Toxicol 60:944CrossRefGoogle Scholar
  102. Hansen AT, Stark RA, Hondzo M (2011) Uptake of dissolved nickel by Elodea canadensis and epiphytes influenced by fluid flow conditions. Hydrobiologia 658:127–138CrossRefGoogle Scholar
  103. Hanson ML, Sibley PK, Ellis DA, Fineberg NA, Mabury SA, Solomon KR, Muir DC (2002) Trichloroacetic acid fate and toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum under field conditions. Aquat Toxicol 56:241–255CrossRefGoogle Scholar
  104. Hattink J, Wolterbeek HT (2001) Accumulation of 99Tc in duckweed Lemna minor L. as a function of growth rate and 99Tc concentration. J Environ Radioact 57:117–138CrossRefGoogle Scholar
  105. Hattink J, De Goeij JJM, Wolterbeek HT (2000) Uptake kinetics of 99Tc in common duckweed. Environ Exp Bot 44:9–13CrossRefGoogle Scholar
  106. Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA (2011) Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int J Environ Sci Technol 8:639–648Google Scholar
  107. Hench KR, Bissonnette GK, Sexstone AJ, Coleman JG, Garbutt K, Skousen JG (2003) Fate of physical, chemical, and microbial contaminants in domestic wastewater following treatment by small constructed wetlands. Water Res 37:921–927CrossRefGoogle Scholar
  108. Hoffman T, Kutter C, Santamaria JM (2004) Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Eng Life Sci 4:61–65CrossRefGoogle Scholar
  109. Holtra A, Traczewska TM, Sitarska M, Zamorska-Wojdyla M (2010) Assessment of the phytoremediation efficacy of boron-contaminated waters by Salvinia natans. Environ Prot Eng 36:87–94Google Scholar
  110. Hopple JA, Foster GD (1996) Hydrophobic organochlorine compounds sequestered in submersed aquatic macrophytes (Hydrilla verticillata (L.F.) Royle) from the tidal Potomac River (USA). Environ Pollut 94:39–46CrossRefGoogle Scholar
  111. Hu C, Zhang L, Hamilton D, Zhou W, Yang T, Zhu D (2007) Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia 579:211–218CrossRefGoogle Scholar
  112. Hua J, Zhang C, Yin Y, Chen R, Wang X (2011) Phytoremediation potential of three aquatic macrophytes in manganese- contaminated water. Water Environ J 26:335–342CrossRefGoogle Scholar
  113. Hughes JB, Shanks JE, Vanderford MY, Lauritzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266–271CrossRefGoogle Scholar
  114. Hussain ST, Mahmood T, Malik SA (2010) Phytoremediation technologies for Ni++ by water hyacinth. Afr J Biotechnol 9(50):8648–8660Google Scholar
  115. Jafari N (2010) Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms). J Appl Sci Environ Manage 14(2):43–49Google Scholar
  116. Kadirvelu K, Karthika C, Vennilamani N, Pattabhi S (2005) Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution: kinetic and equilibrium studies. Chemosphere 60:1009–1017CrossRefGoogle Scholar
  117. Kalipci E (2011) Investigation of decontamination effect of Phragmites australis for Konya domestic wastewater treatment. J Med Plants Res 5(29):6571–6577Google Scholar
  118. Kamarudzaman AN, Ismail NS, Aziz RA, Ab Jalil MF (2011) Removal of nutrients from landfill leachate using subsurface flow constructed wetland planted with Limnocharis flava and Scirpus atrovirens. In: International conference on environmental and computer science, IPCBEE, vol 19, IACSIT Press, SingaporeGoogle Scholar
  119. Kanabkaew T, Puetpaiboon U (2004) Aquatic plants for domestic wastewater treatment: Lotus (Nelumbo nucifera) and Hydrilla (Hydrilla verticillata) systems. Songklanakarin J Sci Technol 26(5):749–756Google Scholar
  120. Kara Y (2010) Bioaccumulation of nickel by aquatic macrophytes. Desalination Water Treat 19:325–328CrossRefGoogle Scholar
  121. Kara Y, Kara I (2005) Removal of cadmium from water using duckweed (Lemna trisulca). Int J Agric Biol 7:660–662Google Scholar
  122. Khellaf N, Zerdaoui M (2010a) Growth response of the duckweed Lemna gibba to copper and nickel phytoaccumulation. Ecotoxicology 19:1363–1368CrossRefGoogle Scholar
  123. Khellaf N, Zerdaoui M (2010b) Growth, photosynthesis and respiratory response to copper in Lemna minor: a potential use of duckweed in biomonitoring. Iran J Environ Health Sci Eng 7:299–306Google Scholar
  124. King JK, Harmon SM, Fu TT, Gladden JB (2002) Mercury removal, methylmercury formation, and sulfate-reducing bacteria profiles in wetland mesocosms. Chemosphere 46:859–870CrossRefGoogle Scholar
  125. Knuteson SL, Whitwell T, Klaine SJ (2002) Influence of plant age and size on simazine uptake and toxicity. J Environ Qual 31:2090CrossRefGoogle Scholar
  126. Kondo K, Kawabata H, Ueda S, Hasegawa H, Inaba J, Mitamura O, Seike Y, Ohmomo Y (2003) Distribution of aquatic plants and absorption of radionuclides by plants through the leaf surface in brackish Lake Obuchi, Japan, bordered by nuclear fuel cycle facilities. J Radioanalytical Nuclear Chem 257:305CrossRefGoogle Scholar
  127. Kristanti RA, Kanbe M, Toyama T, Tanaka Y, Tang Y, Wu X, Mori K (2012) Accelerated biodegradation of nitrophenols in the rhizosphere of Spirodela polyrrhiza. J Environ Sci (China) 24(5):800–807CrossRefGoogle Scholar
  128. Kumar GP, Prasad MNV (2004) Cadmium adsorption and accumulation by Ceratophyllum demersum L.: A fresh water macrophyte. Eur J Miner Process Environ Protect 4:95–101Google Scholar
  129. Kumar PS, Kumar SS, Anuradha K, Sudha B, Ansari S (2012) Phytoremediation as an alternative for treatment of paper industry effluents by using water hyacinth (Eichhornia crassipes) – a polishing treatment. Int J Res Chem Environ 2:95–99Google Scholar
  130. Kutty SRM, Ngatenah SNIB, Isa MH, Malakahmad A (2009) Nutrients removal from municipal wastewater treatment plant effluent using Eichhornia Crassipes. World Acad Sci Eng Technol 36:828–833Google Scholar
  131. Lacher C, Smith RW (2002) Sorption kinetics of Hg(II) onto Potamogeton natans biomass. Eur J MinerProcess Environ Protect 2:220–231Google Scholar
  132. Larson R, Sims G, Marley K, Montez-Ellis M, Paul T, Michelle C (2002) Nitrate management using terrestrial and aquatic plant species. http://igc.siu.edu/proceedings/02/larson.pdf
  133. Leblebici Z, Aksoy A (2011) Growth and lead accumulation capacity of Lemna minor and Spirodela polyrhiza (lemnaceae): interactions with nutrient enrichment. Water Air Soil Pollut 214:175–184CrossRefGoogle Scholar
  134. Lee KE, Huggins DG, Thurman EM (1995) Effects of hydrophyte community structure on Atrazine and Alachlor degradation in wetlands. systematics and ecology. In: Campbell KL (ed) Versatility of wetlands in the agricultural landscape. American Society of Agricultural Engineers, Tampa, pp 525–538Google Scholar
  135. Lesage E, Mundia C, Rousseau DPL, Van de Moortel AMK, Laing GD, Tack FMG, De Pauw N, Verloo MG (2008) Removal of heavy metals from industrial effluents by the submerged aquatic plant Myriophyllum spicatum L. In: Vyamazal J (ed) Wastewater Treatment, Plant Dynamics and Management in Constructed and Natural Wetlands. Springer, pp 211–221Google Scholar
  136. Lohi A, Cuenca MA, Anania G, Upreti SR, Wan L (2008) Biodegradation of diesel fuel-contaminated wastewater using a three-phase fluidized bed reactor. J Hazard Mater 154:105–111CrossRefGoogle Scholar
  137. Lovett-Doust J, Lovett-Doust L, Biernacki M, Mal TK, Lazar R (1997) Organic contaminants in submersed macrophytes drifting in the Detroit River. Can J Fish Aquat Sci 54(10):2417–2427Google Scholar
  138. Low KS, Lee CK, Tai CH (1994) Biosorption of copper by water hyacinth roots. J Environ Sci Health A29(1):171Google Scholar
  139. Lu X, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Sci Asia 30:93–103CrossRefGoogle Scholar
  140. Lu X, Nguyen N, Gabos S, Le XC (2009) Arsenic speciation in cattail (Typha latifolia) using chromatography and mass spectrometry. Mol Nutr Food Res 53(5):566–571CrossRefGoogle Scholar
  141. Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X (2010) Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 17:84–96CrossRefGoogle Scholar
  142. Lu Q, Zhenli LH, Graetz DA, Stoffella PJ, Yang X (2011) Uptake and distribution of metals by water lettuce (Pistia stra tiotes L.). Environ Sci Pollut Res 18:978–986CrossRefGoogle Scholar
  143. Machate T, Noll H, Behrens H, Kettrup A (1997) Degradation of phenanthracene and hydraulic characteristics in constructed wetland. Water Res 31:554CrossRefGoogle Scholar
  144. Mahamadi C (2011) Water hyacinth as a biosorbent: a review. Afr J Environ Sci Technol 5(13):1137–1145Google Scholar
  145. Mahmood T, Malik SA, Hussain ST (2010) Biosorption and recovery of heavy metals from aqueous solutions by Eichhornia crassipes (water hyacinth) ash. Bioresource 5(2):1244–1256Google Scholar
  146. Maine MA, Duarte MV, Sun˜ e’ NL (2001) Cadmium uptake by floating macrophytes. Water Res 35:2629–2634CrossRefGoogle Scholar
  147. Maine AM, Sune NL, Lagger SC (2004) Bioaccumulation: comparison of the capacity of two aquatic macrophytes. Water Res 38:1494CrossRefGoogle Scholar
  148. Mane PC, Bhosle AB, Kulkarni PA (2011) Biosorption and biochemical study on water hyacinth (Eichhornia crassipes) with reference to selenium. Arch Appl Sci Res 3(1):222–229Google Scholar
  149. Manios T, Stentiford EI, Millner P (2003) Removal of heavy metals from a metaliferous water solution by Typha latifolia plants and sewage sludge compost. Chemosphere 53:487–494CrossRefGoogle Scholar
  150. Matamoros V, Nguyen LX, Arias CA, Salvadó V, Brix H (2012) Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere 88(10):1257–1264CrossRefGoogle Scholar
  151. Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for simultaneous removal of heavy metals (Buenos Aires, Argentine). Chemosphere 57:997CrossRefGoogle Scholar
  152. Miretzky P, Saralegui A, Cirelli AF (2006) Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62:247–254CrossRefGoogle Scholar
  153. Mkandawire M, Dudel G (2005) Accumulation of arsenic in Lemna gibba (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336:81–89CrossRefGoogle Scholar
  154. Mkandawire M, Dudel EG (2007) Are Lemna spp. Effective phytoremediation agents ? Bioremediation Biodivers Bioavailab 1:56–71Google Scholar
  155. Mkandawire M, Lyubun YV, Kosterin PV, Dudel EG (2004a) Toxicity of arsenic species to Lemna gibba L. and the influence of phosphate on arsenic bioavailability. Environ Toxicol 19:26–35CrossRefGoogle Scholar
  156. Mkandawire M, Taubert B, Dudel EG (2004b) Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytoremediation 6(4):347–362CrossRefGoogle Scholar
  157. Mojiri A (2012) Phytoremediation of heavy metals from municipal wastewater by Typha domingensis. Afr J Microbiol Res 6(3):643–647Google Scholar
  158. Mokhtar H, Morad N, Fizri FFA (2011) Hyperaccumulation of copper by two species of aquatic plants. In: International conference on environment science and engineering IPCBEE 8. IACSIT Press, Singapore, pp 115–118Google Scholar
  159. Molisani MM, Rocha R, Machado W, Barreto RC, Lacerda ID (2006) Mercury contents in aquatic macrophytes from two Reservoirs in the para’ıba do sul: Guandu river system, Se, Brazil. Braz J Biol 66:101CrossRefGoogle Scholar
  160. Murithi G, Onindo CO, Muthakia GK (2012) Kinetic and equilibrium study for the sorption of Pb(II) ions from aqueous phase by water hyacinth (Eichhornia crassipes). Bull Chem Soc Ethiopia 26(2):181–193Google Scholar
  161. Muthunarayanan V, Santhiya M, Swabna V, Geetha A (2011) Phytodegradation of textile dyes by water hyacinth (Eichhornia crassipes) from aqueous dye solutions. Int J Environ Sci 7:1709–1724Google Scholar
  162. Narain S, Ojha CSP, Mishra SK, Chaube UC, Sharma PK (2011) Cadmium and chromium removal by aquatic plant. Int J Environ Sci 1:1297–1304Google Scholar
  163. Nesterenko-Malkovskaya A, Kirzhner F, Zimmels Y, Armon R (2012) Eichhornia crassipes capability to remove naphthalene from wastewater in the absence of bacteria. Chemosphere 87(10):1186–1191CrossRefGoogle Scholar
  164. Nguyen TTT, Davy F B, Rimmer M, De Silva S (2009) Use and exchange of genetic resources of emerging species for aquaculture and other purposes. FAO/NACA expert meeting on the use and exchange of aquatic genetic resources relevant for food and agriculture, 31 March–02 April 2009, Chonburi, ThailandGoogle Scholar
  165. Nichols PB, Couch JD, Al-Hamdani SH (2000) Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 1439:1–8Google Scholar
  166. Nilratnisakorn S, Thiravetyan P, Nakbanpote W (2009) A constructed wetland model for synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.). Water Sci Technol 60(6):1565–1574, AUTHOR(S)CrossRefGoogle Scholar
  167. Nzengung VA, Lee NW, Rennels DE, McCutcheon SC, Wang C (1999) Use of aquatic plants and algae for decontamination of waters polluted with chlorinated alkanes. Int J Phytoremediation 1:203CrossRefGoogle Scholar
  168. Obek E, Sasmaz A (2011) Bioaccumulation of aluminum by Lemna gibba from secondary treated municipal wastewater effluents. Bull Environ Contam Toxicol 86(2):217–220CrossRefGoogle Scholar
  169. Odjegba VJ, Fasidi IO (2006) Effects of heavy metals on some proximate composition of Eichhornia crassipes. J Appl Sci Environ Manage 10(1):83–87Google Scholar
  170. Olette R, Couderchet M, Biagianti S, Eullaffroy P (2008) Toxicity and removal of pesticides by selected aquatic plants. Chemosphere 70(8):1414–1421CrossRefGoogle Scholar
  171. Ong S, Ho L, Wong Y, Danny LD, Samad H (2011) Semi-batch operated constructed wetlands planted with Phragmites australis for treatment of dyeing wastewater. J Eng Sci Technol 6:619–627Google Scholar
  172. Ortega-Clementea LA, Luna-Pabellob VM (2012) Dynamic performance of a constructed wetland to treat lindane-contaminated water. Int Res J Eng Sci Technol Innov 1(2):57–65Google Scholar
  173. Osmolovskaya N, Kurilenko V (2005) Macrophytes in phytoremediation of heavy metal contaminated water and sediments in urban inland ponds. Geophys Res Abstr 7:10510Google Scholar
  174. Panich-pat T, Srinives P, Kruatrachue M, Pokethitiyook P, Upathamd S, Lanzae GR (2005) Electron microscopic studies on localization of lead in organs of Typha angustifolia grown on contaminated soil. ScienceAsia 31:49–53CrossRefGoogle Scholar
  175. Paola IM, Paciolla C, D’aquino L, Morgana M, Tommasi F (2007) Effect of rare earth elements on growth and antioxidant metabolism in Lemna minor. Caryologia 60:125–128Google Scholar
  176. Parra LM, Torres G, Arenas AD, Sánchez E, Rodríguez K (2012) Phytoremediation of low levels of heavy metals using duckweed (Lemna minor). In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, pp 451–463CrossRefGoogle Scholar
  177. Pavlostathis SG, Comstock KK, Jacobson ME, Saunders FM (1998) Transformation of 2,4,6-trinitrotoluene by the aquatic plant Myriophyllum aquaticum. Environ Toxicol Chem 17:2266Google Scholar
  178. Peng K, Luo C, Lou L, Li X, Shen Z (2008) Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ 392(1):22–29CrossRefGoogle Scholar
  179. Phetsombat S, Kruatrachue M, Pokethitiyook P, Upatham S (2006) Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. J Environ Biol 27:671–678Google Scholar
  180. Polomski RF, Taylor MD, Bielenberg DG, Bridges WC, Klaine SJ, Whitwell T (2009) Nitrogen and phosphorus remediation by three floating aquatic macrophytes in greenhouse-based laboratory-scale subsurface constructed wetlands. Water Air Soil Pollut 197:223–232CrossRefGoogle Scholar
  181. Popa K, Cecal A, Humelnicu D, Caraus I, Draghici CL (2004) Removal of 60Co2+ and 137Cs+ ions from low radioactive solutions using Azolla caroliniana willd. water fern. Cent Eur J Chem 2:434CrossRefGoogle Scholar
  182. Popa K, Palamaru MN, Iordan AR, Humelnicu D, Drochioiu G, Cecal A (2006) Laboratory analyses of 60Co2+, 65Zn2+ and (55 + 59)Fe3+ radioactions uptake by Lemna minor. Isot Environ Health Stud 42:87CrossRefGoogle Scholar
  183. Prajapati SK, Meravi N, Singh S (2012) Phytoremediation of chromium and cobalt using Pistia stratiotes: a sustainable approach. Proc Int Acad Ecol Environ Sci 2(2):136–139Google Scholar
  184. Prasad MNV, Malec P, Waloszek K, Bojko M, Strzalka K (2001) Physiological responses of Lemna trisulca to cadmium and copper bioaccumulation. Plant Sci 161:881–889CrossRefGoogle Scholar
  185. Prasertsup P, Ariyakanon N (2011) Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.). Int J Phytoremediation 13(4):383–395CrossRefGoogle Scholar
  186. Pratas J, Rodrigues N, Alves F, Patricio J (2010) Uranium removal in artificial wetlands. In: Advances in waste management. ISBN: 978-960-474-190-8 pp 112–117Google Scholar
  187. Purwanti IF, Mukhlisin M, Abdullah SRS, Basri H, Idris M, Hamzah A, Latif MT (2012) Range finding test of hydrocarbon on Scirpus mucronatus as preliminary test for phytotoxicity of contaminated soil. Revelation Sci 2:61–65Google Scholar
  188. Qian JH, Zayed A, Zhu ML, Yu M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants, III: uptake and accumulation of ten trace elements by twelve plant species. J Environ Qual 28:1448CrossRefGoogle Scholar
  189. Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646CrossRefGoogle Scholar
  190. Rahman MA, Hasegawa KH, Ueda K, Maki T, Okumura C, Rahman MM (2007) Arsenic accumulation in duckweed (Spirodela polyrhiza L.): a good option for phytoremediation. Chemosphere 69:493–499CrossRefGoogle Scholar
  191. Rahman MA, Hasegawa H, Ueda K, Makia T, Rahman MM (2008) Arsenic uptake by aquatic macrophyte Spirodela polyrhiza L: interactions with phosphate and iron. J Hazard Mater 160:356–361CrossRefGoogle Scholar
  192. Rai PK, Tripathi BD (2009) Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli industrial region, India. Environ Monit Assess 148:75–84CrossRefGoogle Scholar
  193. Rai UN, Tripathi RD, Sinha S, Chandra P (1995) Chromium and cadmium bioaccumulation and toxicity in Hydrilla verticillata (L.f.) Royle and Chara corallina Wildenow. J Environ Sci Health A 30:537–551Google Scholar
  194. Rai UN, Tripathi RD, Vajpayee P, Pandey N, Ali MB, Gupta DK (2003) Cadmium accumulation and its phytotoxicity in Potamogeton pectinatus (Potamogetonaceae). Bull Environ Contam Toxicol 70:566CrossRefGoogle Scholar
  195. Rakhshaee R, Khosravi M, Ganji MT (2006) Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. J Hazard Mater 134:120–129CrossRefGoogle Scholar
  196. Ramamoorthy D, Kalaivani S (2011) Studies on the effect of Typha angustata (Reed) on the removal of sewage water pollutants. J Phytol 3(6):13–15Google Scholar
  197. Ramprasad C (2012) Experimental study on waste water treatment using lab scale reed bed system using Phragmitis australis. Int J Environ Sci 3:297–304Google Scholar
  198. Rawat SK, Rana RKS, Singh P (2012) Remediation of nitrite contamination in ground and surface waters using aquatic macrophytes. J Environ Biol 33:51–56Google Scholar
  199. Rice PJ, Anderson TA, Coats JR (1997) Phytoremediation of herbicide-contaminated surface water with aquatic plants. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. American Chemical Society, Washington, DCGoogle Scholar
  200. Rivera R, Medina VF, Larson SL, McCutcheon SC (1998) Phytotreatment of TNT-contaminated groundwater. J Soil Contam 7:511CrossRefGoogle Scholar
  201. Roy S, Hanninen O (1994) Pentachlorophenol: uptake/elimination, kinetics and metabolism in an aquatic plant, Eicchornia crassipes. Environ Toxicol Chem 13:763Google Scholar
  202. Samardakiewicz S, Krzesłowska M, Bilski H, Bartosiewicz R, Woźny A (2012) Is callose a barrier for lead ions entering Lemna minor L. root cells? Protoplasma 249(2):347–351CrossRefGoogle Scholar
  203. Samdani S, Attar SJ, Kadam C, Baral SS (2008) Treatment of Cr (VI) contaminated wastewater using biosorbent, Hydrilla verticillata. Int J Eng Res Ind Appl 1:271–282, ISSN 0974–1518Google Scholar
  204. Sánchez D, Graça MAS, Canhoto J (2007) Testing the use of the water Milfoil (Myriophyllum spicatum L.) in laboratory toxicity assays. Bull Environ Contam Toxicol 78:421–426CrossRefGoogle Scholar
  205. Sánchez-viveros G, González-mendoza D, Alarcón A, Ferrera-cerrato R (2010) Copper effects on photosynthetic activity and membrane leakage of Azolla filiculoides and A. Caroliniana. Int J Agric Biol 12:365–366Google Scholar
  206. Sasmaza A, Obek E (2012) The accumulation of silver and gold in Lemna gibba exposed to secondary effluents. Chem Erde-Geochem 72:149–152CrossRefGoogle Scholar
  207. Saulais M, Bedell JP, Delolme C (2011) Cd, Cu and Zn mobility in contaminated sediments from an infiltration basin colonized by wild plants: The case of Phalaris arundinacea and Typha latifolia. Water Sci Technol 64:255–262CrossRefGoogle Scholar
  208. Saygideger S, Dogan M, Keser G (2004) Effect of lead and pH on lead uptake, chlorophyll and nitrogen content of Typha latifolia L. and Ceratophyllum demersum L. Int J Agric Biol 6:168–172Google Scholar
  209. Schneider IAH, Smith RW, Rubio J (1999) Effect of some mining chemicals on biosorption of Cu(II) by the non living biomass of the fresh water macrophyte Potamogeton lucens. Miner Eng 12:255–260CrossRefGoogle Scholar
  210. Shah RA, Kumawat DM, Singh N, Wani KA (2010) Water hyacinth (eichhornia crassipes) as a remediation tool for dye-effluent pollution. Int J Sci Nat 1(2):172–178Google Scholar
  211. Shaikh PR, Bhosle A (2011) Bioaccumulation of chromium by aquatic macrophytes Hydrilla sp. & Chara sp. Adv Appl Sci Res 2(1):214–220Google Scholar
  212. Sharain-Liew YL, Joseph CG, How S (2011) Biosorption of lead contaminated wastewater using cattails (Typha angustifolia) leaves: kinetic studies. J Serb Chem Soc 76(7):1037–1047CrossRefGoogle Scholar
  213. Sharif F, Westerhoff P, Herckes P (2013) Sorption of trace organics and engineered nanomaterials onto wetland plant material. Environ Sci Process Impacts. doi: 10.1039/C2EM30613A Advance article
  214. Sharma HA, Barber JT, Ensley HE, Polito MA (1997) Chlorinated phenols and phenols by Lemna gibba. Environ Toxicol Chem 16:346Google Scholar
  215. Shokod’Ko TI, Drobot PI, Kuzmenko MI, Shklyar AY (1992) Peculiarities of radionuclides accumulation by higher aquatic plants. Hydrobiol J 28:92Google Scholar
  216. Shuib N, Baskaran K, Davies WR, Muthukumaran S (2011) Effluent quality performance of horizontal subsurface flow constructed wetlands using natural zeolite (escott). In: International conference on environment science and engineering IPCBEE, vol 8. IACSIT Press, SingaporeGoogle Scholar
  217. Singh NK, Pandey GC, Rai UN, Tripathi RD, Singh HB, Gupta DK (2005) Metal accumulation and ecophysiological effects of distillery effluent on Potamogeton pectinatus L. Bull Environ Contam Toxicol 74:857CrossRefGoogle Scholar
  218. Singh A, Kumar CS, Agarwal A (2012a) Physiological study of combined heavy metal stress on Hydrilla verticillata (l.f.) Royle. Int J Environ Sci 2:2234–2242Google Scholar
  219. Singh D, Gupta R, Tiwari A (2012b) Potential of duckweed (Lemna minor) for removal of lead from wastewaters by phytoremediation. J Pharm Res 5(3):1578–1582Google Scholar
  220. Sinha S (2002) Oxidative stress induced by HCH in Hydrilla verticillata Royle: modulation in uptake and toxicity due to Fe. Chemosphere 46:281–288CrossRefGoogle Scholar
  221. Sivaci EK, Sivaci A, Sokman M (2004) Biosorption of cadmium by Myriophyllum spicatum and Myriophyllum triphyllum orchard. Chemosphere 56:1043CrossRefGoogle Scholar
  222. Sivaci A, Elmas E, Gumus F (2008a) Changes in abscisic acid contents of some aquatic plants exposed to cadmium and salinity. Int J Bot 4:104–108CrossRefGoogle Scholar
  223. Sivaci A, Fatih E, Gümüş E, Sivaci R (2008b) Removal of Cadmium by Myriophyllum heterophy Emire llum Michx. and Potamogeton crispus L. and its effect on pigments and total phenolic compounds. Arch Environ Contam Toxicol 54:612–618CrossRefGoogle Scholar
  224. Smadar E, Benny C, Tel-Or E, Lorena V, Antonio C, Aharon G (2011) Removal of silver and lead Ions from water wastes using Azolla filiculoides, an aquatic plant, which adsorbs and reduces the ions into the corresponding metallic nanoparticles under microwave radiation in 5 min. Water Air Soil Pollut 218:365–370CrossRefGoogle Scholar
  225. So LM, Chu LM, Wong PK (2003) Microbial enhancement of Cu2+ removal capacity of Eichhornia crassipes (Mart.). Chemosphere 52:1499–1503CrossRefGoogle Scholar
  226. Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2004) Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2. Int J Environ Sci Technol 1:265–271Google Scholar
  227. Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405–415CrossRefGoogle Scholar
  228. Srivastava S, Mishra R, Tripathi D, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.). Royle Environ Sci Technol 41(8):2930–2936CrossRefGoogle Scholar
  229. Srivastava S, Mishra S, Dwivedi S, Tripathi R (2010) Role of thiol metabolism in arsenic detoxification in Hydrilla verticillata (L.f.) Royle. Water Air Soil Pollut 212:155–165CrossRefGoogle Scholar
  230. Srivastava S, Srivastava M, Suprasanna S, D’Souza F (2011) Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecol Eng 37:1937–1941CrossRefGoogle Scholar
  231. Sun Q, Liu WB, Wang C (2011) Different response of phytochelatins in two aquatic macrophytes exposed to cadmium at environmentally relevant concentrations. Afr J Biotechnol 10(33):6292–6299Google Scholar
  232. Susanne A, Hendrik S (2008) Elodea nuttallii: uptake, translocation and release of phosphorus. Aquat Biol 3:209–216CrossRefGoogle Scholar
  233. Taghi ganji M, Khosravi M, Rakhshaee R (2005) Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2. Int J Environ Sci Technol 1:265–271Google Scholar
  234. Taghi ganji M, Khosravi M, Rakhshaee R (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137CrossRefGoogle Scholar
  235. Tilaki RAD (2010) Effect of glucose and lactose on uptake of phenol by Lemna minor. Iran J Environ Health Sci Eng 7:123–128Google Scholar
  236. Todorovics C, Garay TM, Boltán BZ (2005) The use of the reed (Phragmites australis) in wastewater treatment on constructed wetlands. Acta Biologica Szegediensis 49(1–2):81–83Google Scholar
  237. Toetz DW (1971) Diurnal uptake of nitrogen trioxide [sic] and ammonium by a Ceratophyllum-periphyton community. Limnol Oceanogr 16:819–822CrossRefGoogle Scholar
  238. Tripathi RD, Rai UN, Gupta M, Chandra P (1996) Induction of phytochelatins in Hydrilla verticillata (l.f.) Royle under cadmium stress. Bull Environ Contam Toxicol 56:505–551CrossRefGoogle Scholar
  239. Tripathi RD, Rai UN, Vajpayee MB, Ali MB, Khan E, Gupta DK, Mishra S, Shukla MK, Singh SN (2003) Biochemical responses of Potamogeton pectinatus L. exposed to higher concentration of zinc. Bull Environ Contam Toxicol 71:255CrossRefGoogle Scholar
  240. Tront AM, Saunders FM (2006) Role of plant activity and contaminant speciation in aquatic plant assimilation of 2,4,5-trichlorophenol. Chemosphere 64(3):400–407CrossRefGoogle Scholar
  241. Tront JM, Day JA, Saunders MF (2001) Trichlorophenol removal with Lemna minor. In: Proceedings of the water environment federation, vol 40. WEFTEC, San Diego, p 929Google Scholar
  242. Tront JM, Reinhold DM, Bragg AW, Saunders FM (2007) Uptake of halogenated phenols by aquatic plants. J Environ Eng 133:955CrossRefGoogle Scholar
  243. Tukaj S, Bisewska J, Roeske K, Tukaj Z (2011) Time and dose dependent induction of HSP70 in Lemna minor exposed to different environmental stressors. Bull Environ Contam Toxicol 87(3):226–230CrossRefGoogle Scholar
  244. Upadhyay R, Panda SK (2010) Influence of chromium salts on increased lipid peroxidation and differential pattern in antioxidant metabolism in Pistia stratiotes L. Braz Arch Biol Technol 53:1137–1144CrossRefGoogle Scholar
  245. Uysal Y, Taner F (2011) The evaluation of the Pb(II) removal efficiency of duckweed Lemna minor from aquatic mediums at different conditions. In: Gökçekus H, Türker U, LaMoreaux JW (eds) Survival and sustainability environmental earth sciences. Springer, Berlin/Heidelberg, pp 1107–1116Google Scholar
  246. Venkatrayulu C, Rani VK, Reddy DC, Ramamurthi R (2009) Bio-adsorption of copper (II) by aquatic weed plants Hydrilla and Pistia. Asian J Animal Sci 4:82–85Google Scholar
  247. Vestena S, Cambraia J, Oliva MA, Oliveira JA (2007) Cadmium accumulation by water hyacinth and Salvinia under different sulfur concentrations. J Braz Soc Ecotoxicol 2:269–274CrossRefGoogle Scholar
  248. Vitória AP, Lage-Pinto F, Campaneli da Silva LB, da Cunha M, de Oliveira JG, Rezende CE, Magalhães de Souza CM, Azevedo RA (2011) Structural and ecophysiological alterations of the water hyacinth [Eichhornia crassipes (Mart.) Solms] due to anthropogenic stress in Brazilian Rivers. Braz Arch Biol Technol 54:1059–1068CrossRefGoogle Scholar
  249. Wang TC, Weissman JC, Ramesh G, Varadarajan R, Benemann JR (1996) Parameters for removal of toxic heavy metals by water Milfoil (Myriophyllum spicatum). Bull Environ Contam Toxicol 57:779–786CrossRefGoogle Scholar
  250. Wang J, Gu Y, Zhu Z, Wu B, Yin D (2005) Physiological responses of Ceratophyllum demersum under different nutritional conditions. Ying Yong Sheng Tai Xue Bao 16(2):337–340Google Scholar
  251. Wang K, Huang L, Lee H, Chen P, Chang S (2008) Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation. Chemosphere 72:666–672CrossRefGoogle Scholar
  252. Wang Q, Li Z, Cheng S, Wu Z (2010) Effects of humic acids on phytoextraction of Cu and Cd from sediment by Elodea nuttallii. Chemosphere 78:604–608CrossRefGoogle Scholar
  253. Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685CrossRefGoogle Scholar
  254. Weltje L, Brouwer AH, Verburg TG, Wolterbeek HT, de Goeij JJM (2002) Accumulation and elimination of lanthanum by duckweed (Lemna minor L.) As influenced by organism growth and lanthanum sorption to glass. Environ Toxicol Chem 21:1483–1489Google Scholar
  255. Wilson PC, Whitwell T, Klaine SJ (2000) Metalaxyl and simazine toxicity to and uptake by Typha latifolia. Arch Environ Contam Toxicol 39:282–288CrossRefGoogle Scholar
  256. Win DT, Than MM, Tun S (2002) Iron removal from industrial waters by water hyacinth. Aust J Technol 6(2):55–60Google Scholar
  257. Win DT, Than MM, Tun S (2003) Lead removal from industrial waters by water hyacinth. Aust J Technol 6(4):187–192Google Scholar
  258. Windham L, Weis JS, Weis P (2001) Lead uptake, distribution and effects in two dominant salt marsh macrophytes Spartina alterniflora (cordgrass) and Phragmites australis (commonreed). Mar Pollut Bull 42:811CrossRefGoogle Scholar
  259. Windham L, Weis JS, Weis P (2003) Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar Coast Shelf Sci 56:63CrossRefGoogle Scholar
  260. Wolf SD, Lassiter RR, Wooten SE (1991) Predicting chemical accumulation in shoots of aquatic plants. Environ Toxicol Chem 10:655CrossRefGoogle Scholar
  261. Wolff G, Pereira GC, Castro EM, Louzada J, Coelho FF (2012) The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: biomass and structure dependent on the cadmium concentration. Braz J Biol 72, doi.org/ 10.1590/S1519-69842012000100009
  262. Wolverton BC, McDonald R (1979) The water hyacinth: from profilic pest to potential provider. Ambio 8:2–9Google Scholar
  263. Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth from water. Bioresour Technol 97:1050–1054CrossRefGoogle Scholar
  264. Xia J, Wu L, Tao Q (2002a) Phytoremediation of methyl parathion by water hyacinth (Eichhornia crassipes Solm.). Chem Abstr 137:155879Google Scholar
  265. Xia J, Wu L, Tao Q (2002b) Phytoremediation of some pesticides by water hyacinth (Eichhornia crassipes Solm.). Chem Abstr 138:390447Google Scholar
  266. Xing W, Li D, Liu G (2010) Antioxidative responses of Elodea nuttallii (Planch.) H. St. John to short-term iron exposure. Plant Physiol Biochem 48:873–878CrossRefGoogle Scholar
  267. Xue PY, Li GX, Liu WJ, Yan CZ (2010) Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle. Chemosphere 81(9):1098–1103CrossRefGoogle Scholar
  268. Xue P, Yan C, Sun G, Luo Z (2012) Arsenic accumulation and speciation in the submerged macrophyte Ceratophyllum demersum L. Environ Sci Pollut Res Int 19:3969–3976CrossRefGoogle Scholar
  269. Yadav SB, Jadhav AS, Chonde SG, Raut PD (2011) Performance evaluation of surface flow constructed wetland system by using Eichhornia crassipes for wastewater treatment in an institutional complex. Univ J Environ Res Technol 1:435–444Google Scholar
  270. Yang Q, Chen ZH, Zhao JG, Gu BH (2007) Contaminant removal of domestic wastewater by constructed wetlands: effects of plant species. J Integr Plant Biol 49(4):437–446CrossRefGoogle Scholar
  271. Ye ZH, Baker AJM, Wong MH, Willis AJ (1997) Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytol 136:469CrossRefGoogle Scholar
  272. Ye ZH, Cheung KC, Wong MH (2001) Copper uptake in Typha latifolia as affected by iron and manganese plaque on the root surface. Can J Bot 79:314–320Google Scholar
  273. Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants, I: Duckweed. J Environ Qual 27:715CrossRefGoogle Scholar
  274. Zayed A, Pilon-Smits E, de Souza M, Lin ZQ, Terry N (2000) Remediation of selenium polluted soils and waters by phytovolatilization. In: Terry N, Barnuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, p 61Google Scholar
  275. Zhang X, Lin AJ, Zhao FJ, Xu GZ, Duan GL, Zhu YG (2008a) Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by Azolla caroliniana and Azolla filiculoides. Environ Pollut 156:1149–1155CrossRefGoogle Scholar
  276. Zhang Z, Wu Z, Li H (2008b) The accumulation of alkylphenols in submersed plants in spring in urban lake, China. Chemosphere 73:859–863CrossRefGoogle Scholar
  277. Zhang X, Hu Y, Liu Y, Chen B (2011) Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). J Environ Sci (China) 23(4):601–606CrossRefGoogle Scholar
  278. Zhu YL, Zayed AM, Qian JH, Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants. II water hyacinth (Eichhornia crassipes). J Environ Qual 28:339CrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Bhupinder Dhir
    • 1
  1. 1.Department of GeneticsUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations