Legume–Rhizobia Symbiosis and Interactions in Agroecosystems

  • Asmita Rajwar
  • Manvika Sahgal
  • Bhavdish N. Johri


In the present scenario, when the population of the world is expected to become 8–9 billion by 2040, the major concern is to maintain sustained food supply. Production of high-quality protein-rich food is extremely dependent on the availability of sufficient nitrogen. Nitrogen though abundant on Earth is unavailable to plants. Indiscriminate use of nitrogenous chemical fertilisers has significantly increased food production and quality but at the same time affected ecosystem sustainability. Hence, the process of biological nitrogen fixation (BNF) has gained considerable significance. BNF is both free-living as well as symbiotic. Symbiotic N2 fixation accounts for about 65 % of the total biologically fixed nitrogen. Frankia and rhizobia are two groups that fix atmospheric nitrogen symbiotically. Out of these, rhizobia–legume symbiosis accounts for about 45 % of nitrogen being used in agriculture. Rhizobia and legumes both are diverse. Currently 98 species of legume-nodulating bacteria have been identified within 13 bacterial genera, 11 in α-proteobacteria, whereas 2 in β-proteobacteria. Similarly, 13,000 species have been identified in 700 legume genera. Specificity of nodulation is an important attribute of legume–rhizobia symbiosis and is governed by both legume and rhizobial signals. For any successful legume–rhizobia symbiosis, interaction with other belowground microbes like AM fungi is also important. Here we give an account of rhizobial diversity and systematics, signals governing legume–rhizobia symbiosis, genes regulating nodulation and nitrogen fixation and legume–rhizobia–AM interactions.


Arbuscular Mycorrhizal Nitrogen Fixation Biological Nitrogen Fixation Infection Thread Tree Legume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



 Our work on tree and legume rhizobia has been supported through the Centre for Research on Bacteria and Archaea, under All India Coordinated Project on Taxonomy (AICOPTAX) of the Ministry of Environment and Forests, Govt. of India. Authors thank Mr. Mukesh Samant and Ms. Komal Agarwal for use of unpublished data.


  1. Agarwal K (2009) Nodulation efficacy and characterization of rhizobial isolates from Macrotyloma uniflorum (Lam.) Verdc. and Lens culinaris Medik. Dissertation, G. B. Pant University of Agriculture & Technology, PantnagarGoogle Scholar
  2. Agron PG, Helinski DR (1995) Symbiotic expression of Rhizobium meliloti nitrogen fixation genes is regulated by oxygen. In: Hoch JA, Silliavy TJ (eds) Two- component signal transduction. ASM Press, Washington, DC, pp 275–287Google Scholar
  3. Allen ON, Allen EK (1981) The leguminosae: a source book of characteristics, uses and nodulation. University of Wisconsin Press, MadisonGoogle Scholar
  4. Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006PubMedCrossRefGoogle Scholar
  5. Andrade DS, Murphy PJ, Giller KE (2002) The diversity of Phaseolus nodulating rhizobial population is altered by liming of acid soils planted with Phaseolus vulgaris L. Braz Appl Environ Microbiol 68:4025–4034CrossRefGoogle Scholar
  6. Arnold W, Rump A, Klipp W, Priefer UB, Pühler A (1998) Nucleotide sequence of a 24,206 base pair DNA fragment carrying the entire nitrogen fixation genes cluster of Klebsiella pneumonia. J Mol Biol 203:715–738CrossRefGoogle Scholar
  7. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  8. Bargaz A, Drevon JJ, Oufdou K, Mandri B, Faghire M, Ghoulam C (2011) Nodule phosphorus requirement and O2 uptake in common bean genotypes under phosphorus deficiency. Acta Agric Scan Sect B-Soil Plant Sci 61:602–611Google Scholar
  9. Barneby RC (1991) Sensitivae censitae: a description of the genus Mimosa Linnaeus (Mimosaceae) in the new world. Mem N Y Bot Gard 65:1–835Google Scholar
  10. Barnet YM, Catt PC (1991) Distribution and characteristics of root-nodule bacteria isolated from Australian Acacia spp. Plant Soil 135:109–120CrossRefGoogle Scholar
  11. Barret CF, Parker MA (2005) Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst Appl Microbiol 28:57–65CrossRefGoogle Scholar
  12. Becki T, Julie MG, Peter HG (2004) Selection of rhizobia for prairie legumes used in restoration programs in Minnesota. Can J Microbiol 50:977–983CrossRefGoogle Scholar
  13. Benson DR, Clawson ML (2000) Evolution of the actinorhizal plant nitrogen- fixing symbiosis. In: Triplett E (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon scientific Press, Wymondham, pp 207–224Google Scholar
  14. Bernal G, Graham PH (2001) Diversity in the rhizobia associated with Phaseolus vulgaris L. in Ecuador, and comparisons with Mexican bean rhizobia. Can J Microbiol 47:526–534PubMedGoogle Scholar
  15. Bladergroen MR, Spaink HP (1998) Genes and signal molecules involved in the rhizobia-Leguminosae symbiosis. Curr Opin Plant Biol 1:353–359PubMedCrossRefGoogle Scholar
  16. Bogino P, Banchio E, Bonfiglio C, Giordano W (2008) Competitiveness of a Bradyrhizobium sp. strain in soils containing indigenous rhizobia. Curr Microbiol 56:66–72PubMedCrossRefGoogle Scholar
  17. Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69:155–194PubMedCrossRefGoogle Scholar
  18. Bromfield ESP, Butler G, Barran LR (2001) Temporal effect on the composition of a population of Sinorhizobium meliloti associated with Medicago sativa and Melilotus alba. Can J Microbiol 47:567–573PubMedGoogle Scholar
  19. Broughton WJ, Perret X (1999) Genealogy of legume-Rhizobium symbioses. Curr Opin Plant Biol 2:305–311PubMedCrossRefGoogle Scholar
  20. Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652PubMedCrossRefGoogle Scholar
  21. Bucher M, Rausch C, Daram P (2001) Molecular and biochemical mechanisms of phosphorus uptake into plants. J Plant Nutr Soil Sci 164:209–217CrossRefGoogle Scholar
  22. Caballero-Mellado J, Martínez-Romero E (1999) Soil fertilization limits the genetic diversity of Rhizobium in bean nodules. Symbiosis 26:111–121Google Scholar
  23. Caetano-Anollés G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345–382PubMedCrossRefGoogle Scholar
  24. Chen WX, Yan GH, Li JL (1988) Numerical taxonomy, study of fast growing soybean rhizobia and proposal that Rhizobium freddie be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397CrossRefGoogle Scholar
  25. Chen W, Wang E, Wang S, Li Y, Chen Y, Li Y (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159PubMedCrossRefGoogle Scholar
  26. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735PubMedCrossRefGoogle Scholar
  27. Chen WM, James EK, Prescott AR, Kieraus M, Sprent JI (2003) Nodulation of Mimosa spp. by β-proteobacterium Ralstonia taiwanensis. Mol Plant Microbe Interact 16:1051–1061PubMedCrossRefGoogle Scholar
  28. Chen WX, Wang ET, Wang SY, Li YB, Chen XQ, Li Y (2005) Characteristics of Rhizobium tianshanense sp. nov., moderately and slowly growing nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic China. Int J Syst Bacteriol 45:153–159CrossRefGoogle Scholar
  29. Cregan PB, Keyer HH (1986) Host restriction of nodulation by Bradyrhizobium japonicum strain USDA 123. Crop Sci 26:911–916CrossRefGoogle Scholar
  30. Dakora FD, Keya SD (1997) Contribution of legume nitrogen-fixation to sustainable agriculture in Sub-Saharan Africa. Soil Biol Biochem 29:809–817CrossRefGoogle Scholar
  31. de Lajudie P, Willem A, Pet B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gills M (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti Comb nov., Sinorhizobium saheli sp. nov. Int J Syst Bacteriol 44:715–733CrossRefGoogle Scholar
  32. de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1998) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290PubMedCrossRefGoogle Scholar
  33. Dean DR, Jacobsen MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Champman and Hall, New York, pp 763–784Google Scholar
  34. Demir S, Akkopru A (2007) Using of arbuscular mycorrhizal fungi (AMF) for biocontrol of soil-borne fungal plant pathogens. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases. Haworth Press, New York, pp 17–37Google Scholar
  35. Dessaux Y, Petit A, Farrand SK, Morph PJ (1998) Opines and opine-like molecules involved in plant/Rhizobiaceae interactions. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The rhizobiaceae. Kluwer Academic Publishers, Dordrecht, pp 173–197CrossRefGoogle Scholar
  36. Dhabhai K, Batra A (2012) Physiological and phylogenetic analysis of rhizobia isolated from Acacia nilotica L. Afr J Biotechnol 11:1386–1390Google Scholar
  37. Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, de Lajudie P, Neyra M (2007) Genetic diversity of Acacia seyal rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microb Ecol 54:553–566PubMedCrossRefGoogle Scholar
  38. Dreyfus BL, Dommergues YR (1981) Nodulation of Acacia species by fast and slow growing tropical strains of Rhizobium. Appl Environ Microbiol 41:97–99PubMedGoogle Scholar
  39. Dupuy N, Willems A, Pot B, Dewettinck D, Vandenbruaene I, Maestrojuan G, Dreyfus B, Kersters K, Collins MD, Gillis M (1994) Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int J Syst Bacteriol 44:461–473PubMedCrossRefGoogle Scholar
  40. Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microb Rev 58:352–386Google Scholar
  41. Fischer HM (1996) Environmental regulation of rhizobial symbiotic nitrogen fixation genes. Trends Microbiol 4:317–320PubMedCrossRefGoogle Scholar
  42. Fischer HM, Babst M, Kasfier T, Acuňa G, Arigoni F, Hennecke H (1993) One member of a groESL like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 12:2901–2912PubMedGoogle Scholar
  43. Foussard M, Garnerone AM, Ni F, Soupene E, Boistard P, Batut J (1997) Negative autoregulation of Rhizobium meliloti fix K gene is indirect and requires a newly identified regulator, FixT. Mol Microbiol 25:27–37PubMedCrossRefGoogle Scholar
  44. Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Ber Dent Bot Ges 7:332–346Google Scholar
  45. Fred EW, Baldwin IL, McCoy E (1932) Root nodule bacteria and leguminous plants. University of Wisconsin Studies, MadisonGoogle Scholar
  46. Fulchieri M, Olivia L, Fancelli S, Bazzicalupo M (1999) Characterization of Rhizobium lupinus from near the Parana river (Argentina) by PCR-RFLP. In: Nitrogen fixation: from molecules to crop; proceedings of the 12th international congress on N2 fixation, Parana, 12–27 Sept 1999, p 189Google Scholar
  47. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300PubMedCrossRefGoogle Scholar
  48. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Beckar A, Boistard P, Bothe G, Bourtry M, Bowser L, Buhrmester J, Cadiew E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher FS, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernández-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lalaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebauit P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:666–667CrossRefGoogle Scholar
  49. Gao LF, Za X, Wang HX (2002) Genetic diversity of rhizobia isolated from Caragana intermedia in Maowusu Sandland, North China. Appl Environ Microbiol 35:347–352CrossRefGoogle Scholar
  50. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  51. Gilles-Gonzalez MA, Gonzalez G (1993) Regulation of the kinase activity of heme protein Fix L from the two-component system Fix L/Fix J of Rhizobium meliloti. J Biol Chem 268:16293–16297PubMedGoogle Scholar
  52. Goethals K, Margaert M, Gao M, Geelan M, Montagn V, Holsters M (1992) Identification of new inducible nodulation genes in Azorhizobium caulinodans. Mol Plant Microbe Interact 5:405–411PubMedCrossRefGoogle Scholar
  53. Göttfert M, Holzhauser D, Hennecke H (1990) Structural and functional analysis of two different nod D genes in Bradyrhizobium japonicum. Mol Plant Microbe Interact 9:625–635Google Scholar
  54. Göttfert M, Grob P, Hennecke H (1992) Proposed regulatory pathway encoded by the nod V and nod W genes, determinants of host specificity in Bradyrhizobium japonicum. Proc Natl Acad Sci USA 87:2680–2684CrossRefGoogle Scholar
  55. Graham PH (1964) The application of computer technique to the taxonomy of root nodule bacteria of legumes. J Gen Microbiol 35:511–517CrossRefGoogle Scholar
  56. Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65:93–106CrossRefGoogle Scholar
  57. Graham PH, Viteri SE, Mackie F, Vargas AT, Palacios A (1982) Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crop Res 5:121–128CrossRefGoogle Scholar
  58. Gyorgypal Z, Kondorosi E, Kondorosi A (1991) Diverse signal sensitivity of NodD protein homologs from narrow and broad host range rhizobia. Mol Plant Microbe Interact 4:356–364CrossRefGoogle Scholar
  59. Hagen MJ, Hamrick JL (1996) A hierarchical analysis of population genetic structure in Rhizobium leguminosarum bv. trifolii. Mol Ecol 5:177–186PubMedGoogle Scholar
  60. Han TX, Wang ET, Han LL, Chen WF, Sui XH, Chen WX (2008) Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol 31:287–301PubMedCrossRefGoogle Scholar
  61. Handley BA, Hedges AJ, Beringer JE (1998) Importance of host plants for detecting the population diversity of Rhizobium leguminosarum biovar viciae in soil. Soil Biol Biochem 30:241–249CrossRefGoogle Scholar
  62. Hartwig HA, Phillips DA (1991) Release and modification of nod-gene inducing flavonoids from alfalfa seeds. Plant Physiol 95:804–807PubMedCrossRefGoogle Scholar
  63. Haukka K, Lindström K (1994) Pulsed field gel electrophoresis for genotypic comparison of Rhizobium bacteria that nodulate leguminous trees. FEMS Microbiol Lett 119:215–220CrossRefGoogle Scholar
  64. Haukka K, Lindström K, Young JPW (1996) Diversity of partial 16S rRNA sequences among and within strains of African rhizobia isolated from Acacia and Prosopis. Syst Appl Microbiol 19:352–359CrossRefGoogle Scholar
  65. Haukka K, Lindström K, Young JPW (1998) Three phylogenetic groups of nod A and nif H genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–428PubMedGoogle Scholar
  66. Hennecke H (1993) The role of respiration in symbiotic nitrogen fixation. In: Palacious R, Mora J, Newton WE (eds) New horizons in nitrogen fixation. Kluwer Academic Publishers, Dordrecht, pp 55–64Google Scholar
  67. Hiltner L, Störmer K (1903) Neue Untersuchungen ϋber die Wurzelknöllchen der leguminosen and deren Erreger Arbeiten aus der Biologischem. Abteilung fur Land-und Forst wirthschaft, Kaiserlichen Gesundhiet samte, Berlin 3, pp 151–307Google Scholar
  68. Hirsch AM (1992) Developmental biology of legume nodulation. New Phytol 122:211–237CrossRefGoogle Scholar
  69. Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across southeastern Australia. Int J Syst Evol Microbiol 61:299–309PubMedCrossRefGoogle Scholar
  70. Hou BC, Wang ET, Li Y, Jia RZ, Chen WF, Man CX, Sui XH, Chen WX (2009) Rhizobial resource associated with epidemic legumes in Tibet. Microb Ecol 57:69–81PubMedCrossRefGoogle Scholar
  71. Jenkins MB, Virginia RA, Jarrell WM (1987) Rhizobial ecology of the woody legume mesquite (Prosopis glandulosa) in the Sonoran desert. Appl Environ Microbiol 53:36–40PubMedGoogle Scholar
  72. Jin L, Sun XW, Wang XJ, Shen YY, Hou FJ, Chang SH, Wang C (2010) Synergistic interactions of arbuscular mycorrhizal fungi and rhizobia promoted the growth of Lathyrus sativus under sulphate salt stress. Symbiosis 50:157–164CrossRefGoogle Scholar
  73. Jitacksorn S, Sadowsky MJ (2008) Nodulation gene regulation and quorum sensing control density-dependent suppression and restriction of nodulation in the Bradyrhizobium japonicum-soybean symbiosis. Appl Environ Microbiol 74:3749–3756PubMedCrossRefGoogle Scholar
  74. Jourand P, Giraud E, Béna G, Sy A, Dreyfus B, de Lajudie P, Willems A, Gillis M (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273PubMedCrossRefGoogle Scholar
  75. Kahn D, Batut J, Daneran ML, Fourment J (1993) Structure and regulation of the fix NOQP operon from Rhizobium meliloti. In: Palacious R, Mora J, Newton WE (eds) New horizons in nitrogen fixation. Kluwer Academic, Dordrecht, p 474Google Scholar
  76. Kalita M, Malik W (2004) Phenotypic and genomic characteristics of rhizobia isolated from Genista tinctoria root nodules. Syst Appl Microbiol 27:707–715PubMedCrossRefGoogle Scholar
  77. Kaminski PA, Batut J, Boistard P (1998) A survey of symbiotic nitrogen fixation by rhizobia. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The rhizobiaceae. Kluwer Academic, Dordrecht, pp 431–460CrossRefGoogle Scholar
  78. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Mastsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338PubMedCrossRefGoogle Scholar
  79. Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581CrossRefGoogle Scholar
  80. Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) Diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962PubMedCrossRefGoogle Scholar
  81. Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA et al (2008) Differential and chaotic calcium signatures in the symbiosis signalling pathway of legumes. Proc Natl Acad Sci USA 105:9823–9828PubMedCrossRefGoogle Scholar
  82. Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y et al (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 51:1381–1397PubMedCrossRefGoogle Scholar
  83. Krieg NR, Holt JG (eds) (1984) Bergey’s manual of systematic bacteriology. Williams and Wilkins Co, BaltimoreGoogle Scholar
  84. Kullik I, Fristsche S, Knobel H, Sanjan J, Hennecke H, Fischer HM (1991) Bradyrhizobium japonicum has two differentially regulated functional homologs of the σ54 (rpo N). J Bacteriol 173:1125–1138PubMedGoogle Scholar
  85. Kündig C, Hennecke H, Göttfert M (1993) Correlated physical and genetic map of the B. japonicum 110 genome. J Bacteriol 175:613–622PubMedGoogle Scholar
  86. Lafay B, Burdon JJ (2001) Small subunit rRNA genotyping of rhizobia nodulating Australian Acacia spp. Appl Environ Microbiol 67:396–402PubMedCrossRefGoogle Scholar
  87. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993PubMedGoogle Scholar
  88. Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413PubMedCrossRefGoogle Scholar
  89. Lodwig EM, Poole PS (2003) Metabolism of Rhizobium bacteroids. Crit Rev Plant Sci 22:37–38CrossRefGoogle Scholar
  90. Loh J, Stacey G (2001) Feedback regulation of Bradyrhizobium japonicum nodulation genes. Mol Microbiol 41:1357–1364PubMedCrossRefGoogle Scholar
  91. Loh J, Stacey G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol 169:10–17Google Scholar
  92. Lois AF, Weinstein M, Ditta GS, Helinski DR (1993) Autophosphorylation and phosphatase activities of the oxygen sensing protein Fix L of Rhizobium meliloti are co-ordinately regulated by oxygen. J Biol Chem 268:4370–4375PubMedGoogle Scholar
  93. Lu YL, Chen WF, Wang ET, Guan SH, Yan XR, Chen WX (2009) Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst Appl Microbiol 32:351–361PubMedCrossRefGoogle Scholar
  94. Mandon K, Kaminski PA, Elmerich C (1994) Functional analysis of the fix NOQP region of Azorhizobium caulinodans. J Bacteriol 176:2560–2568PubMedGoogle Scholar
  95. Martínez E, Romero D, Palacios R (1990) The Rhizobium genome. Crit Rev Plant Sci 9:59–93CrossRefGoogle Scholar
  96. Martínez-Romero E, Segovia E, Mercante FM, Franco AA, Graham PH, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426PubMedCrossRefGoogle Scholar
  97. Masutha TH, Moiofhe ML, Dakora FD (1997) Evaluation of N2 fixation and agroforestry potential in selected tree legumes for sustainable use in South Africa. Soil Biol Biochem 29:993–998CrossRefGoogle Scholar
  98. Michiels J, Dombrecht B, Vermeiren N, Xi G-W, Luyten E, Vanderleyden J (1998) Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol Ecol 26:193–205CrossRefGoogle Scholar
  99. Moffett ML, Colwell RR (1968) Adansonian analysis of the Rhizobiaceae. J Gen Microbiol 51:245–266PubMedCrossRefGoogle Scholar
  100. Moreira FMS, Gillis M, Pot B, Kersters K, Franco AA (1993) Characterization of rhizobia isolated from different divergent groups of tropical Leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Syst Appl Microbiol 16:135–146CrossRefGoogle Scholar
  101. Moreira FMS, Haukka K, Young JPW (1998) Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Mol Ecol 7:889–895PubMedCrossRefGoogle Scholar
  102. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411:948–950PubMedCrossRefGoogle Scholar
  103. Murphy PJ, Wexler M, Grzemski W, Rao JR, Gordon DM (1995) Rhizopines – their role in symbiosis and competition. Soil Biol Biochem 27:525–529CrossRefGoogle Scholar
  104. Nick G (1998) Polyphasic taxonomy of rhizobia isolated from tropical tree legumes. Dissertationes Biocentri IIkki Universitatis Helsin giensis, Department of Applied Chemistry and Microbiology, University of Helsinki, HelsinkiGoogle Scholar
  105. Nick G, Jussila M, Hoste B, Niemi RM, Kaijalainen S, de Lajudie P, Gillis M, de Bruijn FJ, Lindström K (1999) Rhizobia isolated from root nodules of tropical leguminous trees characterized using DNA-DNA dot-blot hybridisation and rep-PCR genomic fingerprinting. Syst Appl Microbiol 22:287–299CrossRefGoogle Scholar
  106. Nobbe F, Schmid E, Hiltner L, Hotter E (1891) Versuche iiber die stickstoff – Assimilation der Leguminosen, Landwirtschanftlichen. Dresden 39:327–359Google Scholar
  107. Nobbe F, Hiltner L, Schmid E (1895) Versucheiiber die Biologie der Knollchenbak terien der Leguminosen, insbesondere iiber die Frage der Arteinheit derselben. Landwirtschaft lichen Versuchstationer. Dresden 45:1–27Google Scholar
  108. Norris DO (1965) Acid production by Rhizobium, a unifying concept. Plant Soil 22:143–166CrossRefGoogle Scholar
  109. Nour SM, Fernandez MP, Normand P, Cleyet-Maret JC (1994) Rhizobium ciceri sp. nov. consisting of strains that nodulate Chickpea (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522PubMedCrossRefGoogle Scholar
  110. Nour SM, Cleyet-Maret JC, Normand P, Fernandez MP (1995) Genomic heterogeneity of strains nodulating Chickpea (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648PubMedCrossRefGoogle Scholar
  111. Odee DW, Sprent JI (1992) Acacia brevispica, a non-nodulated mimosoid legume? Soil Biol Biochem 24:717–719CrossRefGoogle Scholar
  112. Oldroyd GE, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576PubMedCrossRefGoogle Scholar
  113. Oyaizu H, Matsumoto S, Minamisawa K, Gamou T (1993) Distribution of rhizobia in leguminous plants surveyed by phylogenetic identification. J Gen Appl Microbiol 39:339–354CrossRefGoogle Scholar
  114. Paffeti D, Scotti C, Gnocchi S, Fancelli S, Bazzicalupo M (1996) Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties. Appl Environ Microbiol 62:2279–2285Google Scholar
  115. Palmer KM, Young JPW (2000) Higher diversity of Rhizobium leguminosarum biovar viciae population in arable soils than in grass soils. Appl Environ Microbiol 66:2245–2450Google Scholar
  116. Pandey P, Sahgal M, Maheshwari DK, Johri BN (2004) Genetic diversity of rhizobia isolated from medicinal legumes growing in the sub-Himalayan region of Uttaranchal. Curr Sci 85:202–207Google Scholar
  117. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  118. Perotto S, Brewin NJ, Bonfante P (1994) Colonization of pea roots by the mycorrhizal fungus Glomus versiforme and by Rhizobium bacteria: immunological comparison using monoclonal antibodies as probes for plant cell surface components. Mol Plant Microbe Interact 7:91–98CrossRefGoogle Scholar
  119. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201PubMedCrossRefGoogle Scholar
  120. Preisig O, Anthamatten D, Hennecke H (1993) Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen fixing endosymbiosis. Proc Natl Acad Sci USA 90:3309–3313PubMedCrossRefGoogle Scholar
  121. Pueppke SG, Broughton WJ (1999) Rhizobium sp. NGR234 and R. fredii USDA 257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318PubMedCrossRefGoogle Scholar
  122. Rivas R, Velázquez E, Willems A, Vicaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of devosia that forms a unique nitrogen- fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.). Druce. Appl Environ Microbiol 68:5217–5222PubMedCrossRefGoogle Scholar
  123. Rodríguez-Navarro DN, Camacho M, Leidi EO, Rivas R, Velázquez E (2004) Phenotypic and genotypic characterization of rhizobia from diverse geographical origin that nodulate Pachyrhizus species. Syst Appl Microbiol 27:37–745CrossRefGoogle Scholar
  124. Romdhane SB, Trabelsi M, Aouani ME, de Lajudie P, Mhamdi R (2009) The diversity of rhizobia nodulating Chickpea (Cicer arietinum) under water deficiency as a source of more efficient inoculants. Soil Biol Biochem 41:2568–2572CrossRefGoogle Scholar
  125. Sadowsky MJ, Tully RE, Cregan PB, Keyser HH (1987) Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybeans. Appl Environ Microbiol 53:2624–2630PubMedGoogle Scholar
  126. Sahgal M (2002) Rhizobial diversity and heterogeneity of the Dalbergia forest ecosystems. Ph.D. thesis, Barkatullah University, Bhopal, 121pGoogle Scholar
  127. Sahgal M, Johri BN (2003) The changing face of rhizobial systematics. Curr Sci 84:43–48Google Scholar
  128. Sahgal M, Johri BN (2006) Taxonomy of rhizobia: current status. Curr Sci 90:486–487Google Scholar
  129. Sahgal M, Sharma A, Johri BN, Prakash A (2004) Selection of growth promotory rhizobia for Dalbergia sissoo from diverse soil ecosystems of India. Symbiosis 36:83–96Google Scholar
  130. Saint CP, Wexler M, Murphy PJ, Tempe J, Tate ME, Murphy PJ (1993) Characterization of genes for synthesis and catabolism of a new rhizopine induced in nodules by Rhizobium meliloti Rm 220-3: extension of the rhizopine concept. J Bacteriol 175:5205–5215PubMedGoogle Scholar
  131. Samant M (2003) Genetic characterization of root nodule isolates from clones of Dalbergia sissoo. M.Sc. thesis, G. B. Pant University of Agriculture & Technology, Pantnagar, p 79Google Scholar
  132. Sanginga N, Lyasse O, Singh BB (2000) Phosphorus use efficiency and nitrogen balance of cowpea breeding lines in a low P soil of the derived savanna zone in West Africa. Plant Soil 220:119–128CrossRefGoogle Scholar
  133. Scheublin TR, Vander Heijden MGA (2006) Arbuscular mycorrhizal fungi colonize nonfixing root nodules of several legume species. New Phytol 172:732–738PubMedCrossRefGoogle Scholar
  134. Schlaman, HRM (1992) Regulation of nodulation gene expression in Rhizobium leguminosarum biovar viciae. Ph.D. thesis, Leiden University, LeidenGoogle Scholar
  135. Scholla MH, Elkan GH (1984) Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Bacteriol 43:484–486CrossRefGoogle Scholar
  136. Simon MF, Proenca C (2000) Phylogeographic patterns of Mimosa (Mimosoideae, Leguminosae) in the Cerrado biome of Brazil: an indicator genus of high altitude centres of endemism? Biol Conserv 96:279–296CrossRefGoogle Scholar
  137. Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39:221–244CrossRefGoogle Scholar
  138. Soupene E, Foussard M, Boistard P, Truchet G, Batut J (1995) Oxygen as a key developmental regulator of Rhizobium meliloti nitrogen fixation gene expression within the alfalfa root nodule. Proc Natl Acad Sci USA 92:3759–3763PubMedCrossRefGoogle Scholar
  139. Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54(1):257–288PubMedCrossRefGoogle Scholar
  140. Stafford HA (1997) Roles of flavonoids in symbiotic and defense reactions in legume roots. Bot Rev 63:27–39CrossRefGoogle Scholar
  141. Streng A, Camp ROD, Bisseling T, Geurts R (2011) Evolutionary origin of Rhizobium Nod factor signalling. Plant Signal Behav 6:1510–1514PubMedCrossRefGoogle Scholar
  142. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220PubMedCrossRefGoogle Scholar
  143. Tan ZY, Kan FL, Peng GX, Wang ET, Reinhold-Hurek B, Chen WX (2001) Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol 51:909–914PubMedCrossRefGoogle Scholar
  144. Tan CF, Wang ET, Han TX, Sui XH, Chen WN (2007) Genetic diversity of rhizobia associated with Vicia faba in three ecological regions of China. Arch Microbiol 188:273–282CrossRefGoogle Scholar
  145. Thorneley RNF (1992) Nitrogen fixation: new light on nitrogenase. Nature 360:532–533CrossRefGoogle Scholar
  146. Tilman D, Fargiove J, Woeff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284PubMedCrossRefGoogle Scholar
  147. Tissue DT, Mogonigal JP, Thomas RB (1997) Nitrogenase activity and N2 fixation are stimulated by elevated CO2 in a tropical N2 fixing tree. Oecologia 109:28–33CrossRefGoogle Scholar
  148. Trewavas AJ (2001) The population/biodiversity paradox: agricultural efficiency to save wilderness. Plant Physiol 125:174–179PubMedCrossRefGoogle Scholar
  149. Tripathi AK (2002) The tale of losing the race. Curr Sci 82:8Google Scholar
  150. Trujillo ME, Willems A, Abril A, Planchuilo A-M, Rivas R, Ludena D, Mateos PF, Martínez-Molina E, Velázquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupine sp. nov. Appl Environ Microbiol 71:1318–1327PubMedCrossRefGoogle Scholar
  151. Valverde A, Velázquez E, Fernández-Santos F, Vizcåíno N, Rivas R, Mateos PF, Martínez- Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov. nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989PubMedCrossRefGoogle Scholar
  152. van Rhijin P, Vanderleyden J (1995) The Rhizobium–plant symbiosis. Microbiol Rev 59:124–142Google Scholar
  153. Vance CP (2001) Symbiotic nitrogen fixation and phosphorous acquisition: plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397PubMedCrossRefGoogle Scholar
  154. Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289PubMedCrossRefGoogle Scholar
  155. Velázquez E, Martínez-Romero E, Rodríguez-Navarro DM, Trujillo ME, Daza A, Mateos PE, Martínez-Molina E, van Berkum P (2001) Characterization of rhizobial isolates of Phaseolus vulgaris by staircase electrophoresis of low-molecular weight RNA. Appl Environ Microbiol 67:1008–1010PubMedCrossRefGoogle Scholar
  156. Verma DPS, Hu A, Rang MZ (1992) Root nodule development: origin function and regulation of nodulin genes. Physiol Plant 8:253–265CrossRefGoogle Scholar
  157. Verma SC, Chowdhury SP, Tripathi AK (2004) Phylogeny based on 16S rDNA and nif H sequences of Ralstonia taiwanensis strains isolated from nitrogen fixing nodules of Mimosa pudica, in India. Can J Microbiol 50:313–322PubMedCrossRefGoogle Scholar
  158. Vineusa P, Léon-Barrios M, Silva C, Willems A, Jabaro-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575CrossRefGoogle Scholar
  159. Waelkens F, Foglia A, Morel JB, Fourment J, Batut J, Boistard P (1992) Molecular genetic analysis of the Rhizobium meliloti fix K promoter: identification of sequences involved in positive and negative regulation. Mol Microbiol 6:1447–1456PubMedCrossRefGoogle Scholar
  160. Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martínez-Romero E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699PubMedCrossRefGoogle Scholar
  161. Wang ET, Rogel A, de los Santos AG, Martínez-Romero J, Cevallos MA, Martínez-Romero E (1999a) Rhizobium etli bv mimosae, a novel biovar isolated from Mimosa affinis. Int J Syst Bacteriol 49:1479–1491PubMedCrossRefGoogle Scholar
  162. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E (1999b) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65PubMedCrossRefGoogle Scholar
  163. Wang E, Tan ZY, Willems A, Fernández-López M, Reinhold-Hurek B, Martínez-Romero E (2002) Sinorhizobium morelense, sp. nov. a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:1687–1693PubMedCrossRefGoogle Scholar
  164. Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX (2002) Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., Kummerowia stipulacea. Int J Syst Evol Microbiol 52:2231–2239PubMedCrossRefGoogle Scholar
  165. Wei GH, Tan ZY, Zhu ME, Wang ET, Han SZ, Chen WX (2003) Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53:1575–1583PubMedCrossRefGoogle Scholar
  166. Weidenhaupt M, Fischer HM, Acuňa G, Sanjaun J, Hennecke H (1993) Use of a promoter-probe vector system in the cloning of a new Nif A-dependent promoter (ndp) from Bradyrhizobium japonicum. Gene 129:33–40PubMedCrossRefGoogle Scholar
  167. Weir BS (2012) The current taxonomy of rhizobia. NZ Rhizobia Website: Last updated 10 Apr 2012
  168. Werner D (1998) Organic signals between plants and microorganisms. In: Piunton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New YorkGoogle Scholar
  169. Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14CrossRefGoogle Scholar
  170. Willems M, Collins MD (1993) Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol 43:305–313PubMedCrossRefGoogle Scholar
  171. Willems A, Coopman R, Gillis M (2001) Phylogenetic and DNA-DNA hybridization analysis of Bradyrhizobium sp. Int J Syst Evol Microbiol 51:111–117PubMedGoogle Scholar
  172. Wilson JK (1939) The relationship between pollination and nodulation of the Leguminoseae. J Am Soc Agric 31:159–170CrossRefGoogle Scholar
  173. Wolde-Meskel E, Terefework Z, Lindström K, Frostegård A (2004) Metabolic and genomic diversity of rhizobia isolated from field standing native and exotic woody legumes in Southern Ethiopia. Syst Appl Microbiol 27:603–611PubMedCrossRefGoogle Scholar
  174. Wolde-Meskel E, Terefework Z, Frostegard A, Lindstrom K (2005) Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. Int J Syst Evol Microbiol 55:1439–1452PubMedCrossRefGoogle Scholar
  175. Xiao TJ, Yang QS, Ran W, Xu GH, Shen QR (2010) Effect of inoculation with arbuscular mycorrhizal fungus on nitrogen and phosphorus utilization in upland rice-mungbean intercropping system. Agric Sci 9:528–535Google Scholar
  176. Xie ZP, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Lange RV, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525PubMedGoogle Scholar
  177. Yan XR, Chen WF, Fu JF, Lu YL, Xue CY, Sui XH, Li Y, Wang ET, Chen WX (2007) Mesorhizobium spp. are main microsymbionts of Caragana spp. grown in Liaoning Province of China. FEMS Microbiol Lett 271:265–273PubMedCrossRefGoogle Scholar
  178. Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230PubMedCrossRefGoogle Scholar
  179. Young JM (2000) Recent developments in systematics and their implications for plant pathogenic bacteria. In: Preist FG, Goodfellow M (eds) Applied microbial systematics. Kluwer Academic, Dordrecht, pp 135–163CrossRefGoogle Scholar
  180. Young JM (2003) The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination ‘Sinorhizobium adhaerens’ (Casida 1982) Willems et al. 2003 legitimate? Request for an opinion. Int J Syst Evol Microbiol 53:2107–2110PubMedCrossRefGoogle Scholar
  181. Yuen JPY, Stacey G (1996) Inhibition of nod gene expression in Bradyrhizobium japonicum by organic acid. Mol Plant Microbe Interact 9:424–428CrossRefGoogle Scholar
  182. Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900PubMedCrossRefGoogle Scholar
  183. Zhang X, Harper P, Karsisto M, Lindström K (1991) Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Bacteriol 41:104–113CrossRefGoogle Scholar
  184. Zhang XX, Guo XW, Terefework Z, Paulin L, Gao YZ, Hu FR, Lindström K, Li FD (1999) Genetic diversity among rhizobial isolate from field grown Astragalus sinicus of Southern China. Syst Appl Microbiol 22:312–320CrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Asmita Rajwar
    • 1
  • Manvika Sahgal
    • 1
  • Bhavdish N. Johri
    • 2
  1. 1.Department of MicrobiologyG. B. Pant University of Agriculture and TechnologyPantnagarIndia
  2. 2.Department of BiotechnologyBarkatullah UniversityBhopalIndia

Personalised recommendations