Skip to main content

Legume–Rhizobia Symbiosis and Interactions in Agroecosystems

  • Chapter
  • First Online:
Plant Microbe Symbiosis: Fundamentals and Advances

Abstract

In the present scenario, when the population of the world is expected to become 8–9 billion by 2040, the major concern is to maintain sustained food supply. Production of high-quality protein-rich food is extremely dependent on the availability of sufficient nitrogen. Nitrogen though abundant on Earth is unavailable to plants. Indiscriminate use of nitrogenous chemical fertilisers has significantly increased food production and quality but at the same time affected ecosystem sustainability. Hence, the process of biological nitrogen fixation (BNF) has gained considerable significance. BNF is both free-living as well as symbiotic. Symbiotic N2 fixation accounts for about 65 % of the total biologically fixed nitrogen. Frankia and rhizobia are two groups that fix atmospheric nitrogen symbiotically. Out of these, rhizobia–legume symbiosis accounts for about 45 % of nitrogen being used in agriculture. Rhizobia and legumes both are diverse. Currently 98 species of legume-nodulating bacteria have been identified within 13 bacterial genera, 11 in α-proteobacteria, whereas 2 in β-proteobacteria. Similarly, 13,000 species have been identified in 700 legume genera. Specificity of nodulation is an important attribute of legume–rhizobia symbiosis and is governed by both legume and rhizobial signals. For any successful legume–rhizobia symbiosis, interaction with other belowground microbes like AM fungi is also important. Here we give an account of rhizobial diversity and systematics, signals governing legume–rhizobia symbiosis, genes regulating nodulation and nitrogen fixation and legume–rhizobia–AM interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal K (2009) Nodulation efficacy and characterization of rhizobial isolates from Macrotyloma uniflorum (Lam.) Verdc. and Lens culinaris Medik. Dissertation, G. B. Pant University of Agriculture & Technology, Pantnagar

    Google Scholar 

  • Agron PG, Helinski DR (1995) Symbiotic expression of Rhizobium meliloti nitrogen fixation genes is regulated by oxygen. In: Hoch JA, Silliavy TJ (eds) Two- component signal transduction. ASM Press, Washington, DC, pp 275–287

    Google Scholar 

  • Allen ON, Allen EK (1981) The leguminosae: a source book of characteristics, uses and nodulation. University of Wisconsin Press, Madison

    Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006

    Article  CAS  PubMed  Google Scholar 

  • Andrade DS, Murphy PJ, Giller KE (2002) The diversity of Phaseolus nodulating rhizobial population is altered by liming of acid soils planted with Phaseolus vulgaris L. Braz Appl Environ Microbiol 68:4025–4034

    Article  CAS  Google Scholar 

  • Arnold W, Rump A, Klipp W, Priefer UB, Pühler A (1998) Nucleotide sequence of a 24,206 base pair DNA fragment carrying the entire nitrogen fixation genes cluster of Klebsiella pneumonia. J Mol Biol 203:715–738

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Bargaz A, Drevon JJ, Oufdou K, Mandri B, Faghire M, Ghoulam C (2011) Nodule phosphorus requirement and O2 uptake in common bean genotypes under phosphorus deficiency. Acta Agric Scan Sect B-Soil Plant Sci 61:602–611

    CAS  Google Scholar 

  • Barneby RC (1991) Sensitivae censitae: a description of the genus Mimosa Linnaeus (Mimosaceae) in the new world. Mem N Y Bot Gard 65:1–835

    Google Scholar 

  • Barnet YM, Catt PC (1991) Distribution and characteristics of root-nodule bacteria isolated from Australian Acacia spp. Plant Soil 135:109–120

    Article  Google Scholar 

  • Barret CF, Parker MA (2005) Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst Appl Microbiol 28:57–65

    Article  CAS  Google Scholar 

  • Becki T, Julie MG, Peter HG (2004) Selection of rhizobia for prairie legumes used in restoration programs in Minnesota. Can J Microbiol 50:977–983

    Article  Google Scholar 

  • Benson DR, Clawson ML (2000) Evolution of the actinorhizal plant nitrogen- fixing symbiosis. In: Triplett E (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon scientific Press, Wymondham, pp 207–224

    Google Scholar 

  • Bernal G, Graham PH (2001) Diversity in the rhizobia associated with Phaseolus vulgaris L. in Ecuador, and comparisons with Mexican bean rhizobia. Can J Microbiol 47:526–534

    CAS  PubMed  Google Scholar 

  • Bladergroen MR, Spaink HP (1998) Genes and signal molecules involved in the rhizobia-Leguminosae symbiosis. Curr Opin Plant Biol 1:353–359

    Article  CAS  PubMed  Google Scholar 

  • Bogino P, Banchio E, Bonfiglio C, Giordano W (2008) Competitiveness of a Bradyrhizobium sp. strain in soils containing indigenous rhizobia. Curr Microbiol 56:66–72

    Article  CAS  PubMed  Google Scholar 

  • Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69:155–194

    Article  CAS  PubMed  Google Scholar 

  • Bromfield ESP, Butler G, Barran LR (2001) Temporal effect on the composition of a population of Sinorhizobium meliloti associated with Medicago sativa and Melilotus alba. Can J Microbiol 47:567–573

    CAS  PubMed  Google Scholar 

  • Broughton WJ, Perret X (1999) Genealogy of legume-Rhizobium symbioses. Curr Opin Plant Biol 2:305–311

    Article  CAS  PubMed  Google Scholar 

  • Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    Article  CAS  PubMed  Google Scholar 

  • Bucher M, Rausch C, Daram P (2001) Molecular and biochemical mechanisms of phosphorus uptake into plants. J Plant Nutr Soil Sci 164:209–217

    Article  CAS  Google Scholar 

  • Caballero-Mellado J, Martínez-Romero E (1999) Soil fertilization limits the genetic diversity of Rhizobium in bean nodules. Symbiosis 26:111–121

    Google Scholar 

  • Caetano-Anollés G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345–382

    Article  PubMed  Google Scholar 

  • Chen WX, Yan GH, Li JL (1988) Numerical taxonomy, study of fast growing soybean rhizobia and proposal that Rhizobium freddie be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397

    Article  Google Scholar 

  • Chen W, Wang E, Wang S, Li Y, Chen Y, Li Y (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, Laevens S, Lee TM, Coenye T, de Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, James EK, Prescott AR, Kieraus M, Sprent JI (2003) Nodulation of Mimosa spp. by β-proteobacterium Ralstonia taiwanensis. Mol Plant Microbe Interact 16:1051–1061

    Article  CAS  PubMed  Google Scholar 

  • Chen WX, Wang ET, Wang SY, Li YB, Chen XQ, Li Y (2005) Characteristics of Rhizobium tianshanense sp. nov., moderately and slowly growing nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic China. Int J Syst Bacteriol 45:153–159

    Article  Google Scholar 

  • Cregan PB, Keyer HH (1986) Host restriction of nodulation by Bradyrhizobium japonicum strain USDA 123. Crop Sci 26:911–916

    Article  Google Scholar 

  • Dakora FD, Keya SD (1997) Contribution of legume nitrogen-fixation to sustainable agriculture in Sub-Saharan Africa. Soil Biol Biochem 29:809–817

    Article  CAS  Google Scholar 

  • de Lajudie P, Willem A, Pet B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gills M (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti Comb nov., Sinorhizobium saheli sp. nov. Int J Syst Bacteriol 44:715–733

    Article  Google Scholar 

  • de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1998) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290

    Article  PubMed  Google Scholar 

  • Dean DR, Jacobsen MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Champman and Hall, New York, pp 763–784

    Google Scholar 

  • Demir S, Akkopru A (2007) Using of arbuscular mycorrhizal fungi (AMF) for biocontrol of soil-borne fungal plant pathogens. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases. Haworth Press, New York, pp 17–37

    Google Scholar 

  • Dessaux Y, Petit A, Farrand SK, Morph PJ (1998) Opines and opine-like molecules involved in plant/Rhizobiaceae interactions. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The rhizobiaceae. Kluwer Academic Publishers, Dordrecht, pp 173–197

    Chapter  Google Scholar 

  • Dhabhai K, Batra A (2012) Physiological and phylogenetic analysis of rhizobia isolated from Acacia nilotica L. Afr J Biotechnol 11:1386–1390

    CAS  Google Scholar 

  • Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, de Lajudie P, Neyra M (2007) Genetic diversity of Acacia seyal rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microb Ecol 54:553–566

    Article  CAS  PubMed  Google Scholar 

  • Dreyfus BL, Dommergues YR (1981) Nodulation of Acacia species by fast and slow growing tropical strains of Rhizobium. Appl Environ Microbiol 41:97–99

    CAS  PubMed  Google Scholar 

  • Dupuy N, Willems A, Pot B, Dewettinck D, Vandenbruaene I, Maestrojuan G, Dreyfus B, Kersters K, Collins MD, Gillis M (1994) Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int J Syst Bacteriol 44:461–473

    Article  CAS  PubMed  Google Scholar 

  • Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microb Rev 58:352–386

    CAS  Google Scholar 

  • Fischer HM (1996) Environmental regulation of rhizobial symbiotic nitrogen fixation genes. Trends Microbiol 4:317–320

    Article  CAS  PubMed  Google Scholar 

  • Fischer HM, Babst M, Kasfier T, Acuňa G, Arigoni F, Hennecke H (1993) One member of a groESL like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 12:2901–2912

    CAS  PubMed  Google Scholar 

  • Foussard M, Garnerone AM, Ni F, Soupene E, Boistard P, Batut J (1997) Negative autoregulation of Rhizobium meliloti fix K gene is indirect and requires a newly identified regulator, FixT. Mol Microbiol 25:27–37

    Article  CAS  PubMed  Google Scholar 

  • Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Ber Dent Bot Ges 7:332–346

    Google Scholar 

  • Fred EW, Baldwin IL, McCoy E (1932) Root nodule bacteria and leguminous plants. University of Wisconsin Studies, Madison

    Google Scholar 

  • Fulchieri M, Olivia L, Fancelli S, Bazzicalupo M (1999) Characterization of Rhizobium lupinus from near the Parana river (Argentina) by PCR-RFLP. In: Nitrogen fixation: from molecules to crop; proceedings of the 12th international congress on N2 fixation, Parana, 12–27 Sept 1999, p 189

    Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  CAS  PubMed  Google Scholar 

  • Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Beckar A, Boistard P, Bothe G, Bourtry M, Bowser L, Buhrmester J, Cadiew E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher FS, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernández-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lalaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebauit P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:666–667

    Article  Google Scholar 

  • Gao LF, Za X, Wang HX (2002) Genetic diversity of rhizobia isolated from Caragana intermedia in Maowusu Sandland, North China. Appl Environ Microbiol 35:347–352

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gilles-Gonzalez MA, Gonzalez G (1993) Regulation of the kinase activity of heme protein Fix L from the two-component system Fix L/Fix J of Rhizobium meliloti. J Biol Chem 268:16293–16297

    CAS  PubMed  Google Scholar 

  • Goethals K, Margaert M, Gao M, Geelan M, Montagn V, Holsters M (1992) Identification of new inducible nodulation genes in Azorhizobium caulinodans. Mol Plant Microbe Interact 5:405–411

    Article  CAS  PubMed  Google Scholar 

  • Göttfert M, Holzhauser D, Hennecke H (1990) Structural and functional analysis of two different nod D genes in Bradyrhizobium japonicum. Mol Plant Microbe Interact 9:625–635

    Google Scholar 

  • Göttfert M, Grob P, Hennecke H (1992) Proposed regulatory pathway encoded by the nod V and nod W genes, determinants of host specificity in Bradyrhizobium japonicum. Proc Natl Acad Sci USA 87:2680–2684

    Article  Google Scholar 

  • Graham PH (1964) The application of computer technique to the taxonomy of root nodule bacteria of legumes. J Gen Microbiol 35:511–517

    Article  Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65:93–106

    Article  Google Scholar 

  • Graham PH, Viteri SE, Mackie F, Vargas AT, Palacios A (1982) Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crop Res 5:121–128

    Article  Google Scholar 

  • Gyorgypal Z, Kondorosi E, Kondorosi A (1991) Diverse signal sensitivity of NodD protein homologs from narrow and broad host range rhizobia. Mol Plant Microbe Interact 4:356–364

    Article  CAS  Google Scholar 

  • Hagen MJ, Hamrick JL (1996) A hierarchical analysis of population genetic structure in Rhizobium leguminosarum bv. trifolii. Mol Ecol 5:177–186

    CAS  PubMed  Google Scholar 

  • Han TX, Wang ET, Han LL, Chen WF, Sui XH, Chen WX (2008) Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol 31:287–301

    Article  PubMed  CAS  Google Scholar 

  • Handley BA, Hedges AJ, Beringer JE (1998) Importance of host plants for detecting the population diversity of Rhizobium leguminosarum biovar viciae in soil. Soil Biol Biochem 30:241–249

    Article  CAS  Google Scholar 

  • Hartwig HA, Phillips DA (1991) Release and modification of nod-gene inducing flavonoids from alfalfa seeds. Plant Physiol 95:804–807

    Article  CAS  PubMed  Google Scholar 

  • Haukka K, Lindström K (1994) Pulsed field gel electrophoresis for genotypic comparison of Rhizobium bacteria that nodulate leguminous trees. FEMS Microbiol Lett 119:215–220

    Article  CAS  Google Scholar 

  • Haukka K, Lindström K, Young JPW (1996) Diversity of partial 16S rRNA sequences among and within strains of African rhizobia isolated from Acacia and Prosopis. Syst Appl Microbiol 19:352–359

    Article  Google Scholar 

  • Haukka K, Lindström K, Young JPW (1998) Three phylogenetic groups of nod A and nif H genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–428

    CAS  PubMed  Google Scholar 

  • Hennecke H (1993) The role of respiration in symbiotic nitrogen fixation. In: Palacious R, Mora J, Newton WE (eds) New horizons in nitrogen fixation. Kluwer Academic Publishers, Dordrecht, pp 55–64

    Google Scholar 

  • Hiltner L, Störmer K (1903) Neue Untersuchungen ϋber die Wurzelknöllchen der leguminosen and deren Erreger Arbeiten aus der Biologischem. Abteilung fur Land-und Forst wirthschaft, Kaiserlichen Gesundhiet samte, Berlin 3, pp 151–307

    Google Scholar 

  • Hirsch AM (1992) Developmental biology of legume nodulation. New Phytol 122:211–237

    Article  Google Scholar 

  • Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across southeastern Australia. Int J Syst Evol Microbiol 61:299–309

    Article  CAS  PubMed  Google Scholar 

  • Hou BC, Wang ET, Li Y, Jia RZ, Chen WF, Man CX, Sui XH, Chen WX (2009) Rhizobial resource associated with epidemic legumes in Tibet. Microb Ecol 57:69–81

    Article  PubMed  Google Scholar 

  • Jenkins MB, Virginia RA, Jarrell WM (1987) Rhizobial ecology of the woody legume mesquite (Prosopis glandulosa) in the Sonoran desert. Appl Environ Microbiol 53:36–40

    CAS  PubMed  Google Scholar 

  • Jin L, Sun XW, Wang XJ, Shen YY, Hou FJ, Chang SH, Wang C (2010) Synergistic interactions of arbuscular mycorrhizal fungi and rhizobia promoted the growth of Lathyrus sativus under sulphate salt stress. Symbiosis 50:157–164

    Article  CAS  Google Scholar 

  • Jitacksorn S, Sadowsky MJ (2008) Nodulation gene regulation and quorum sensing control density-dependent suppression and restriction of nodulation in the Bradyrhizobium japonicum-soybean symbiosis. Appl Environ Microbiol 74:3749–3756

    Article  CAS  PubMed  Google Scholar 

  • Jourand P, Giraud E, Béna G, Sy A, Dreyfus B, de Lajudie P, Willems A, Gillis M (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273

    Article  CAS  PubMed  Google Scholar 

  • Kahn D, Batut J, Daneran ML, Fourment J (1993) Structure and regulation of the fix NOQP operon from Rhizobium meliloti. In: Palacious R, Mora J, Newton WE (eds) New horizons in nitrogen fixation. Kluwer Academic, Dordrecht, p 474

    Google Scholar 

  • Kalita M, Malik W (2004) Phenotypic and genomic characteristics of rhizobia isolated from Genista tinctoria root nodules. Syst Appl Microbiol 27:707–715

    Article  CAS  PubMed  Google Scholar 

  • Kaminski PA, Batut J, Boistard P (1998) A survey of symbiotic nitrogen fixation by rhizobia. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The rhizobiaceae. Kluwer Academic, Dordrecht, pp 431–460

    Chapter  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Mastsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  CAS  PubMed  Google Scholar 

  • Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581

    Article  CAS  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) Diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  CAS  PubMed  Google Scholar 

  • Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA et al (2008) Differential and chaotic calcium signatures in the symbiosis signalling pathway of legumes. Proc Natl Acad Sci USA 105:9823–9828

    Article  CAS  PubMed  Google Scholar 

  • Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y et al (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 51:1381–1397

    Article  CAS  PubMed  Google Scholar 

  • Krieg NR, Holt JG (eds) (1984) Bergey’s manual of systematic bacteriology. Williams and Wilkins Co, Baltimore

    Google Scholar 

  • Kullik I, Fristsche S, Knobel H, Sanjan J, Hennecke H, Fischer HM (1991) Bradyrhizobium japonicum has two differentially regulated functional homologs of the σ54 (rpo N). J Bacteriol 173:1125–1138

    CAS  PubMed  Google Scholar 

  • Kündig C, Hennecke H, Göttfert M (1993) Correlated physical and genetic map of the B. japonicum 110 genome. J Bacteriol 175:613–622

    PubMed  Google Scholar 

  • Lafay B, Burdon JJ (2001) Small subunit rRNA genotyping of rhizobia nodulating Australian Acacia spp. Appl Environ Microbiol 67:396–402

    Article  CAS  PubMed  Google Scholar 

  • Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993

    CAS  PubMed  Google Scholar 

  • Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413

    Article  CAS  PubMed  Google Scholar 

  • Lodwig EM, Poole PS (2003) Metabolism of Rhizobium bacteroids. Crit Rev Plant Sci 22:37–38

    Article  CAS  Google Scholar 

  • Loh J, Stacey G (2001) Feedback regulation of Bradyrhizobium japonicum nodulation genes. Mol Microbiol 41:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Loh J, Stacey G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol 169:10–17

    Google Scholar 

  • Lois AF, Weinstein M, Ditta GS, Helinski DR (1993) Autophosphorylation and phosphatase activities of the oxygen sensing protein Fix L of Rhizobium meliloti are co-ordinately regulated by oxygen. J Biol Chem 268:4370–4375

    CAS  PubMed  Google Scholar 

  • Lu YL, Chen WF, Wang ET, Guan SH, Yan XR, Chen WX (2009) Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst Appl Microbiol 32:351–361

    Article  CAS  PubMed  Google Scholar 

  • Mandon K, Kaminski PA, Elmerich C (1994) Functional analysis of the fix NOQP region of Azorhizobium caulinodans. J Bacteriol 176:2560–2568

    CAS  PubMed  Google Scholar 

  • Martínez E, Romero D, Palacios R (1990) The Rhizobium genome. Crit Rev Plant Sci 9:59–93

    Article  Google Scholar 

  • Martínez-Romero E, Segovia E, Mercante FM, Franco AA, Graham PH, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426

    Article  PubMed  Google Scholar 

  • Masutha TH, Moiofhe ML, Dakora FD (1997) Evaluation of N2 fixation and agroforestry potential in selected tree legumes for sustainable use in South Africa. Soil Biol Biochem 29:993–998

    Article  CAS  Google Scholar 

  • Michiels J, Dombrecht B, Vermeiren N, Xi G-W, Luyten E, Vanderleyden J (1998) Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol Ecol 26:193–205

    Article  CAS  Google Scholar 

  • Moffett ML, Colwell RR (1968) Adansonian analysis of the Rhizobiaceae. J Gen Microbiol 51:245–266

    Article  CAS  PubMed  Google Scholar 

  • Moreira FMS, Gillis M, Pot B, Kersters K, Franco AA (1993) Characterization of rhizobia isolated from different divergent groups of tropical Leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Syst Appl Microbiol 16:135–146

    Article  Google Scholar 

  • Moreira FMS, Haukka K, Young JPW (1998) Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Mol Ecol 7:889–895

    Article  CAS  PubMed  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411:948–950

    Article  CAS  PubMed  Google Scholar 

  • Murphy PJ, Wexler M, Grzemski W, Rao JR, Gordon DM (1995) Rhizopines – their role in symbiosis and competition. Soil Biol Biochem 27:525–529

    Article  CAS  Google Scholar 

  • Nick G (1998) Polyphasic taxonomy of rhizobia isolated from tropical tree legumes. Dissertationes Biocentri IIkki Universitatis Helsin giensis, Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki

    Google Scholar 

  • Nick G, Jussila M, Hoste B, Niemi RM, Kaijalainen S, de Lajudie P, Gillis M, de Bruijn FJ, Lindström K (1999) Rhizobia isolated from root nodules of tropical leguminous trees characterized using DNA-DNA dot-blot hybridisation and rep-PCR genomic fingerprinting. Syst Appl Microbiol 22:287–299

    Article  Google Scholar 

  • Nobbe F, Schmid E, Hiltner L, Hotter E (1891) Versuche iiber die stickstoff – Assimilation der Leguminosen, Landwirtschanftlichen. Dresden 39:327–359

    Google Scholar 

  • Nobbe F, Hiltner L, Schmid E (1895) Versucheiiber die Biologie der Knollchenbak terien der Leguminosen, insbesondere iiber die Frage der Arteinheit derselben. Landwirtschaft lichen Versuchstationer. Dresden 45:1–27

    Google Scholar 

  • Norris DO (1965) Acid production by Rhizobium, a unifying concept. Plant Soil 22:143–166

    Article  Google Scholar 

  • Nour SM, Fernandez MP, Normand P, Cleyet-Maret JC (1994) Rhizobium ciceri sp. nov. consisting of strains that nodulate Chickpea (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522

    Article  CAS  PubMed  Google Scholar 

  • Nour SM, Cleyet-Maret JC, Normand P, Fernandez MP (1995) Genomic heterogeneity of strains nodulating Chickpea (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648

    Article  CAS  PubMed  Google Scholar 

  • Odee DW, Sprent JI (1992) Acacia brevispica, a non-nodulated mimosoid legume? Soil Biol Biochem 24:717–719

    Article  Google Scholar 

  • Oldroyd GE, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576

    Article  CAS  PubMed  Google Scholar 

  • Oyaizu H, Matsumoto S, Minamisawa K, Gamou T (1993) Distribution of rhizobia in leguminous plants surveyed by phylogenetic identification. J Gen Appl Microbiol 39:339–354

    Article  CAS  Google Scholar 

  • Paffeti D, Scotti C, Gnocchi S, Fancelli S, Bazzicalupo M (1996) Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties. Appl Environ Microbiol 62:2279–2285

    Google Scholar 

  • Palmer KM, Young JPW (2000) Higher diversity of Rhizobium leguminosarum biovar viciae population in arable soils than in grass soils. Appl Environ Microbiol 66:2245–2450

    Google Scholar 

  • Pandey P, Sahgal M, Maheshwari DK, Johri BN (2004) Genetic diversity of rhizobia isolated from medicinal legumes growing in the sub-Himalayan region of Uttaranchal. Curr Sci 85:202–207

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Perotto S, Brewin NJ, Bonfante P (1994) Colonization of pea roots by the mycorrhizal fungus Glomus versiforme and by Rhizobium bacteria: immunological comparison using monoclonal antibodies as probes for plant cell surface components. Mol Plant Microbe Interact 7:91–98

    Article  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  CAS  PubMed  Google Scholar 

  • Preisig O, Anthamatten D, Hennecke H (1993) Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen fixing endosymbiosis. Proc Natl Acad Sci USA 90:3309–3313

    Article  CAS  PubMed  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. NGR234 and R. fredii USDA 257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Velázquez E, Willems A, Vicaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of devosia that forms a unique nitrogen- fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.). Druce. Appl Environ Microbiol 68:5217–5222

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Navarro DN, Camacho M, Leidi EO, Rivas R, Velázquez E (2004) Phenotypic and genotypic characterization of rhizobia from diverse geographical origin that nodulate Pachyrhizus species. Syst Appl Microbiol 27:37–745

    Article  Google Scholar 

  • Romdhane SB, Trabelsi M, Aouani ME, de Lajudie P, Mhamdi R (2009) The diversity of rhizobia nodulating Chickpea (Cicer arietinum) under water deficiency as a source of more efficient inoculants. Soil Biol Biochem 41:2568–2572

    Article  CAS  Google Scholar 

  • Sadowsky MJ, Tully RE, Cregan PB, Keyser HH (1987) Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybeans. Appl Environ Microbiol 53:2624–2630

    CAS  PubMed  Google Scholar 

  • Sahgal M (2002) Rhizobial diversity and heterogeneity of the Dalbergia forest ecosystems. Ph.D. thesis, Barkatullah University, Bhopal, 121p

    Google Scholar 

  • Sahgal M, Johri BN (2003) The changing face of rhizobial systematics. Curr Sci 84:43–48

    Google Scholar 

  • Sahgal M, Johri BN (2006) Taxonomy of rhizobia: current status. Curr Sci 90:486–487

    Google Scholar 

  • Sahgal M, Sharma A, Johri BN, Prakash A (2004) Selection of growth promotory rhizobia for Dalbergia sissoo from diverse soil ecosystems of India. Symbiosis 36:83–96

    Google Scholar 

  • Saint CP, Wexler M, Murphy PJ, Tempe J, Tate ME, Murphy PJ (1993) Characterization of genes for synthesis and catabolism of a new rhizopine induced in nodules by Rhizobium meliloti Rm 220-3: extension of the rhizopine concept. J Bacteriol 175:5205–5215

    CAS  PubMed  Google Scholar 

  • Samant M (2003) Genetic characterization of root nodule isolates from clones of Dalbergia sissoo. M.Sc. thesis, G. B. Pant University of Agriculture & Technology, Pantnagar, p 79

    Google Scholar 

  • Sanginga N, Lyasse O, Singh BB (2000) Phosphorus use efficiency and nitrogen balance of cowpea breeding lines in a low P soil of the derived savanna zone in West Africa. Plant Soil 220:119–128

    Article  CAS  Google Scholar 

  • Scheublin TR, Vander Heijden MGA (2006) Arbuscular mycorrhizal fungi colonize nonfixing root nodules of several legume species. New Phytol 172:732–738

    Article  PubMed  Google Scholar 

  • Schlaman, HRM (1992) Regulation of nodulation gene expression in Rhizobium leguminosarum biovar viciae. Ph.D. thesis, Leiden University, Leiden

    Google Scholar 

  • Scholla MH, Elkan GH (1984) Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Bacteriol 43:484–486

    Article  Google Scholar 

  • Simon MF, Proenca C (2000) Phylogeographic patterns of Mimosa (Mimosoideae, Leguminosae) in the Cerrado biome of Brazil: an indicator genus of high altitude centres of endemism? Biol Conserv 96:279–296

    Article  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39:221–244

    Article  CAS  Google Scholar 

  • Soupene E, Foussard M, Boistard P, Truchet G, Batut J (1995) Oxygen as a key developmental regulator of Rhizobium meliloti nitrogen fixation gene expression within the alfalfa root nodule. Proc Natl Acad Sci USA 92:3759–3763

    Article  CAS  PubMed  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54(1):257–288

    Article  CAS  PubMed  Google Scholar 

  • Stafford HA (1997) Roles of flavonoids in symbiotic and defense reactions in legume roots. Bot Rev 63:27–39

    Article  Google Scholar 

  • Streng A, Camp ROD, Bisseling T, Geurts R (2011) Evolutionary origin of Rhizobium Nod factor signalling. Plant Signal Behav 6:1510–1514

    Article  CAS  PubMed  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed  Google Scholar 

  • Tan ZY, Kan FL, Peng GX, Wang ET, Reinhold-Hurek B, Chen WX (2001) Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol 51:909–914

    Article  CAS  PubMed  Google Scholar 

  • Tan CF, Wang ET, Han TX, Sui XH, Chen WN (2007) Genetic diversity of rhizobia associated with Vicia faba in three ecological regions of China. Arch Microbiol 188:273–282

    Article  CAS  Google Scholar 

  • Thorneley RNF (1992) Nitrogen fixation: new light on nitrogenase. Nature 360:532–533

    Article  Google Scholar 

  • Tilman D, Fargiove J, Woeff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  PubMed  Google Scholar 

  • Tissue DT, Mogonigal JP, Thomas RB (1997) Nitrogenase activity and N2 fixation are stimulated by elevated CO2 in a tropical N2 fixing tree. Oecologia 109:28–33

    Article  Google Scholar 

  • Trewavas AJ (2001) The population/biodiversity paradox: agricultural efficiency to save wilderness. Plant Physiol 125:174–179

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AK (2002) The tale of losing the race. Curr Sci 82:8

    Google Scholar 

  • Trujillo ME, Willems A, Abril A, Planchuilo A-M, Rivas R, Ludena D, Mateos PF, Martínez-Molina E, Velázquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupine sp. nov. Appl Environ Microbiol 71:1318–1327

    Article  CAS  PubMed  Google Scholar 

  • Valverde A, Velázquez E, Fernández-Santos F, Vizcåíno N, Rivas R, Mateos PF, Martínez- Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov. nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989

    Article  CAS  PubMed  Google Scholar 

  • van Rhijin P, Vanderleyden J (1995) The Rhizobium–plant symbiosis. Microbiol Rev 59:124–142

    Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorous acquisition: plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  PubMed  Google Scholar 

  • Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289

    Article  PubMed  Google Scholar 

  • Velázquez E, Martínez-Romero E, Rodríguez-Navarro DM, Trujillo ME, Daza A, Mateos PE, Martínez-Molina E, van Berkum P (2001) Characterization of rhizobial isolates of Phaseolus vulgaris by staircase electrophoresis of low-molecular weight RNA. Appl Environ Microbiol 67:1008–1010

    Article  PubMed  Google Scholar 

  • Verma DPS, Hu A, Rang MZ (1992) Root nodule development: origin function and regulation of nodulin genes. Physiol Plant 8:253–265

    Article  Google Scholar 

  • Verma SC, Chowdhury SP, Tripathi AK (2004) Phylogeny based on 16S rDNA and nif H sequences of Ralstonia taiwanensis strains isolated from nitrogen fixing nodules of Mimosa pudica, in India. Can J Microbiol 50:313–322

    Article  CAS  PubMed  Google Scholar 

  • Vineusa P, Léon-Barrios M, Silva C, Willems A, Jabaro-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575

    Article  CAS  Google Scholar 

  • Waelkens F, Foglia A, Morel JB, Fourment J, Batut J, Boistard P (1992) Molecular genetic analysis of the Rhizobium meliloti fix K promoter: identification of sequences involved in positive and negative regulation. Mol Microbiol 6:1447–1456

    Article  CAS  PubMed  Google Scholar 

  • Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martínez-Romero E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699

    Article  CAS  PubMed  Google Scholar 

  • Wang ET, Rogel A, de los Santos AG, Martínez-Romero J, Cevallos MA, Martínez-Romero E (1999a) Rhizobium etli bv mimosae, a novel biovar isolated from Mimosa affinis. Int J Syst Bacteriol 49:1479–1491

    Article  CAS  PubMed  Google Scholar 

  • Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E (1999b) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65

    Article  PubMed  Google Scholar 

  • Wang E, Tan ZY, Willems A, Fernández-López M, Reinhold-Hurek B, Martínez-Romero E (2002) Sinorhizobium morelense, sp. nov. a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:1687–1693

    Article  CAS  PubMed  Google Scholar 

  • Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX (2002) Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., Kummerowia stipulacea. Int J Syst Evol Microbiol 52:2231–2239

    Article  CAS  PubMed  Google Scholar 

  • Wei GH, Tan ZY, Zhu ME, Wang ET, Han SZ, Chen WX (2003) Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53:1575–1583

    Article  CAS  PubMed  Google Scholar 

  • Weidenhaupt M, Fischer HM, Acuňa G, Sanjaun J, Hennecke H (1993) Use of a promoter-probe vector system in the cloning of a new Nif A-dependent promoter (ndp) from Bradyrhizobium japonicum. Gene 129:33–40

    Article  CAS  PubMed  Google Scholar 

  • Weir BS (2012) The current taxonomy of rhizobia. NZ Rhizobia Website: http://www.rhizobia.co.nz/taxonomy/rhizobia. Last updated 10 Apr 2012

  • Werner D (1998) Organic signals between plants and microorganisms. In: Piunton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York

    Google Scholar 

  • Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14

    Article  CAS  Google Scholar 

  • Willems M, Collins MD (1993) Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol 43:305–313

    Article  CAS  PubMed  Google Scholar 

  • Willems A, Coopman R, Gillis M (2001) Phylogenetic and DNA-DNA hybridization analysis of Bradyrhizobium sp. Int J Syst Evol Microbiol 51:111–117

    CAS  PubMed  Google Scholar 

  • Wilson JK (1939) The relationship between pollination and nodulation of the Leguminoseae. J Am Soc Agric 31:159–170

    Article  Google Scholar 

  • Wolde-Meskel E, Terefework Z, Lindström K, Frostegård A (2004) Metabolic and genomic diversity of rhizobia isolated from field standing native and exotic woody legumes in Southern Ethiopia. Syst Appl Microbiol 27:603–611

    Article  CAS  PubMed  Google Scholar 

  • Wolde-Meskel E, Terefework Z, Frostegard A, Lindstrom K (2005) Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. Int J Syst Evol Microbiol 55:1439–1452

    Article  CAS  PubMed  Google Scholar 

  • Xiao TJ, Yang QS, Ran W, Xu GH, Shen QR (2010) Effect of inoculation with arbuscular mycorrhizal fungus on nitrogen and phosphorus utilization in upland rice-mungbean intercropping system. Agric Sci 9:528–535

    Google Scholar 

  • Xie ZP, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Lange RV, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525

    CAS  PubMed  Google Scholar 

  • Yan XR, Chen WF, Fu JF, Lu YL, Xue CY, Sui XH, Li Y, Wang ET, Chen WX (2007) Mesorhizobium spp. are main microsymbionts of Caragana spp. grown in Liaoning Province of China. FEMS Microbiol Lett 271:265–273

    Article  CAS  PubMed  Google Scholar 

  • Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230

    Article  CAS  PubMed  Google Scholar 

  • Young JM (2000) Recent developments in systematics and their implications for plant pathogenic bacteria. In: Preist FG, Goodfellow M (eds) Applied microbial systematics. Kluwer Academic, Dordrecht, pp 135–163

    Chapter  Google Scholar 

  • Young JM (2003) The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination ‘Sinorhizobium adhaerens’ (Casida 1982) Willems et al. 2003 legitimate? Request for an opinion. Int J Syst Evol Microbiol 53:2107–2110

    Article  CAS  PubMed  Google Scholar 

  • Yuen JPY, Stacey G (1996) Inhibition of nod gene expression in Bradyrhizobium japonicum by organic acid. Mol Plant Microbe Interact 9:424–428

    Article  Google Scholar 

  • Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Harper P, Karsisto M, Lindström K (1991) Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Bacteriol 41:104–113

    Article  Google Scholar 

  • Zhang XX, Guo XW, Terefework Z, Paulin L, Gao YZ, Hu FR, Lindström K, Li FD (1999) Genetic diversity among rhizobial isolate from field grown Astragalus sinicus of Southern China. Syst Appl Microbiol 22:312–320

    Article  Google Scholar 

Download references

Acknowledgements

 Our work on tree and legume rhizobia has been supported through the Centre for Research on Bacteria and Archaea, under All India Coordinated Project on Taxonomy (AICOPTAX) of the Ministry of Environment and Forests, Govt. of India. Authors thank Mr. Mukesh Samant and Ms. Komal Agarwal for use of unpublished data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manvika Sahgal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Rajwar, A., Sahgal, M., Johri, B.N. (2013). Legume–Rhizobia Symbiosis and Interactions in Agroecosystems. In: Arora, N. (eds) Plant Microbe Symbiosis: Fundamentals and Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1287-4_9

Download citation

Publish with us

Policies and ethics