Advertisement

Legume Root Nodule Associated Bacteria

  • G. Selvakumar
  • P. Panneerselvam
  • A. N. Ganeshamurthy
Chapter

Abstract

Root nodules have intrigued mankind ever since their role in the maintenance of soil fertility has been known. The earlier school of thought amongst microbiologists and agronomists was that root nodules are highly specialised structures rich in leghaemoglobin, which house the diazotrophic bacterium Rhizobium, whose primary role was to fix atmospheric nitrogen in association with the host plant. But several path-breaking discoveries over the past few decades have thrown light on the plethora of bacterial occupants of the root nodules and their possible role in nodulation and N fixation besides several other beneficial roles. Recent technological advances in bacterial taxonomy and microbial ecology have unearthed a wide range of microbial nodule occupants, some of which have been encompassed under the classical umbrella of rhizobia, purely based on their ability to nodulate the host and fix atmospheric nitrogen, while other closely or even distantly related bacterial genera devoid of the ability to nodulate and fix nitrogen in nodules are often referred to as endophytes or simply nodule inhabitants. This chapter attempts to capture the existing knowledge on the root nodule associated bacteria both rhizobial and non-rhizobial and their possible roles in sustaining plant growth.

Keywords

Root Nodule Endophytic Bacterium Acetylene Reduction Assay Root Nodule Bacterium Legume Nodule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen ON, Allen EK (1981) The Leguminosae: a source book of characteristics, uses and nodulation. University of Wisconsin Press/Macmillan Publishing, Madison/LondonGoogle Scholar
  2. Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RY, Dilworth MJ, Willems A, Howieson JG (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov., and Microvirga zambiensis sp. nov. are alphaproteobacterial root nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588PubMedCrossRefGoogle Scholar
  3. Bai YM, Daoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238PubMedCrossRefGoogle Scholar
  4. Basu PS, Ghosh AC (1998) Indole acetic acid and its metabolism in root nodules of a monocotyledonous tree Roystonea regia. Curr Microbiol 37:137–140PubMedCrossRefGoogle Scholar
  5. Bautista VV, Monsalud RG, Yokota A (2010) Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi. Int J Syst Evol Microbiol 60:627–632PubMedCrossRefGoogle Scholar
  6. Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27(4):462–468PubMedCrossRefGoogle Scholar
  7. Bontemps C, Elliot GN, Simon MF, Fabio B, Gross E, Lawton RC, Neto NE, Da Fa M, De FaLouriero TM, De Farion SM, Spernt JI, James EK, Young PW (2010) Burkholderia species are ancient symbionts of legumes. Mol Ecol 19:44–52PubMedCrossRefGoogle Scholar
  8. Bowen GJ, Beerling DJ, Koch PL, Zachos JC, Quattlebaum T (2004) A humid climate state during the Palaeocene/Eocene thermal maximum. Nature 432:495–499PubMedCrossRefGoogle Scholar
  9. Brewin NJ (2004) Plant cell wall remodelling in the Rhizobium-legume symbiosis. CRC Crit Rev Plant Sci 23:293–326CrossRefGoogle Scholar
  10. Chen WX, Yan GH, Li LJ (1988) Numerical taxonomic study of fast-growing soybean rhizobial and proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397CrossRefGoogle Scholar
  11. Chen WM, Laevens S, Lee TM, Coenye T, Vos PD, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735PubMedCrossRefGoogle Scholar
  12. Chen WM, Moulin L, Bontemps C, Vandamme P, Bena G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by β proteobacteria is widespread in nature. J Bacteriol 185:7266–7272PubMedCrossRefGoogle Scholar
  13. Chen WM, James EK, Coenye T, Chou JH, Edmundo B, de Faria SM, Elliott GN, Sheu SY, Sprent JI, Peter V (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851PubMedCrossRefGoogle Scholar
  14. Chen WM, de Faria SM, James EK, Elliott GN, Lin KY, Chou JH, Sheu SY, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059PubMedCrossRefGoogle Scholar
  15. Chen WM, de Faria SM, Chou JH, James EK, Elliott GN, Sprent JI, Bontemps C, Young JPW, Vandamme P (2008) Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58:2174–2179PubMedCrossRefGoogle Scholar
  16. Chou YJ, Elliott GN, James EK, Lin KY, Chou JH, Sheu SY, Sheu DS, Sprent JI, Chen WM (2007) Labrys neptuniae sp. nov., isolated from root nodules of the aquatic legume Neptunia oleracea. Int J Syst Evol Microbiol 57:577–581PubMedCrossRefGoogle Scholar
  17. Coenye T, Laevens S, Willems A, Ohlen M, Hannant W, Govan JRW, Gillis M, Falsen E, Vandamme P (2001) Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 51:1099–1107PubMedCrossRefGoogle Scholar
  18. da Silva K, Florentino LA, da Silva KB, de Brandt E, Vandammec V, de Souza Moreira FM (2012) Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst Appl Microbiol 35:175–182PubMedCrossRefGoogle Scholar
  19. Dashti N, Khanafer M, El-Nemr IN, Sorkhoh N, Radwan AS (2009) The potential of oil-utilizing bacterial consortia associated with legume root nodules for cleaning oily soils. Chemosphere 74:1354–1359PubMedCrossRefGoogle Scholar
  20. De Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gillis M (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733CrossRefGoogle Scholar
  21. De Lajudie P, Willems A, Nick G, Mohamed SH, Torck U, Coopman R, Filali-Maltouf A, Kersters K, Dreyfus B, Lindstrom K, Gillis M (1999) Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. Syst Appl Microbiol 22:119–132CrossRefGoogle Scholar
  22. Garu G, Yates RJ, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 41:125–134CrossRefGoogle Scholar
  23. Han SZ, Wang ET, Chen WX (2005) Diverse bacteria isolated from root nodules of Phaseolus vulgaris and species within the genera Campylotropis and Cassia grown in China. Syst Appl Microbiol 28:265–276PubMedCrossRefGoogle Scholar
  24. Hung PQ, Kumar SM, Govindsamy V, Annapurna K (2007) Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biol Fertil Soils 44:155–162CrossRefGoogle Scholar
  25. Ibánẽz F, Angelini J, María TT, Tonelli L, Fabra A (2009) Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst Appl Microbiol 32:49–55PubMedCrossRefGoogle Scholar
  26. Jourand P, Giraud E, Bena G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273PubMedCrossRefGoogle Scholar
  27. Kan FL, Chen ZY, Wang ET, Tian CF, Sui XH, Chen WX (2007) Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai–Tibet plateau and in other zones of China. Arch Microbiol 188:103–115PubMedCrossRefGoogle Scholar
  28. Lavin M, Pennington RT, Klitgaard BB, Sprent JI, de Lima HC, Gasson PE (2001) The Dalbergioid legume (Fabaceae): delimitation of a pantropical monophyletic clade. Am J Bot 88:503–533PubMedCrossRefGoogle Scholar
  29. Lazdunski AM, Ventre I, Sturgis JN (2004) Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2:581–592PubMedCrossRefGoogle Scholar
  30. Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246CrossRefGoogle Scholar
  31. Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413PubMedCrossRefGoogle Scholar
  32. Lloret L, Ormeño-Orrillo E, Rincón R, Martinez-Romero J, Rogel-Hernandez MA, Martinez-Romero E (2007) Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30:280–290PubMedCrossRefGoogle Scholar
  33. Lortet G, Mear N, Lorquin J, Dreyfus B, de Lajudie P, Rosenberg C, Boivin C (1996) Nod factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: application to Sinorhizobium saheli, S. teranga and Rhizobium sp. strains isolated from Acacia and Sesbania. Mol Plant-Microbe Interact 9:736–747CrossRefGoogle Scholar
  34. Mantelin S, Fischer-Le Saux M, Zakhia F, BenaG BS, Jeder H, de Lajudie P, Cleyet-Marel J-C (2006) Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol 56:827–839PubMedCrossRefGoogle Scholar
  35. Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A, Coopman R, Bekki A, Mars M, Willems A, de Lajudie P (2010) Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int J Syst Evol Microbiol 60:664–674PubMedCrossRefGoogle Scholar
  36. Mhamdi R, Laguerre G, Aouani ME, Mars M, Amarger N (2002) Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soil. FEMS Microbiol Ecol 41:77–84PubMedCrossRefGoogle Scholar
  37. Mishra PK, Mishra S, Selvakumar G, Kundu S, Gupta HS (2008) Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum SB1 in presence of Bacillus thuringiensis-KR1. Acta Agric Scand Sect B-Plant Soil Sci 59:189–196Google Scholar
  38. Mishra PK, Mishra S, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009) Coinoculation of Bacillus thuringeinsis-KR1 with enhances plant growth and nodulation of Pea (Pisum sativum L.) and Lentil (Lens culinaris L.). World J Microbiol Biotechnol 25:753–761CrossRefGoogle Scholar
  39. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β subclass of Proteobacteria. Nature 411:948–950PubMedCrossRefGoogle Scholar
  40. Mrabet M, Mnasri B, Romdhane SB, ĺe Laguerre G, Aouani ME, Mhamdi R (2006) Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum. FEMS Microbiol Ecol 56:304–309PubMedCrossRefGoogle Scholar
  41. Muresu R, Maddau G, Delogu G, Cappuccinelli P, Squartini A (2010) Bacteria colonizing root nodules of wild legumes exhibit virulence-associated properties of mammalian pathogens. Antonie van Leeuwenhoek 97:143–153PubMedCrossRefGoogle Scholar
  42. Nick G, de Lajudie P, Eardly BD, Suomalainen S, Paulin L, Zhang X, Gillis M, Lindström K (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368PubMedCrossRefGoogle Scholar
  43. Okubo T, Ikeda S, Kaneko T, Eda S, Mitsuyi H, Sato S, Tabata S, Minamisawa K (2009) Nodulation-dependent communities of culturable soybean endophytes from stems of field grown endophytes. Microb Environ 24:253–258CrossRefGoogle Scholar
  44. Palaniappan P, Chauhan PS, Saravanan VS, Anandham R, Sa T (2010) Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol Fertil Soils 46:807–816CrossRefGoogle Scholar
  45. Pandey P, Maheshwari DK (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142Google Scholar
  46. Rajendran G, Patel MH, Joshi SJ (2012) Isolation and characterization of nodule-associated Exiguobacterium sp. from the root nodules of Fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion. Int J Microbiol. doi:  10.1155/2012/693982
  47. Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Gutierrez RT, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161CrossRefGoogle Scholar
  48. Rivas R, Velázquez E, Willems A, Vizcaino N, Subbarao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root nodule symbiosis with the aquatic legume Neptunia natans (L.F.) Druce. Appl Environ Microbiol 68:5217–5222PubMedCrossRefGoogle Scholar
  49. Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC (1996) Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46:972–980PubMedCrossRefGoogle Scholar
  50. Scheublin TR, Ridgway KP, Young JP, van der Heijden MG (2004) Non legumes, legumes and root nodules harbour different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246PubMedCrossRefGoogle Scholar
  51. Schulz B, Boyle C (2006) What are endophytes. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes, vol 9. Springer, BerlinCrossRefGoogle Scholar
  52. Selvakumar G, Kundu S, Gupta AD, Shouche YS, Gupta HS (2008) Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Curr Microbiol 56:134–139PubMedCrossRefGoogle Scholar
  53. Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E, James EK, Sprent JI, Young PW, Chen WM (2012) Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. Int J Syst Evol Microbiol 62:2272–2278PubMedCrossRefGoogle Scholar
  54. Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective of the occurrence of nodulation. New Phytol 171:11–25CrossRefGoogle Scholar
  55. Sprent JI, James EK (2007) Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol 144:575–581PubMedCrossRefGoogle Scholar
  56. Stajković O, De Meyer S, Miličić B, Willems A, Delić D (2009) Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.). Bot Serbica 33:107–114Google Scholar
  57. Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19CrossRefGoogle Scholar
  58. Sy A, Giraud E, Jourand P, Garcia N, Willems A, DeLajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220PubMedCrossRefGoogle Scholar
  59. Talbott HJ, Kenworthy WJ, Legg JO (1982) Field comparison of the 15N and difference methods of measuring nitrogen fixation. Agron J 74:799–804CrossRefGoogle Scholar
  60. Tariq M, Hameed S, Yasmeen T, Amanat A (2012) Non-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vigna radiata (L.) Wilczek]. Afr J Biotechnol 11:15012–15019Google Scholar
  61. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171PubMedCrossRefGoogle Scholar
  62. Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludena D, Mateos PF, Molina EM, Velazquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupine sp. nov. Appl Environ Microbiol 71:1318–1327PubMedCrossRefGoogle Scholar
  63. Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E, Alonso P, Martínez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281PubMedCrossRefGoogle Scholar
  64. Valverde A, Velazquez E, Gutierrez C, Cervantes E, Ventosa A, Igual JM (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979–1983PubMedCrossRefGoogle Scholar
  65. Valverde A, Velazquez E, Fernandez-Santos F, Vizcaino N, Rivas R, Mateos PF, Molina EM, Igual JM, Willems A (2005) Phyllobacterium trifolii sp nov. nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989PubMedCrossRefGoogle Scholar
  66. Van Berkum P, Eardly BD (2002) The aquatic budding bacterium Blastobacter denitrificans is a nitrogen fixing symbiont of Aeschynomene indica. Appl Environ Microbiol 68:1132–1136PubMedCrossRefGoogle Scholar
  67. Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation or exquisite application. Annu Rev Plant Physiol Plant Mol Biol 42:373–390CrossRefGoogle Scholar
  68. Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov. nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512PubMedCrossRefGoogle Scholar
  69. Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson D, Vandamme P (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59:102–111PubMedCrossRefGoogle Scholar
  70. Wang ET, Tan ZY, Willems A, Fernández-López M, Reinhold-Hurek B, Martínez-Romero E (2002) Sinorhizobium morelense sp. nov., a Leucaena leucocephala associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52(5):1687–1693PubMedCrossRefGoogle Scholar
  71. Wang ET, Tan ZY, Guo XW, Rodríguez-Duran R, Boll G, Martínez-Romero E (2006a) Diverse endophytic bacteria isolated from a leguminous tree Conzattia multixora grown in Mexico. Arch Microbiol 186:251–259PubMedCrossRefGoogle Scholar
  72. Wang LL, Wang ET, Liu J, Li Y, Chen WX (2006b) Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microb Ecol 52:436–443PubMedCrossRefGoogle Scholar
  73. Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX (2002) Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 52:2231–2239PubMedCrossRefGoogle Scholar
  74. Willems A, Fernández-López M, Muñoz E, Goris J, Martínez-Romero E, Toro N, Gillis M (2003) Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Cassida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an Opinion. Int J Syst Evol Microbiol 53:1207–1217PubMedCrossRefGoogle Scholar
  75. Zakhia F, de Lajudie P (2001) Taxonomy of rhizobia. Agronomie 21:569–576CrossRefGoogle Scholar
  76. Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, de Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nif H like gene within the genera Microbacterium and Starkeya. Microb Ecol 51:375–393PubMedCrossRefGoogle Scholar
  77. Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • G. Selvakumar
    • 1
  • P. Panneerselvam
    • 1
  • A. N. Ganeshamurthy
    • 1
  1. 1.Division of Soil Science and Agricultural ChemistryIndian Institute of Horticultural ResearchBangaloreIndia

Personalised recommendations