The Contribution of New Technologies Toward Understanding Plant–Fungus Symbioses

  • Raffaella Balestrini
  • Stefano Ghignone
  • Fabiano Sillo


Symbiotic associations between beneficial soil fungi and the roots of about 90 % of land plants, commonly known as mycorrhizae, exist in a wide range of terrestrial ecosystems. During the interaction, both the plant and the fungus benefit from the relationship. Complete genome sequences give useful information to deeper understanding of the molecular mechanisms underlying the symbiotic lifestyle and several genome sequencing projects on mycorrhizal fungi have been launched. Genomic projects are currently coupled to transcriptome analysis, which represents the starting point for the post-genomic activities, in which research is focused to ascribe function to genes. The introduction of new sequencing techniques (next-generation sequencing, NGS), which produce short-read sequences in large quantity, has been accompanied by advances in bioinformatics. In this chapter we will review recent advances in plant/fungus symbiotic interactions, focusing on the recent fungal genome projects and on the NGS application in this field.


Arbuscular Mycorrhizal Mycorrhizal Fungus Endophytic Fungus Joint Genome Institute Symbiotic Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Francis Martin’s lab, JGI and the Mycorrhizal Genomics Initiative consortium to access genome information before publication. RB was funded by Premio DAA2009 (CNR). FS’s PhD fellowship was funded by Università di Torino.


  1. Balestrini R, Gomez-Ariza J, Klink VP, Bonfante P (2009) Application of laser microdissection to plant pathogenic and symbiotic interactions. J Plant Interact 4:81–92CrossRefGoogle Scholar
  2. Balestrini R, Bianciotto V, Bonfante P (2012a) Mycorrhizae. In: Huang PM, Li Y, Summner ME (eds) Handbook of soil sciences, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  3. Balestrini R, Sillo F, Kohler A, Schneider G, Faccio A, Tisserant E, Martin F, Bonfante P (2012b) Genome-wide analysis of cell wall-related genes in Tuber melanosporum. Curr Genet 58:165–177PubMedCrossRefGoogle Scholar
  4. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48PubMedCrossRefGoogle Scholar
  5. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153PubMedCrossRefGoogle Scholar
  6. Breakspear A, Momany M (2007) The first fifty microarray studies in filamentous fungi. Microbiology 153:7–15PubMedCrossRefGoogle Scholar
  7. Ceccaroli P, Buffalini M, Saltarelli R, Barbieri E, Polidori E, Ottonello S, Kohler A, Tisserant E, Martin F, Stocchi V (2011) Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus Tuber melanosporum. New Phytol 189:751–764PubMedCrossRefGoogle Scholar
  8. Cox MP, Eaton CJ, Scott DB (2010) Exploring molecular signaling in plant-fungal symbioses using high throughput RNA sequencing. Plant Signal Behav 5:1353–1358PubMedCrossRefGoogle Scholar
  9. Dermatsev V, Weingarten-Baror C, Resnick N, Gadkar V, Wininger S, Kolotilin I, Mayzlish-Gati E, Zilberstein A, Koltai H, Kapulnik Y (2010) Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum). Mol Plant Pathol 11:121–135PubMedCrossRefGoogle Scholar
  10. Duplessis S, Courty PE, Tagu D, Martin F (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165:599–611PubMedCrossRefGoogle Scholar
  11. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P et al (2011) The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765PubMedCrossRefGoogle Scholar
  12. Eaton CJ, Cox MP, Ambrose B, Becker M, Hesse U, Schardl CL, Scott B (2010) Disruption of signaling in a fungal-grass symbiosis leads to pathogenesis. Plant Physiol 153:1780–1794PubMedCrossRefGoogle Scholar
  13. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30:1575–1584PubMedCrossRefGoogle Scholar
  14. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126PubMedCrossRefGoogle Scholar
  15. Formey D, Molès M, Haouy A, Savelli B, Bouchez O, Bécard G, Roux C (2012) Comparative analysis of mitochondrial genomes of Rhizophagus irregularis – syn. Glomus irregulare – reveals a polymorphism induced by variability generating elements. New Phytol 196:1217–1227PubMedCrossRefGoogle Scholar
  16. Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2011) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo a massive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528PubMedCrossRefGoogle Scholar
  17. Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10PubMedCrossRefGoogle Scholar
  18. Grigoriev IV, Cullen D, Hibbett D, Goodwin SB, Jeffries TW, Kubicek CP, Kuske C, Magnuson J, Martin F, Spatafora J, Tsang A, Baker SE (2011) Fueling the future with fungal genomics. Mycology 2(3):192–209. doi: 10.1080/21501203.2011.584577 Google Scholar
  19. Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40:D26–D32PubMedCrossRefGoogle Scholar
  20. Güimil S, Chang H-S, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070PubMedCrossRefGoogle Scholar
  21. Güther M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212CrossRefGoogle Scholar
  22. Hacquard S, Tisserant E, Brun A, Legué V, Martin F, Kohler A (2013) Laser microdissection and microarray analysis of Tuber melanosporum ectomycorrhizas reveal functional heterogeneity between mantle and Hartig net compartments. Environ Microbiol. doi: 10.1111/1462-2920.12080 PubMedGoogle Scholar
  23. Heller G, Adomas A, Li G, Osborne J, van Zyl L, Sederoff R, Finlay RD, Stenlid J, Asiegbu FO (2008) Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor. BMC Plant Biol 8:19PubMedCrossRefGoogle Scholar
  24. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  25. Hogekamp C, Arndt D, Pereira P, Becker JD, Hohnjec N, Küster H (2011) Laser microdissection unravels cell-type specific transcription in arbuscular mycorrhizal roots, including CAAT-box TF gene expression correlating with fungal contact and spread. Plant Physiol 157:2023–2043PubMedCrossRefGoogle Scholar
  26. Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301PubMedCrossRefGoogle Scholar
  27. Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H et al (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326PubMedCrossRefGoogle Scholar
  28. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484PubMedCrossRefGoogle Scholar
  29. Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, Bailey K, Holub E, Studholme DJ, Maclean D et al (2011) Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLoS Biol 9:e1001094PubMedCrossRefGoogle Scholar
  30. Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Rogozin IB, Smirnov S, Sorokin AV, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2004) A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5:R7PubMedCrossRefGoogle Scholar
  31. Küster H, Becker A, Firnhaber C, Hohnjec N, Manthey K, Perlick AM, Bekel T, Dondrup M, Henckel K, Goesmann A, Meyer F, Wipf D, Requena N, Hildebrandt U, Hampp R, Nehls U, Krajinski F, Franken P, Pühler A (2007) Development of bioinformatic tools to support EST-sequencing, in silico- and microarray-based transcriptome profiling in mycorrhizal symbioses. Phytochemistry 68:19–32PubMedCrossRefGoogle Scholar
  32. Lanfranco L, Young JPW (2012) Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi. Curr Opin Plant Biol 15:1–8CrossRefGoogle Scholar
  33. Larsen PE, Trivedi G, Sreedasyam A, Lu V, Podila GK, Collart FR (2010) Using deep RNA sequencing for the structural annotation of the Laccaria bicolor mycorrhizal transcriptome. PLoS One 5:e9780PubMedCrossRefGoogle Scholar
  34. Larsen P, Sreedasyam A, Trivedi G, Podila G, Cseke L, Collart F (2011) Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome. BMC Syst Biol 5:70PubMedCrossRefGoogle Scholar
  35. Le Quéré A, Wright DP, Söderström B, Tunlid A, Johansson T (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Mol Plant Microbe Interact 18:659–673PubMedCrossRefGoogle Scholar
  36. Lee J, Young JPW (2009) The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol 183:200–211PubMedCrossRefGoogle Scholar
  37. Liu J, Blaylock LA, Endre G, Choc J, Town CD, VandenBosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123PubMedCrossRefGoogle Scholar
  38. Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34PubMedCrossRefGoogle Scholar
  39. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y, Chen Z et al (2005) Genome sequencing in open microfabricated high density picoliter reactors. Nature 437:376–380PubMedGoogle Scholar
  40. Martin F, Martin N (2010) From galactic archeology to soil metagenomics – surfing on massive data streams. New Phytol 185:343–347PubMedCrossRefGoogle Scholar
  41. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682PubMedCrossRefGoogle Scholar
  42. Martin F, Aerts A, Ahrén D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V et al (2008a) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92PubMedCrossRefGoogle Scholar
  43. Martin F, Gianinazzi-Pearson V, Hijri M, Lammers P, Requena N, Sanders IR, Shachar-Hill Y, Shapiro H, Tuskan GA, Young JPW (2008b) The long hard road to a completed Glomus intraradices genome. New Phytol 180:747–750PubMedCrossRefGoogle Scholar
  44. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R et al (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038PubMedCrossRefGoogle Scholar
  45. Martin F, Culle D, Hibbett D, Pisabarro A, Spatafora JW, Baker SE, Grigoriev IV (2011) Sequencing the fungal tree of life. New Phytol 190:818–821PubMedCrossRefGoogle Scholar
  46. Martin F, Bonito G (2012) Ten years of genomics for ectomycorrhizal fungi: what have we achieved and where are we heading? In: Zambonelli A, Bonito GM (eds) Edible Ectomycorrhizal Mushrooms, Soil Biology 34. doi: 10.1007/978-3-642-33823-6_21. Springer-Verlag Berlin Heidelberg
  47. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700PubMedCrossRefGoogle Scholar
  48. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D et al (2008) Genome sequencing and analysis of the biomass degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560PubMedCrossRefGoogle Scholar
  49. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P et al (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959PubMedCrossRefGoogle Scholar
  50. Montanini B, Levati E, Bolchi A, Kohler A, Morin E, Tisserant E, Martin F, Ottonello S (2011) Genome-wide search and functional identification of transcription factors in the mycorrhizal fungus Tuber melanosporum. New Phytol 189:736–750PubMedCrossRefGoogle Scholar
  51. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628PubMedCrossRefGoogle Scholar
  52. Nadimi M, Beaudet D, Forget L, Hijri M, Lang BF (2012) Group I intron–mediated Trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales. Mol Biol Evol 29:2199–2210PubMedCrossRefGoogle Scholar
  53. Nagalakshmi U, Waern K, Snyder M (2010) RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol Chapter 4:Unit 4.11.1-13. doi:  10.1002/0471142727.mb0411s89
  54. Pelin A, Pombert JF, Salvioli A, Bonen L, Bonfante P, Corradi N (2012) The mitochondrial genome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals two unsuspected trans-splicing events of group I introns. New Phytol 194:836–845PubMedCrossRefGoogle Scholar
  55. Plett JM, Martin F (2011) Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet 27:14–22PubMedCrossRefGoogle Scholar
  56. Rensink WA, Buell CR (2005) Microarray expression profiling resources for plant genomics. Trends Plant Sci 10:603–609PubMedCrossRefGoogle Scholar
  57. Rubini A, Belfiori B, Riccioni C, Tisserant E, Arcioni S, Martin F, Paolocci P (2011) Isolation and characterization of MAT genes in the symbiotic ascomycete Tuber melanosporum. New Phytol 189:710–722PubMedCrossRefGoogle Scholar
  58. Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant–microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184PubMedCrossRefGoogle Scholar
  59. Sedzielewska KA, Fuchs J, Temsch EM, Baronian K, Watzke R et al (2011) Estimation of the Glomus intraradices nuclear DNA content. New Phytol 192:794–797PubMedCrossRefGoogle Scholar
  60. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  61. Spanu PD (2012) The genomics of obligate (and nonobligate) biotrophs. Annu Rev Phytopathol 50:91–109PubMedCrossRefGoogle Scholar
  62. Spatafora J (2007) 1000 fungal genomes to be sequenced. IMA Fungus 2:41Google Scholar
  63. The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRefGoogle Scholar
  64. Tisserant E, Da Silva C, Kohler A, Morin E, Wincker P, Martin F (2011) Deep RNA sequencing improved the structural annotation of the Tuber melanosporum transcriptome. New Phytol 189:883–891PubMedCrossRefGoogle Scholar
  65. Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769PubMedCrossRefGoogle Scholar
  66. Voiblet C, Duplessis S, Encelot N, Martin F (2001) Identification of symbiosis-regulated genes in Eucalyptus globulusPisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J 25:181–191PubMedCrossRefGoogle Scholar
  67. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedCrossRefGoogle Scholar
  68. Wilhelm BT, Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257PubMedCrossRefGoogle Scholar
  69. Wilkes T, Laux H, Foy CA (2007) Microarray data quality – review of current developments. OMICS 11:1–13PubMedCrossRefGoogle Scholar
  70. Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next generation sequencing on genomics. J Genet Genomics 38:95–109PubMedCrossRefGoogle Scholar
  71. Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M et al (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7:e1002290PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Raffaella Balestrini
    • 1
  • Stefano Ghignone
    • 1
  • Fabiano Sillo
    • 1
  1. 1.UOS Torino and Dipartimento di Scienze della Vita e Biologia dei Sistemi, UniTOIstituto per la Protezione delle Piante del CNRTorinoItaly

Personalised recommendations