Plant–Microbe Partnerships: Implications for Growth and Plant Health

  • N. S. Paulucci
  • G. González Anta
  • L. A. Gallarato
  • J. C. Vicario
  • A. B. Cesari
  • Y. B. Reguera
  • C. Kilmurray
  • M. A. Bueno
  • M. B. García
  • M. S. Dardanelli


The rhizosphere can be defined as the zone of soil around plant roots whereby soil properties are influenced by the presence and activity of the root. Changes to the physical, chemical, and biological properties of rhizosphere soil have significant influence on the subsequent growth and health of plants. Interactions between plant roots and soil microorganisms are ubiquitous and are an essential component of ecosystem function. It has become increasingly evident that root interactions with soil microorganisms are intricate and involve highly complex communities that function in very heterogeneous environments. Although many plant-associated bacteria have beneficial effects on their host, their importance during plant growth and development is still underestimated. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria. Research into how plant growth can be promoted has mainly concentrated on rhizobacteria. More recently, however, attention has focused on the plant growth-promoting capacity of endophytes. Mechanisms of plant growth promotion by plant-associated bacteria vary greatly and can be broadly categorized into direct and indirect effects. The purpose of this chapter is to examine how microorganisms can help growth and plant health and its use in new area of research.


Root Exudate Plant Growth Promote Rhizobacteria Iron Cycle Root Hair Deformation Improve Plant Health 



 This research was partially supported by the Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SECyT-UNRC) and CONICET PIP 112-200801-00537 and PID Res. Ref MINCyT 113/201. NP, LG, JV, and AC are fellows of CONICET. MSD is member of the research career of CONICET, Argentina.


  1. Ae N, Arihara J, Okada K, Yoshihara T, Johansen C (1990) Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science 248:477–480PubMedCrossRefGoogle Scholar
  2. Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilisation activity of rhizobia native to Iranian soils. Plant Soil 287:35–41CrossRefGoogle Scholar
  3. Antoun H, Beauchamp J, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Rhaphanus sativus L.). Plant Soil 204:57–67CrossRefGoogle Scholar
  4. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:1–9CrossRefGoogle Scholar
  5. Bais HP, Park S-W, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32Google Scholar
  6. Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778PubMedCrossRefGoogle Scholar
  7. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedCrossRefGoogle Scholar
  8. Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62:3030–3033PubMedGoogle Scholar
  9. Burdman S, Vedder D, German M, Itzigsohn R, Kigel J, Jurkevitch E, Okon Y (1998) Legume crop yield promotion by inoculation with Azospirillum. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer Academic Publishers, Dordrecht, pp 609–612Google Scholar
  10. Cho MJ, Harper JE (1991) Effect of localized nitrate application on isoflavonoid concentration and nodulation in split-root systems of wild-type and nodulation-mutant soybean plants. Plant Physiol 95:1106–1112PubMedCrossRefGoogle Scholar
  11. Crowley D, Rengel Z (1999) Biology and chemistry of rhizosphere influencing nutrient availability. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. The Haworth Press, New York, pp 1–40Google Scholar
  12. Dakora FD, Phillips DA (1996) Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol Mol Plant Pathol 49:1–20CrossRefGoogle Scholar
  13. Dardanelli MS, Fernández FJ, Espuny MR, Rodríguez MA, Soria ME, Gil Serrano AM, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721CrossRefGoogle Scholar
  14. Dardanelli MS, Carletti SM, Paulucci NS, Medeot DB, Rodriguez Cáceres EA, Vita FA, Bueno MA, Fumero MV, Garcia MB (2010a) Benefits of plant growth promoting rhizobacteria (PGPR) and rhizobia in agriculture. In: Maheshwari DK (ed) Bacteria and plant health. Springer, Berlin, pp 1–20CrossRefGoogle Scholar
  15. Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Bellogín RA, Megías M, Ollero FJ (2010b) Effect of the presence of the PGPR Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493CrossRefGoogle Scholar
  16. Dardanelli MS, Fernandez de Cordoba FJ, Estévez J, Contreras R, Cubo MT, Rodriguez-Carvajal MA, Gil-Serrano AM, Lopez-Baena FJ, Bellogin R, Manyani H, Ollero FJ, Megias M (2012) Changes in flavonoids secreted by Phaseolus vulgaris roots in the presence of salt and the plant growth-promoting rhizobacterium Chryseobacterium balustinum. Appl Soil Ecol 57:31–38CrossRefGoogle Scholar
  17. de Hoff P, Hirsch AM (2003) Nitrogen comes down to earth: report from the 5th European nitrogen fixation conference. Mol Plant Microbe Interact 16:371–375PubMedCrossRefGoogle Scholar
  18. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847PubMedCrossRefGoogle Scholar
  19. Dixon R, Achnine L, Kota P, Liu CJ, Reddy M, Wang L (2002) The phenylpropanoid pathway and plant defence a genomics perspective. Mol Plant Pathol 3:371–390PubMedCrossRefGoogle Scholar
  20. Dobbelaere S, Okon Y (2007) The plant growth promoting effect and plant responses. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Kluwer Academic Publishers, Dordrecht, pp 1–26Google Scholar
  21. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  22. Estévez J, Dardanelli MS, Megías M, Rodriguez-Navarro DN (2009) Symbiotic performance of common bean and soybean co-inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis 49:29–36CrossRefGoogle Scholar
  23. Geurts R, Fedorova E, Bisseling T (2005) Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 8:346–352PubMedCrossRefGoogle Scholar
  24. Goicoechea N, Antolín MC, Sánchez-Díaz M (1997) Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought-stressed alfalfa. Plant Soil 192:261–268CrossRefGoogle Scholar
  25. Gregory P (2006) The rhizosphere. In: Gregory P (ed) Plant roots: growth, activity and interaction with soils. Blackwell Publishing, Iowa, pp 216–252Google Scholar
  26. Harmsen J, Rulkens W, Eijsackers H (2005) Bioavailability, concept for understanding or tool for predicting? Land Contam Reclam 13:161–171Google Scholar
  27. Hartwig UA, Phillips DA (1991) Release and modification of nod-gene inducing flavonoids from alfalfa seeds. Plant Physiol 95:804–807PubMedCrossRefGoogle Scholar
  28. Jebara M, Drevon JJ, Aouani ME (2001) Effects of hydroponic culture system and NaCl on interactions between common bean lines and native rhizobia from Tunisian soils. Agronomie 21:601–605CrossRefGoogle Scholar
  29. Jourand P, Giraud E, Bena G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273PubMedCrossRefGoogle Scholar
  30. Kramer R, Hindorf H, Jha H, Kallage J, Zilliken F (1984) Antifungal activity of soybean and chickpea isoflavones and their reduced derivatives. Phytochemistry 23:2203–2205CrossRefGoogle Scholar
  31. Lemanceau P, Bauer P, Kraemer S, Briat JF (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535CrossRefGoogle Scholar
  32. Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413PubMedCrossRefGoogle Scholar
  33. Lucas García JA, Probanza A, Ramos B, Barriuso J, Gutiérrez Mañero FJ (2004a) Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant Soil 267:143–153CrossRefGoogle Scholar
  34. Lucas García JA, Probanza A, Ramos B, Colón Flores JJ, Gutiérrez Mañero FJ (2004b) Effects of plant growth promoting rhizobacteria (PGPRs) on the biological nitrogen fixation, Nodulation, and growth of Lupinus albus L. cv. Multolupa. Eng Life Sci 4:71–77CrossRefGoogle Scholar
  35. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  36. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411:948–950PubMedCrossRefGoogle Scholar
  37. Parmar N, Dadarwal KR (2001) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–44CrossRefGoogle Scholar
  38. Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199CrossRefGoogle Scholar
  39. Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894PubMedCrossRefGoogle Scholar
  40. Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642PubMedCrossRefGoogle Scholar
  41. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant Soil 321:341–361CrossRefGoogle Scholar
  42. Rao JR, Cooper JE (1994) Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176:5409–5413PubMedGoogle Scholar
  43. Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutiérrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161CrossRefGoogle Scholar
  44. Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martínez-Molina E, Gillis M, Velázquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53PubMedCrossRefGoogle Scholar
  45. Rodelas B, González-López J, Salmerón V, Pozo C, Martínez-Toledo MV (1996) Enhancement of nodulation, N2-fixation and growth of faba bean (Vicia fabaL.) by combined inoculation with Rhizobium leguminosarum bv. viceae and Azospirillum brasilense. Symbiosis 21:175–186Google Scholar
  46. Rodelas B, González-López J, Martínez-Toledo MV, Pozo C, Salmerón V (1999) Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biol Fertil Soils 29:165–169CrossRefGoogle Scholar
  47. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedCrossRefGoogle Scholar
  48. Runge-Metzger A (1995) Closing the cycle: obstacles to efficient P management for improved global food security. In: Tiessen H (ed) Phosphorus in the global environment: transfers, cycles and management. Wiley, New York, pp 27–42Google Scholar
  49. Sarig S, Kapulnik Y, Okon Y (1986) Effect of Azospirillum inoculation on nitrogen fixation and growth of several winter legumes. Plant Soil 90:335–342CrossRefGoogle Scholar
  50. Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant-microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184PubMedCrossRefGoogle Scholar
  51. Schlaman HRM, Phillips DA, Kondorosi E (1998) Genetic organization and transcripcional regulation of rhizobial nodulation genes. In: Spaink HP, Kondorosi A, Hooykaas HJJ (eds) The Rhizobiaceae, the molecular biology of model plant associated bacteria. Kluwer Academic Publishers, Dordrecht, pp 371–432Google Scholar
  52. Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signalsby rhizosphere microorganisms. Environ Microbiol 8:1867–1880PubMedCrossRefGoogle Scholar
  53. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240PubMedCrossRefGoogle Scholar
  54. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220PubMedCrossRefGoogle Scholar
  55. Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludeña D, Mateos PF, Martınez-Molina E, Velázquez E (2004) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327CrossRefGoogle Scholar
  56. Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R, Mateos PF, Martínez-Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989PubMedCrossRefGoogle Scholar
  57. van Berkum P, Eardly BD (2002) The aquatic budding bacterium Blastobacter denitrificans is a nitrogen-fixing symbiont of Aeschynomene indica. Appl Environ Microbiol 68:1132–1136PubMedCrossRefGoogle Scholar
  58. van Loon LC, Bakker PAHM (2005) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 39–66Google Scholar
  59. VanEtten H (1976) Antifungal activity of pterocarpans and other selected isoflavonoids. Phytochemistry 15:655–659CrossRefGoogle Scholar
  60. Vargas LK, Lisboa BB, Giongo A, Beneduzi A, Pereira Passaglia LM (2010) Potential of rhizobia as plant growth-promoting rhizobacteria. In: Khan MS, Zaide A, Musarrat J (eds) Microbes for legume improvement. Springer, Wien, pp 137–156CrossRefGoogle Scholar
  61. Velázquez E, García-Fraile P, Ramirez-Bahena MH, Rivas R, Martínez-Molina E (2010) Bacteria involved in nitrogen–fixing legume simbiosis: current taxonomic perspective. In: Khan MS, Zaide A, Musarrat J (eds) Microbes for legume improvement. Springer, Wien, pp 1–25CrossRefGoogle Scholar
  62. Volpin H, Burdman S, Castro-Sowinski S, Kapulnik Y, Okon Y (1996) Inoculation with Azospirillum increased exudation of rhizobial nod-gene inducers by alfalfa roots. Mol Plant Microbe Interact 9:388–394CrossRefGoogle Scholar
  63. Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193CrossRefGoogle Scholar
  64. Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:283–284CrossRefGoogle Scholar
  65. Zaidi A, Ahemad M, Oves M, Ahmad E, Khan MS (2010) Role of phosphate-solubilizing bacteria in legume improvement. In: Khan MS, Zaide A, Musarrat J (eds) Microbes for legume improvement. Springer, Wien, pp 273–292CrossRefGoogle Scholar
  66. Zheng XY, Sinclair JB (1996) Chemotactic response of Bacillus megaterium strain B153-2-2 to soybean root and seed exudates. Physiol Mol Plant Pathol 48:21–35CrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • N. S. Paulucci
    • 1
  • G. González Anta
    • 2
  • L. A. Gallarato
    • 1
  • J. C. Vicario
    • 1
  • A. B. Cesari
    • 1
  • Y. B. Reguera
    • 1
  • C. Kilmurray
    • 1
  • M. A. Bueno
    • 1
  • M. B. García
    • 1
  • M. S. Dardanelli
    • 1
  1. 1.Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y NaturalesUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Escuela de Ciencias Agrarias, Naturales y AmbientalesUniversidad Nacional del Noroeste de la Provincia de Buenos AiresPergaminoArgentina

Personalised recommendations