Skip to main content

Secondary Metabolites of Pseudomonas aurantiaca and Their Role in Plant Growth Promotion

  • Chapter
  • First Online:
Plant Microbe Symbiosis: Fundamentals and Advances

Abstract

Most of the fluorescent pseudomonads isolated from plant rhizosphere promote plant growth by direct and indirect mechanisms. These bacteria produce phytohormones and promote plant growth directly. In addition, they produce secondary metabolites which inhibit the growth of pathogenic bacteria and fungi and promote plant growth indirectly. Among fluorescent pseudomonads, Pseudomonas aurantiaca, a subspecies of Pseudomonas chlororaphis, is known to produce antibiotics with antifungal activity. Strains of P. aurantiaca have been isolated from sugarcane, soya bean, canola, soil, and municipal sludge in different parts of the world including North America, Europe, and Asia. These strains are reported to produce IAA, HCN, siderophores, phenazines, cyclic lipopeptides, pyoverdin, and quorum-sensing signaling compounds. Most of these strains have shown antifungal activity against several pathogenic strains of Fusarium, Pythium, Colletotrichum, Rhizoctonia, and Sclerotium sp. One of these P. aurantiaca strain SR1 has been proven as a plant growth promoter for several crops. In this manuscript, a review of all reported strains of P. aurantiaca and their growth-promoting abilities is presented. The main focus is on secondary metabolites and mechanism used by these metabolites to promote plant growth, with a suggestion that this bacteria can be used as a biofertilizer and a biocontrol agent in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andres JA, Rovira M, Guinazo LB, Pastor NA, Rosas SB (2011) Role of Pseudomonas aurantiaca in crop improvement. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 107–122

    Chapter  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Hofte M (2001) Mechanisms of Pseudomonas aeruginosa-induced pathogen resistance in plants. In: Chablain P, Cornelis P (eds) Pseudomonas 2001 abstracts book. Vrije Universiteit Brussel, Brussels, p 36

    Google Scholar 

  • Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ (1986) The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth J Plant Pathol 92:249–256

    Article  Google Scholar 

  • Baltz RH (2009) Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr Opin Chem Biol 13:144–151

    Article  PubMed  CAS  Google Scholar 

  • Bender CL, Alarcon-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292

    PubMed  CAS  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium induced damping off of tomato by Pseudomonas aeruginosa 7NKS2. Appl Environ Microbiol 62(3):865–871

    PubMed  CAS  Google Scholar 

  • Carlier E, Rovera M, Rossi Jaume AD, Rosas SB (2008) Improvement of growth, under field conditions, of wheat inoculated with Pseudomonas aurantiaca SR1. World J Microbiol Biotechnol 24:2653–2658

    Article  Google Scholar 

  • Chin-a-Woeng TFC, de Priester W, van der Bij AJ, Lugtenberg BJJ (1997) Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol Plant Microbe Interact 10:79–86

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 13:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  Google Scholar 

  • Cronin D, Moenne-Locoz Y, Fenion A, Dunne C, Dowling DN, O’Gara F (1997) Role of 2,4 di-acetyl phloroglucinol in the interactions of biocontrol Pseudomonad strains F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361

    PubMed  CAS  Google Scholar 

  • Cui X, Harling R, Mutch P, Darling D (2005) Identification of N-3-hydroxyoctanoyl-homoserine lactone production in Pseudomonas fluorescens 5064, pathogenic to broccoli, and controlling biosurfactant production by quorum sensing. Eur J Plant Pathol 111:297–308

    Article  CAS  Google Scholar 

  • de Weger LA, van Boxtel R, der Burg B, Gruters RA, Geels FP, Schippers B, Lugtenberg B (1986) Siderophores and outer membrane proteins of antagonistic, plant growth stimulating, root-colonizing Pseudomonas spp. J Bacteriol 165:585–594

    PubMed  Google Scholar 

  • Dubern JF, Lugtenberg BJ, Bloemberg GV (2006) The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II. J Bacteriol 188:2898–2906

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 12:1693–1703

    Google Scholar 

  • Feklistova IN, Maksimova NP (2008) Obtaining Pseudomonas aurantiaca strains capable of overproduction of phenazine antibiotics. Microbiology 77:176–180

    Article  CAS  Google Scholar 

  • Fernando WGD, Lindermann R (1994) Inhibition of Phytophthora vignae and root rot of cowpea by soil bacteria. Biol Agric Hortic 12:1–14

    Article  Google Scholar 

  • Fernando WGD, Watson AK, Paulitz TC (1996) The role of Pseudomonas spp. and competition for carbon, nitrogen and iron in the enhancement of appressorium formation by Colletotrichum coccodes on velvetleaf. Eur J Plant Pathol 102:1–7

    Article  Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Gaffney TD, Lam ST, Ligon J, Gates K, Frazelle A, Di Maio J, Hill S, Goodwin S, Torkewitz N, Allshouse AM, Kempf HJ, Becker JO (1994) Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant Microbe Interact 7:455–463

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    Article  PubMed  CAS  Google Scholar 

  • Hill DS, Stein JI, Torkewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon JM (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl Environ Microbiol 60(1):78–85

    PubMed  CAS  Google Scholar 

  • Hunt MD, Neuenschwander UH, Delaney TP, Weymann KB, Friedrich LB, Lawton KA, Steiner HY, Ryals JA (1996) Recent advances in systemic acquired resistance – a review. Gene 7:89–95

    Article  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    PubMed  CAS  Google Scholar 

  • Leeman M, van Pelt JA, Denouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    Article  CAS  Google Scholar 

  • Leisinger T, Margrafft R (1979) Secondary metabolites of the fluorescent pseudomonads. Microbiol Mol Biol Rev 4:422–442

    Google Scholar 

  • Liu H, He Y, Jiang H, Peng H, Huang X, Zhang X, Thomashow LS, Xu Y (2007) Characterization of a phenazine producing strain Pseudomonas chlororaphis GP72 with broad spectrum antifungal activity from green pepper rhizosphere. Curr Microbiol 54:302–306

    Article  PubMed  CAS  Google Scholar 

  • Loper JE, Henkels MD, Shaffer BT, Valeriote FA, Gross H (2008) Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol 74:3085–3093

    Article  PubMed  CAS  Google Scholar 

  • Mahajan MS, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanism of bacterial virulence elucidated using a Pseudomonas aeruginosa – Caenorhabditis elegans pathogenesis model. Cell 96:47–56

    Article  Google Scholar 

  • Mandryk MN, Kolomiets E, Dey ES (2007) Characterization of antimicrobial compounds produced by Pseudomonas aurantiaca S-1. Pol J Microbiol 56:245–250

    PubMed  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux J-P, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Mehnaz S, Baig DN, Jamil F, Weselowski B, Lazarovits G (2009) Characterization of a phenazine and hexanoyl homoserine lactone producing Pseudomonas aurantiaca strain PB-St2, isolated from sugarcane stem. J Microbiol Biotechnol 19(12):1688–1694

    PubMed  CAS  Google Scholar 

  • Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria associated with sugarcane growing in Pakistan. J Microbiol Biotechnol 20(12):1614–1623

    Article  PubMed  CAS  Google Scholar 

  • Mehnaz S, Saleem RSZ, Yameen B, Pianet I, Schnakenburg G, Pietraszkiewicz H, Valeriote F, Josten M, Sahl H-G, Franzblau S, Gross H (2013) Lahorenoic acids A-C, the ortho-dialkyl-substituted aromatic acids from the bio-control strain Pseudomonas aurantiaca PB-St2. J Nat Prod 76(2):135–141

    Article  PubMed  CAS  Google Scholar 

  • Mortishire-Smith RJ, Nutkins JC, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams DH (1991) Determination of the structure of an extracellular peptide produced by the mushroom saprotroph Pseudomonas reactans. Tetrahedron 47:3645–3654

    Article  CAS  Google Scholar 

  • Nowak-Thompson B, Hammer PE, Hill DS, Stafford J, Torkewitz N, Gaffney TD, Lam ST, Molnar I, Ligon JM (2003) 2,5-Dialkylresorcinol biosynthesis in Pseudomonas aurantiaca: novel head-to-head condensation of two fatty acid-derived precursors. J Bacteriol 185:860–869

    Article  PubMed  CAS  Google Scholar 

  • Nybroe O, Sørensen J (2004) Production of cyclic lipopeptides by fluorescent pseudomonads. In: Ramos JL (ed) Pseudomonas, biosynthesis of macromolecules and molecular metabolism. Kluwer Academic/Plenum Publishers, New York, pp 147–172

    Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Omel’yanets TG, Mel’nik GP (1987) Toxicological evaluation of the microbial preparation mycolytin. Zdravookhr Turkmenistana 6:8

    Google Scholar 

  • Park GK, Lim J-H, Kim SD, Shim SH (2012) Elucidation of antifungal metabolites produced by Pseudomonas aurantiaca IB5-10 with broad spectrum antifungal activity. J Microbiol Biotechnol 22:326–330

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) The role of Pseudomonas putida indole acetic acid in the development of host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Peix A, Valverde A, Rivas R, Igual JM, Ramirez-Bahena MH, Mateos PF, Santa-Regina I, Rodriguez-Barrueco C, Marinez-Molina E, Velazquez E (2007) Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp.nov., comb. nov., and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 57:1286–1290

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Ulami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537–547

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJ (2006) Cyclic lipopeptide production by plant associated Pseudomonas spp.: diversity, activity, biosynthesis and regulation. Mol Plant Microbe Interact 19:699–710

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    PubMed  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Rokni-Zadeh H, Li W, Sanchez-Rodriguez A, Sinnaeve D, Rozenski J, Martins JC, De Mot R (2012) Genetic and functional characterization of cyclic lipopeptide white-line-inducing principle (WLIP) production by rice rhizosphere isolate Pseudomonas putida RW10S2. Appl Environ Microbiol 78(14):4826–4834

    Article  PubMed  CAS  Google Scholar 

  • Rosas SB, Altamirano F, Schroder E, Correa N (2001) In vitro biocontrol activity of Pseudomonas aurantiaca. Phyton-Int J Exp Bot 67:203–209

    Google Scholar 

  • Rosas SB, Rovera M, Andrés JA, Pastor NA, Guiñazú LB, Carlier E, Avanzini G, Correa NS (2005) Characterization of Pseudomonas aurantiaca as biocontrol and PGPR agent, endophytic properties. In: Sorvari S, Toldi O (eds) Plant microbe interactions: endophytes and biocontrol agents. EBA, Saariselka, BioBien Innovations, Lapland, Finland, pp 91–99

    Google Scholar 

  • Rosas SB, Avanzini G, Carlier E, Pasluosta C, Pastor N, Rovera M (2009) Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biol Biochem 41:1802–1806

    Article  CAS  Google Scholar 

  • Rovera M, Andres J, Carlier E, Pasluosta C, Rosas S (2008) Pseudomonas aurantiaca: plant growth promoting traits, secondary metabolites and inoculation response. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley-VCH, Weinheim, pp 155–164

    Chapter  Google Scholar 

  • Rudrappa T, Baiss HP (2008) Rhizospheric pseudomonads: friends or foes? Plant Signal Behav 3:1132–1133

    Article  PubMed  Google Scholar 

  • Saini HS, Barragán-Huerta BE, Lebrón-Paler A, Pemberton JE, Vázquez RR, Burns AM, Marron MT, Seliga CJ, Gunatilaka AA, Maier RM (2008) Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9-3 and its physicochemical and biological properties. J Nat Prod 71:1011–1015

    Article  PubMed  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  PubMed  CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial microorganisms and the effect on cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Seveno NA, Morgan JA, Wellington EM (2001) Growth of Pseudomonas aureofaciens PGS12 and the dynamics of HHL and phenazine production in liquid culture, on nutrient agar and on plant roots. Microb Ecol 14:314–324

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975

    Article  CAS  Google Scholar 

  • Suzuki S, He Y, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143

    Article  PubMed  CAS  Google Scholar 

  • Thrane C, Olsson S, Nielson TH, Sorensen J (1999) Vital fluorescent strains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiol Ecol 30:11–23

    Article  CAS  Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Hofte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 3l6:453–483

    Article  Google Scholar 

  • van Wees SCM, Pieterse CMJ, Trijssenaar A, Van ’t Westende YA, Hartog F, van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724

    Article  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Author is grateful to Dr. Rahman Shah Zaib Saleem (Department of Chemistry, School of Science and Engineering (SSE), Lahore University of Management Sciences (LUMS), Lahore, Pakistan) for the drawing of structures of secondary metabolites presented in Fig. 14.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samina Mehnaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Mehnaz, S. (2013). Secondary Metabolites of Pseudomonas aurantiaca and Their Role in Plant Growth Promotion. In: Arora, N. (eds) Plant Microbe Symbiosis: Fundamentals and Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1287-4_14

Download citation

Publish with us

Policies and ethics