Biological Nitrogen Fixation: Importance, Associated Diversity, and Estimates

  • Márcia do Vale Barreto Figueiredo
  • Adália Cavalcanti do Espírito Santo Mergulhão
  • Júlia Kuklinsky Sobral
  • Mario de Andrade Lira Junior
  • Ademir Sergio Ferreira de Araújo


Several processes mediated by soil microorganisms play an important role in nutrient cycling. One such process is biological nitrogen fixation (BNF) by representatives of various bacterial phylogenetic groups, which are called diazotrophs. These bacteria can be free-living, associate with plant species, or even establish symbiosis with legumes. Studies with diazotrophic organisms are of great importance due to their contribution to the nitrogen supply in different ecosystems, including natural and managed systems. It is estimated that global BNF adds 122 Tg of N yearly with cultivated agricultural systems fixing from 33 to 43 Tg, which occurs mostly by legume-rhizobia symbiosis. There is a large potential of BNF contribution by associative systems with tropical grasses, but there is uncertainty in these estimates due to several assumptions in the estimation process and fewer studies with this system when compared to the legume-rhizobia symbiosis. Recent progress in the understanding of diversity, colonization ability, action mechanisms, formulation, and application of these biological systems should facilitate their development as reliable components in the management of sustainable agricultural systems. Several efforts have been made to develop commercial inoculants using these organisms. The current progress in using microorganisms that fix nitrogen in a variety of applications is summarized and discussed herein.


Mycorrhizal Fungus Biological Nitrogen Fixation Microbial Inoculant Repetitive Extragenic Palindromic Spend Mushroom Compost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abd Elgadir M, Akanda MJH, Ferdosh F, Mehrnoush A, Karim AA, Noda T, Sarker MZI (2012) Mixed biopolymer systems based on starch. Molecules 17:584–597PubMedCrossRefGoogle Scholar
  2. Andrade AG, Costa GS, Faria SM (2000) Deposição e decomposição da serapilheira em povoamentos de Mimosa caesalpiniifolia, Acacia mangium e Acacia holosericea com quatro anos de idade em planossolo. Rev Bras Ciênc Solo 24:777–785Google Scholar
  3. Andreote FD, Azevedo JL, Araújo WL (2009) Assessing the diversity of bacterial communities associated with plants. Braz J Microbiol 40:417–432CrossRefGoogle Scholar
  4. Araújo ASF, Leite LFC, Iwata BF, Lira Junior MA, Xavier GR, Figueiredo MVB (2012) Microbiological process in agroforestry systems. A review. Agron Sustain Dev 32:215–226CrossRefGoogle Scholar
  5. Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, vol 18, Microbiology monographs. Springer, BerlinCrossRefGoogle Scholar
  6. Azcón R (2000) Papel de la simbiosis micorrízica y su interacción com otros microorganismos rizosféricos en el crecimiento vegetal y sostenibilidad agrícola. In: Alarcón A, Ferrera-Cerrato R (eds) Ecología fisiología y biotecnología de la micorriza arbuscular. MundiPrensa-Colegio de Postgraduados, MontecilloGoogle Scholar
  7. Bahl N, Jauhri S (1986) Spent compost as a carrier for bacterial inoculant production. In: Wuest PJ, Royse DJ, Beelman RB (eds) Proceedings of the international symposium on scientific and technological aspects of cultivating edible fungi. The Pennsylvania State University, University Park, pp 63–68Google Scholar
  8. Bannert A, Kleineidam K, Wissing L, Mueller-Niggemann C, Vogelsang V, Welzl G, Cao Z, Schloter M (2011) Changes in diversity and functional gene abundances of microbial communities involved in nitrogen fixation, nitrification and denitrification in a tidal wetland versus paddy soils cultivated for different time periods. Appl Environ Microbiol 77:6109–6116PubMedCrossRefGoogle Scholar
  9. Bashan Y (1986) Alginate beads as synthetic inoculant carriers for the slow release of bacteria that affect plant growth. Appl Environ Microbiol 51:1089–1098PubMedGoogle Scholar
  10. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770CrossRefGoogle Scholar
  11. Bashan Y, Trejo A, de-Bashan LE (2011) Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biol Fertil Soils 47:963–969CrossRefGoogle Scholar
  12. Beneduzi A, Peres D, Costa PB, Zanettini MHB, Passaglia LMP (2008) Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil. Res Microbiol 159:244–250PubMedCrossRefGoogle Scholar
  13. Bomfeti CA, Florentino LA, Guimarães AP, Cardoso PG, Guerreiro MC, Moreira FMS (2011) Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of Leguminosae. Rev Bras Ciênc Solo 35:657–671CrossRefGoogle Scholar
  14. Bonfante P (2001) At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. In: Hock B (ed) Mycota, vol IX, Fungal associations. Springer, BerlinGoogle Scholar
  15. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRefGoogle Scholar
  16. Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498PubMedCrossRefGoogle Scholar
  17. Borschiver S, Almeida LFM, Roitman T (2008) Monitoramento Tecnológico e Mercadológico de Biopolímeros. Polím: Ciênc Tecnol 18:256–261Google Scholar
  18. Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Indian Inst Sci 92:37–69Google Scholar
  19. Burity HA, Lyra MCCP, Souza ES, Mergulhão ACES, Silva MLRB (2000) Efetividade da inoculação com rizóbio e fungos micorrízicos arbusculares em mudas de sabiá submetidas a diferentes níveis de fósforo. Pesqui Agropecu Bras 35:801–807CrossRefGoogle Scholar
  20. Caetano-Anolles G, Gresshoff M (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345–382PubMedCrossRefGoogle Scholar
  21. Canfield D, Glazer AN, Falkowski PD (2010) The evolution and future of earth’s nitrogen cycle. Science 330:192–196PubMedCrossRefGoogle Scholar
  22. Chao WL, Alexander M (1984) Mineral soils as carriers for Rhizobium inoculants. Appl Environ Microbiol 47:94–97PubMedGoogle Scholar
  23. Chéneby D, Philippot L, Hartmant A, Henalt C (2000) 16 S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils. FEMS Microbiol Ecol 34:121–128PubMedCrossRefGoogle Scholar
  24. Coelho MRR, Marriel IE, Jenkins SN, Lanyon CV, Seldin L, O’Donnell AG (2009) Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Appl Soil Ecol 42:48–53CrossRefGoogle Scholar
  25. Council NR (1994) Biological nitrogen fixation: research challenges. National Academy Press, Washington, DCGoogle Scholar
  26. Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol 158:39–49CrossRefGoogle Scholar
  27. Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:1275–1288CrossRefGoogle Scholar
  28. De-Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – a comprehensive evaluation. Appl Soil Ecol 61:171–189CrossRefGoogle Scholar
  29. Di Ciocco C, Coviella C, Penón E, Díaz-Zorita M, López S (2008) Biological fixation of nitrogen and N balance in soybean crops in the pampas region. Span J Agric Res 6(1):114–119Google Scholar
  30. Di Ciocco C, Penón E, Coviella C, López S, Díaz-Zorita M, Momo F, Álvarez R (2011) Nitrogen fixation by soybean in the Pampas: relationship between yield and soil nitrogen balance. Agrochimica (SI) 55:305–313Google Scholar
  31. Dias ACF, Silva MCP, Cotta RS, Dini-Andreote F, Soares FL Jr, Salles JF, Azevedo JL, van Elsas JD, Andreote FD (2012) Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments. Appl Environ Microbiol 78:7960–7967PubMedCrossRefGoogle Scholar
  32. Díaz-Zorita M, Fernández-Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3–11CrossRefGoogle Scholar
  33. Diniz MCNM, Burity HA, Figueiredo MVB (2002) Development and regrowth of cunhã (Clitoria ternatea L.) under water stress, in association with mycorrhizal fungi-Bradyrhizobium. Agrochimica 48:108–115Google Scholar
  34. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631PubMedCrossRefGoogle Scholar
  35. Doane TA, Horwath WR, Mitchell JP, Jackson J, Miyao G, Brittan K (2009) Nitrogen supply from fertilizer and legume cover crop in the transition to no-tillage for irrigated row crops. Nutr Cycl Agroecosyst [SI] 85:253–262CrossRefGoogle Scholar
  36. Döbereiner J (1997) Importância da fixação biológica de nitrogênio para a agricultura sustentável. Biotecnol Ciênc Desenvolv 1:2–3 (Encarte Especial)Google Scholar
  37. Dommergues YR, Diem HG, Divies C (1979) Polyacrylamide entrapped Rhizobium as an inoculant for legumes. Appl Environ Microbiol 37:779–981PubMedGoogle Scholar
  38. Duc L, Neuenschwander S, Rehrauer H, Wagner U, Sobek J, Schlapbach R, Zeyer J (2009) Development and experimental validation of a nifH oligonucleotide microarray to study diazotrophic communities in a glacier forefield. Environ Microbiol 11:2179–2189PubMedCrossRefGoogle Scholar
  39. Duponnois R, Garbaye J (1991) Effect of dual inoculation of Douglas fir with the ectomycorrhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare root forest nurseries. Plant Soil 138:169–176CrossRefGoogle Scholar
  40. Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91PubMedCrossRefGoogle Scholar
  41. Falkowski PG, Fenchel T, Delong E (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1038PubMedCrossRefGoogle Scholar
  42. Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of water stress effects in common bean (Phaseolus vulgaris L.) by co-inoculation Paenibacillus × Rhizobium tropici. Appl Soil Ecol 40:182–188CrossRefGoogle Scholar
  43. Foelkel C (2012) Os eucaliptos e as leguminosas: parte 3: Acacia mangium. ABTCP, São PauloGoogle Scholar
  44. Fornara D (2011) Symbiotic nitrogen fixation and the delivery of multiple ecosystem services: a global change perspective. CAB reviews: perspectives in agriculture, veterinary science. Nutr Nat Res (SI) 6:1–8Google Scholar
  45. Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321(1/2):35–59CrossRefGoogle Scholar
  46. Freire JRJ (1992) Fixação do nitrogênio pela simbiose rizóbio/leguminosas. In: Cardoso EJN, Tsai SNM, Neves MC (eds) Microbiologia do solo. Sociedade Brasileira de Ciência do Solo, CampinasGoogle Scholar
  47. Freire JRJ, Rhor TG, Oliveira PJ, Xavier GR, Rumjanek NG (1968) Trabalhos em rizobiologia no Rio Grande do Sul. In: Reunião Latino Americana sobre Inoculantes para Leguminosas, Porto Alegre. Anais. Porto Alegre: Secretaria de Agricultura 4:19–24Google Scholar
  48. Freitas SS (2007) Rizobactérias promotoras de crescimento de plantas. In: Silveira APD, Freitas SS (eds) Microbiota do solo e qualidade ambiental. Instituto Agronômico de Campinas, Campinas, pp 1–20Google Scholar
  49. Freitas RA, Gorin PAJ, Neves J, Sierakowski MR (2003) A rheological description of mixtures of a galactoxyloglucan with high amylose and waxy corn starches. Carbohydr Polym 51:25–32CrossRefGoogle Scholar
  50. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedCrossRefGoogle Scholar
  51. Gaby JB, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13:1790–1799PubMedCrossRefGoogle Scholar
  52. Gan YB, Posthumus F, Van Keulen H, Kuiper P (2002) Effects of N management on growth, N-2 fixation and yield of soybean. Nutr Cycl Agroecosyst (SI) 62:163–174CrossRefGoogle Scholar
  53. Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  54. Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (Pigeonpea). J Plant Growth Regul 27:115–124CrossRefGoogle Scholar
  55. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding billion people. Science 327:812–818PubMedCrossRefGoogle Scholar
  56. Good AG, Beatty PH (2011) Fertilizing nature: a tragedy of excess in the commons. PLoS Biol 9:100–124CrossRefGoogle Scholar
  57. Gribaldo S, Brochier C (2009) Phylogeny of prokaryotes: does it exist and why should we care? Res Microbiol 160:513–521PubMedCrossRefGoogle Scholar
  58. Gross E, Cordeiro L, Caetano FH (2004) Nodulação e micorrização Anadenanthera peregrina var. falcata em solo de cerrado autoclavado e não autoclavado. Rev Bras Ciênc Solo 28:95–101CrossRefGoogle Scholar
  59. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18CrossRefGoogle Scholar
  60. Honga Y, Maa Y, Wua L, Makib M, Qinb W, Chen S (2012) Characterization and analysis of nifH genes from Paenibacillus sabinae T27. Microbiol Res 167:596–601CrossRefGoogle Scholar
  61. Hubbell DH, Kidder G (2009) Biological nitrogen fixation. University of Florida IFAS Extension Publication SL16, pp 1–4Google Scholar
  62. Hungria M (2012) Fixação biológica do N2 na agricultura de baixo carbono. In: Anais do FertBio 2012. UFAL, MaceióGoogle Scholar
  63. Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, Mendes IC, Arihara J (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and N fertilizer to grain yield. Can J Plant Sci 86:927–939CrossRefGoogle Scholar
  64. Hungria M, Campo RJ, Mendes IC (2007) A importância do processo de fixação biológica do nitrogênio para a cultura da soja: componente essencial para a competitividade do produto brasileiro. Documentos 283-Embrapa Soja, LondrinaGoogle Scholar
  65. Hvistendahl M (2010) China’s push to add by subtracting fertilizer. Science [SI] 327:801. doi: 10.1126/science.327.5967.801 Google Scholar
  66. Iswaran V, Sen A, Apte R (1972) Plant compost as a substitute for peat for legume inoculants. Curr Sci 41:299Google Scholar
  67. Jackson AM, Whipps JM, Lynch JM (1991) Production, delivery systems, and survival in soil of four fungi with disease biocontrol potential. Enzyme Microbiol Technol 13:636–642CrossRefGoogle Scholar
  68. Jayasinghearachchi HS, Seneviratne G (2004) A Bradyrhizobial-Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biol Fertil Soils 40:432–434CrossRefGoogle Scholar
  69. Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Henrik HN, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32:329–364CrossRefGoogle Scholar
  70. Jesus EC, Schiavo JA, Faria SM (2005) Dependência de micorrizas para a nodulação de leguminosas arbóreas tropicais. Rev Árvore 29:545–552CrossRefGoogle Scholar
  71. Kannan VR, Suganya S, Solomon EK, Balasubramanian V, Ramesh N, Rajesh P (2011) Analysis of interaction on between arbuscular mycorrhizal fungi and their helper bacteria by MILPA model. Res Plant Biol 1:48–62Google Scholar
  72. Kaschuk G, Leffelaar PA, Giller KE, Alberton O, Hungria M, Kuyper TW (2010) Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbioses. Soil Biol Biochem 42:125–128CrossRefGoogle Scholar
  73. Kifuko-Koech M, Pypers P, Okalebo JR, Othieno CO, Khan ZR, Pickett JA, Kipkoech AK, Vanlauwe B (2012) The impact of Desmodium spp. and cutting regimes on the agronomic and economic performance of Desmodium–maize intercropping system in western Kenya. Field Crop Res 137:97–107CrossRefGoogle Scholar
  74. Kim T-W, Lee K, Najjar RG, Jeong H-D, Jeong HJ (2011) Increasing N abundance in the Northwestern Pacific Ocean due to atmospheric nitrogen deposition. Science 334:505–509PubMedCrossRefGoogle Scholar
  75. Köpke U, Nemecek T (2010) Ecological services of faba bean. Field Crop Res 115:217–233CrossRefGoogle Scholar
  76. Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251PubMedCrossRefGoogle Scholar
  77. Lee A, Wong E (2009) Optimization and the robustness of BOX A1R PCR for DNA fingerprinting using trout lake E. coli isolates. J Exp Microbiol Immunol 13:104–113Google Scholar
  78. Lewis GP, Schrire B, Mackinder B, Lock M (2005) Legumes of the world. Royal Botanic Gardens, KewGoogle Scholar
  79. Li X, Penttinen P, Gu Y, Zhang X (2012) Diversity of nif H gene in rhizosphere and non-rhizosphere soil of tobacco in Panzhihua, China. Ann Microbiol 62:995–1001CrossRefGoogle Scholar
  80. Lima HC, Queiroz LP, Morim MP et al. (orgs) (2010) Catálogo das Plantas e Fungos do Brasil. Jardim Botânico do Rio de Janeiro, Rio de Janeiro 2:989–1102Google Scholar
  81. Lima AST, Xavier TF, Lima CEP, Oliveira JP, Mergulhão ACES, Figueiredo MVB (2011) Triple inoculation with Bradyrhizobium, Glomus and Paenibacillus on cowpea (Vigna unguiculata [L.] Walp.) development. Braz J Microbiol 42:919–926CrossRefGoogle Scholar
  82. Lindström K, Kokko-Gonzales P, Terefework Z, Räsänen LA (2006) Differentiation of nitrogen-fixing legume root nodule bacteria (Rhizobia). In: Cooper JE, Rao JR (eds) Molecular approaches to soil, rhizosphere and plant microorganism analysis. CABI, Wallingford/Cambridge, pp 236–258CrossRefGoogle Scholar
  83. Lindstrom K, Murwira M, Willems A, Altier N (2010) The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res Microbiol 161:453–463PubMedCrossRefGoogle Scholar
  84. Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40:363–385CrossRefGoogle Scholar
  85. Majerowicz N, Pereira JMS, Médici LO, Bizon O, Pereira MB, Santos Júnior U (2002) Estudo da eficiência de uso do nitrogênio em variedades locais e melhoradas de milho. Rev Bras Bot 25:129–136CrossRefGoogle Scholar
  86. Marques ASA, Marchaison A, Gardan L, Samson R (2008) BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringaeP. viridiflava group. Genet Mol Biol 31:106–115Google Scholar
  87. Martensson L, Díez B, Wartiainen I, Zheng W, El-Shehawy R, Rasmussen U (2009) Diazotrophic diversity, nifH gene expression and nitrogenase activity in a rice paddy field in Fujian, China. Plant Soil 325:207–218CrossRefGoogle Scholar
  88. Meitanis C, Chalkou KI, Kormas KA, Lymperopoulou DS, Katsifas EA, Hatzinikolaou DG, Karagouni AD (2008) Application of rpoB sequence similarity analysis, REP-PCR and BOX-PCR for the differentiation of species within the genus Geobacillus. Lett Appl Microbiol 46:395–401CrossRefGoogle Scholar
  89. Mendes Filho PF, Vasconcellos RLF, Cardoso EJBN (2011) Growth and development of jack-bean and pigeon-pea in cassiterirte mine spoil. J Soil Sci Environ Manag 2:74–79Google Scholar
  90. Mergulhão ACES, Silva MLRB, Burity HA, Stamford NP (2001) Influência da dupla inoculação rizóbio e fungos micorrízicos arbusculares em plantas de sabiá sob solos de diferentes texturas. Rev Ecossistema 26:35–39Google Scholar
  91. Miranda JCC, Miranda LN (2002) Importância da micorriza arbuscular para o cultivo da soja na região do cerrado. Comunicado Técnico 75- EMBRAPA-CPAC, PlanaltinaGoogle Scholar
  92. Monteiro RA, Balsanelli E, Wassem R, Marin AM, Brusamarello-Santos LCC, Schmidt MA, Tadra-Sfeir MZ, Pankievicz VCS, Cruz LM, Chubatsu LS, Pedrosa FO, Souza EM (2012) Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356:175–196CrossRefGoogle Scholar
  93. Moreira FMS, Siqueira JO (2002) Microbiologia e Bioquímica do Solo. Editora UFLA, LavrasGoogle Scholar
  94. Moreira FMS, Silva K, Nóbrega RSA, Carvalho F (2010) Diazotrophic associative bacteria: diversity, ecology and potential applications. Comput Sci 1(2):74–99Google Scholar
  95. Mugnier J, Jung G (1985) Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer. Appl Environ Microbiol 50:108–114PubMedGoogle Scholar
  96. Nicol SMF, Arias CAA, Hungria M (2002) Genetics of nodulation and nitrogen fixation in Brazilian soybean cultivars. Biol Fertil Soil (SI) 36:109–117CrossRefGoogle Scholar
  97. Oberson A, Nanzer S, Bosshard C, Dubois D, Mäder P, FrossarD E (2007) Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance. Plant Soil (SI) 290:69–83CrossRefGoogle Scholar
  98. Oehl F, Sieverding E, Palenzuela J, Ineichen K, Silva GA (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199PubMedCrossRefGoogle Scholar
  99. Okasaki S, Nukui N, Sugawara M, Minamisawa K (2004) Rhizobial strategies to enhance symbiotic interactions: rhizobiotoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microb Environ 19:99–111CrossRefGoogle Scholar
  100. Okogun JA, Sanginga N, Abaidoo R, Dashiell KE, Diels J (2005) On-farm evaluation of biological nitrogen fixation potential and grain yield of Lablab and two soybean varieties in the northern Guinea savanna of Nigeria. Nutr Cycl Agroecosyst 73:267–275CrossRefGoogle Scholar
  101. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546PubMedCrossRefGoogle Scholar
  102. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  103. Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khan DF, Hauggaard-Nielsen H, Jensen ES (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17CrossRefGoogle Scholar
  104. Raja P, Una S, Gopal H, Govindarajan K (2006) Impact of bioinoculants consortium on rice root exudates, biological nitrogen fixation and plant growth. J Biol Sci 6:815–823CrossRefGoogle Scholar
  105. Rengel Z (2002) Breeding for better symbiosis. Plant Soil 245:147–162CrossRefGoogle Scholar
  106. Ribeiro RA, Barcellos FG, Thompson FL, Hungria M (2009) Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. Res Microbiol 160:297–306PubMedCrossRefGoogle Scholar
  107. Rigamonte TA, Pylro VS, Duarte GF (2010) The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations. Braz J Microbiol 41:832–840CrossRefGoogle Scholar
  108. Rockström J, Steffen W, Noone K, Persson A, Chapin FS III, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, Van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Constanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature [SI] 461:472–475CrossRefGoogle Scholar
  109. Roesch LFW, Fulthorpe RR, Jaccques RJS (2010) Biogeography of diazotrophic bacteria is soils. World J Microb Biotechnol 26:1503–1508CrossRefGoogle Scholar
  110. Sadasivam KV, Tyagi RK, Ramarethinam S (1986) Evaluation of some agricultural wastes as carriers for bacterial inoculants. Agric Wastes 17:301–306CrossRefGoogle Scholar
  111. Saikia SP, Jain V (2007) Biological nitrogen fixation with non-legumes: an achievable target or a dogma? Curr Sci 92(3):317–322Google Scholar
  112. Schipanski ME, Drinkwater LE (2012) Nitrogen fixation in annual and perennial legume-grass mixtures across a fertility gradient. Plant Soil 357:147–159CrossRefGoogle Scholar
  113. Schipanski ME, Drinkwater LE, Russelle MP (2010) Understanding the variability in soybean nitrogen fixation across agroecosystems. Plant Soil 329:379–397CrossRefGoogle Scholar
  114. Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216PubMedCrossRefGoogle Scholar
  115. Scotti MRMML (1997) Fixação biológica do nitrogênio por espécies arbóreas. In: Vargas MAT, Hungria M (eds) Biologia dos solos dos cerrados. EMBRAPA-CPAC, PlanaltinaGoogle Scholar
  116. Seneviratne G (2003) Development of eco-friendly, beneficial microbial biofilms. Curr Sci 85:1395–1396Google Scholar
  117. Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW (2007) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microb Biotechnol 24:739–743CrossRefGoogle Scholar
  118. Seneviratne G, Thilakaratne RMMS, Jayasekara APDA, Seneviratne KACN, Padmathilake KRE, De silva MSDL (2009) Developing beneficial microbial biofilms on roots of non-legumes: a novel biofertilizing technique. In: Khan MS, Zaid A, Musarrat J (eds) Microbial strategy for crop improvement. Springer, BerlinGoogle Scholar
  119. Sileshi G, Mafongoya PL, Chintu R, Akinnifesi FK (2008) Mixed-species legume fallows affect faunal abundance and richness and N cycling compared to single species in maize-fallow rotations. Soil Biol Biochem 40:3065–3075CrossRefGoogle Scholar
  120. Silva ED, Tozzi AMGA (2011) Leguminosae na Floresta Ombrófila Densa do Núcleo Picinguaba, Parque Estadual da Serra do Mar, São Paulo, Brasil. Biota Neotrop 11:299–325CrossRefGoogle Scholar
  121. Silva MF, Oliveira PJ, Xavier GR, Rumjanek NG, Reis VM (2009) Inoculantes formulados com polímeros e bactérias endofíticas para a cultura da cana-de-açúcar. Pesqui Agropecu Bras 44:1437–1443CrossRefGoogle Scholar
  122. Silveira JAG, Costa RCL, Oliveira JTA (2001) Drought-induced effects and recovery of nitrate assimilation and nodule activity in cowpea plants inoculated with Bradyrhizobium spp. under moderate nitrate level. Braz J Microbiol 32:187–194CrossRefGoogle Scholar
  123. Singh M, Kundu S, Biswas AK, Saha JK, Tripathi AK, Acharya CL (2004) Quantification of N2 fixation and annual N benefit from N2 fixation in soybean accrued to the soil under soybean-wheat continuous rotation (2004). J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 167:577–583CrossRefGoogle Scholar
  124. Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492CrossRefGoogle Scholar
  125. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, BostonGoogle Scholar
  126. Sparrow SD, Ham GE (1983) Survival of Rhizobium phaseoli in six carrier materials. Agron J 75:181–184CrossRefGoogle Scholar
  127. Sutton MA, Oenema O, Erisman JW, Leip A, Van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472:159–161PubMedCrossRefGoogle Scholar
  128. Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T (2011) Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant Soil 338:435–449CrossRefGoogle Scholar
  129. Torres AR, Araújo WL, Cursino L, Hungria M, Plotegher F, Mostasso FL, Azevedo JL (2008) Diversity of endophytic enterobacteria associated with different host plants. J Microbiol 46:373–379PubMedCrossRefGoogle Scholar
  130. Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, Affourtit JP, Zehr JP (2010) Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464:90–94PubMedCrossRefGoogle Scholar
  131. Tyson GW, Banfield JF (2005) Cultivating the uncultivated: a community genomics perspectives. Trends Microbiol 13:411–415PubMedCrossRefGoogle Scholar
  132. Vale FF, Encarnacao P, Vítor JMB (2008) A new algorithm for cluster analysis of genomic methylation: the Helicobacter pylori case. Bioinformatics 24(3):383–388PubMedCrossRefGoogle Scholar
  133. Van Elsas JD, Boersma FGH (2011) A review of molecular methods to study the microbiota of soil and the mycosphere. Eur J Soil Biol 47:77–87CrossRefGoogle Scholar
  134. Vega C, Arista M, Ortiz PL, Talavera S (2010) Anatomical relations among endophytic holoparasitic angiosperms, autotrophic host plants and mycorrhizal fungi: a novel tripartite interaction. Am J Bot 97:730–737PubMedCrossRefGoogle Scholar
  135. Weir BS (2011) The current taxonomy of rhizobia. New Zealand rhizobia website. disponível em: Acesso em: 08 março, 2012
  136. Wilkins RJ (2008) Eco-efficient approaches to land management: a case for increased integration of crop and animal production systems. Philos Trans R Soc B Biol Sci 363:517–525CrossRefGoogle Scholar
  137. Woese CR (1994) There must be a prokaryote somewhere – microbiologists search for itself. Microbiol Rev 58:1–9PubMedGoogle Scholar
  138. Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. Online Crop Manage. Available at:
  139. Yang JY, Drury CF, Yang XM, de Jong R, Huffman EC, Campbell CA, Kirkwood V (2010) Estimating biological N2 fixation in Canadian agricultural land using legume yields. Agric Ecosyst Environ 137:192–201CrossRefGoogle Scholar
  140. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Appl Environ Microbiol 5:539–554CrossRefGoogle Scholar
  141. Zilli JE, Xavier GR, Moreira FMS, Freitas ACR, Oliveira LA (2009) Fixação biológica de nitrogênio. In: Zilli JE, Vilarinho AA, Alves JMA (eds) A cultura do feijão-caupi na Amazônia Brasileira. Embrapa Roraima, Boa VistaGoogle Scholar
  142. Zilli JE, Silva Neto ML, França Júnior I, Perin L, Melo AR (2011) Resposta do feijão-caupi à inoculação com estirpes de Bradyrhizobium recomendadas para a soja. Rev Bras Ciênc Solo 35:739–742CrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Márcia do Vale Barreto Figueiredo
    • 1
    • 2
  • Adália Cavalcanti do Espírito Santo Mergulhão
    • 3
  • Júlia Kuklinsky Sobral
    • 4
  • Mario de Andrade Lira Junior
    • 2
    • 5
  • Ademir Sergio Ferreira de Araújo
    • 2
    • 6
  1. 1.Vegetal Production DepartmentAgronomical Institute of Pernambuco IPA/SEAGRIRecifeBrazil
  2. 2.National Research and Technological Development*Brazil
  3. 3.Vegetal Production DepartmentAgronomical Institute of Pernambuco IPARecifeBrazil
  4. 4.Agronomy DepartmentFederal Rural University of PernambucoGaranhunsBrazil
  5. 5.Agronomy DepartmentFederal Rural University of Pernambuco, UFRPE/DEPARecifeBrazil
  6. 6.Agronomy DepartmentFederal University of Piaui, UFPITeresinaBrazil

Personalised recommendations