Advertisement

Computational Pharmacogenomics

  • Enrique Hernández-Lemus
Chapter

Abstract

After the advent of high-throughput research in the biomedical sciences, greatly enhanced with the rise of genomics, proteomics, and metabolomics, it is a recognized fact that the science of pharmacology will also experiment dramatic changes. The search for therapeutic targets has become far too complex to be guided, either by an elevated form of educated guesses or by the expert opinion of principal investigators, no matter how rich a wealth of experience and how high the level of knowledge they may possess. Organismal response to drugs depends ultimately on a series of extremely entrenched molecular pulls and triggers encoded on a complex web behind the regulatory mechanisms in gene expression, cell signaling, and metabolic control. Pharmaceutical genomics or pharmacogenomics is thus related with the discovery and ultimately the clinical application of such enormous bodies of information. Massive data analysis, classification techniques, network reconstruction, and dynamical modeling are thus at the core of pharmacogenomics. In this chapter we will outline some of the main ideas and techniques in the emerging field of computational pharmacogenomics, about their use in research, development, and clinical application and also as diagnostic/prognostic tools, and in the field of targeted therapeutics and personalized medicine.

Keywords

Gene Regulatory Network Computational Biology Drug Cocktail Genetic Regulatory Network Shotgun Proteomics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams JC, Keiser MJ, Basuino L, Chambers HF, Lee D-S et al (2009) A mapping of drug space from the viewpoint of small molecule metabolism. PLoS Comput Biol 5(8):e1000474PubMedCentralPubMedCrossRefGoogle Scholar
  2. Almeida JS (2010) Computational ecosystems for data-driven medical genomics. Genome Med 2(9):67PubMedCentralPubMedCrossRefGoogle Scholar
  3. Altman RB (2012) Translational bioinformatics: linking the molecular world to the clinical world. Clin Pharmacol Ther 91(6):994–1000PubMedCrossRefGoogle Scholar
  4. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  5. Arikuma T, Yoshikawa S, Azuma R, Watanabe K, Matsumura K, Konagaya A (2008) Drug interaction prediction using ontology-driven hypothetical assertion framework for pathway generation followed by numerical simulation. BMC Bioinformatics 9(Suppl 6):S11PubMedCentralPubMedCrossRefGoogle Scholar
  6. Arrell DK, Terzic A (2010) Network systems biology for drug discovery. Clin Pharmacol Ther 88(1):120–125PubMedCrossRefGoogle Scholar
  7. Atkinson AJ Jr, Lyster PM (2010) Systems clinical pharmacology. Clin Pharmacol Ther 88(1):3–6PubMedCrossRefGoogle Scholar
  8. Azuaje FJ, Zhang L, Devaux Y, Wagner DR (2011) Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Sci Rep 1:52PubMedCentralPubMedGoogle Scholar
  9. Baca-López K, Hernández-Lemus E, Mayorga M (2009) Information-theoretical analysis of gene expression data to infer transcriptional interactions. Rev Mex Fís 55(6):456–466Google Scholar
  10. Berg JM, Rogers ME, Lyster PM (2010) Systems biology and pharmacology. Clin Pharmacol Ther 88:1CrossRefGoogle Scholar
  11. Berger SI, Iyengar R (2011) Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip Rev Syst Biol Med 3(2):129–135PubMedCentralPubMedCrossRefGoogle Scholar
  12. Boran AD, Iyengar R (2010a) Systems pharmacology. Mt Sinai J Med 77(4):333–344PubMedCentralPubMedCrossRefGoogle Scholar
  13. Boran AD, Iyengar R (2010b) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 13(3):297–309PubMedCentralPubMedGoogle Scholar
  14. Butte AJ, Ito S (2012) Translational bioinformatics: data-driven drug discovery and development. Clin Pharmacol Ther 91(6):949–952PubMedCrossRefGoogle Scholar
  15. Chengalvala MV, Chennathukuzhi VM, Johnston DS, Stevis PE, Kopf GS (2007) Gene expression profiling and its practice in drug development. Curr Genomics 8(4):262–270PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chiang AP, Butte AJ (2009) Data-driven methods to discover molecular determinants of serious adverse drug events. Clin Pharmacol Ther 85(3):259–268PubMedCentralPubMedCrossRefGoogle Scholar
  18. Cohen AL, Soldi R, Zhang H, Gustafson AM, Wilcox R, Welm BE, Chang JT, Johnson E, Spira A, Jeffrey SS, Bild AH (2011) A pharmacogenomic method for individualized prediction of drug sensitivity. Mol Syst Biol 7:513PubMedCentralPubMedGoogle Scholar
  19. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158PubMedCentralPubMedCrossRefGoogle Scholar
  20. Deutsch EW, Lam H, Aebersold R (2008) Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol Genomics 33:18PubMedCrossRefGoogle Scholar
  21. Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, Goerlitz L, Jaeger J, Loosen R, Ludewig B, Meyer M, Niederalt C, Sevestre M, Siegmund HU, Solodenko J, Thelen K, Telle U, Weiss W, Wendl T, Willmann S, Lippert J (2011) A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front Physiol 2:4PubMedCentralPubMedGoogle Scholar
  22. Eng L, Ibrahim-zada I, Jarjanazi H, Savas S, Meschian M, Pritchard KI, Ozcelik H (2011) Bioinformatic analyses identifies novel protein-coding pharmacogenomic markers associated with paclitaxel sensitivity in NCI60 cancer cell lines. BMC Med Genomics 4:18PubMedCentralPubMedCrossRefGoogle Scholar
  23. Faustino RS, Terzic A (2008) Bioinformatic networks: molecular reticles for pinpointing pharmacological target selection. Clin Pharmacol Ther 84(5):543–545PubMedCrossRefGoogle Scholar
  24. Fernald GH, Capriotti E, Daneshjou R, Karczewski KJ, Altman RB (2011) Bioinformatics challenges for personalized medicine. Bioinformatics 27(13):1741–1748PubMedCentralPubMedCrossRefGoogle Scholar
  25. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GR, Ruffier M, Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J, Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernández-Suarez XM, Herrero J, Hubbard TJ, Parker A, Proctor G, Vogel J, Searle SM (2011) Ensembl 2011. Nucleic Acids Res 39(Database issue):D800–D806, 1111111PubMedCentralPubMedCrossRefGoogle Scholar
  26. Frickenschmidt A, Frohlich H, Bullinger D, Zell A, Laufer S, Gleiter CH, Liebich H, Kammerer B (2008) Metabonomics in cancer diagnosis: mass spectrometry-based profiling of urinary nucleosides from breast cancer patients. Biomarkers 13(4):435–449PubMedCrossRefGoogle Scholar
  27. Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR, Giardine BM, Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM, Learned K, Li CH, Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE, Haussler D, Kent WJ (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Res 39(Database issue):D876–D882PubMedCentralPubMedCrossRefGoogle Scholar
  28. Garten Y, Altman RB (2009) Pharmspresso: a text mining tool for extraction of pharmacogenomic concepts and relationships from full text. BMC Bioinformatics 10(Suppl 2):S6PubMedCentralPubMedCrossRefGoogle Scholar
  29. Garten Y, Coulet A, Altman RB (2010) Recent progress in automatically extracting information from the pharmacogenomic literature. Pharmacogenomics 11(10):1467–1489PubMedCentralPubMedCrossRefGoogle Scholar
  30. Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S (2005) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New YorkCrossRefGoogle Scholar
  31. Günther S, Senger C, Michalsky E, Goede A, Preissner R (2006) Representation of target-bound drugs by computed conformers: implications for conformational libraries. BMC Bioinformatics 9(7):293CrossRefGoogle Scholar
  32. Guo Y, Weller P, Farrell E, Cheung P, Fitch B, Clark D, Wu SY, Wang J, Liao G, Zhang Z, Allard J, Cheng J, Nguyen A, Jiang S, Shafer S, Usuka J, Masjedizadeh M, Peltz G (2006) In silico pharmacogenetics: warfarin metabolism. Nat Biotechnol 24(5):531–536PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hammann F, Gutmann H, Vogt N, Helma C, Drewe J (2010) Prediction of adverse drug reactions using decision tree modeling. Clin Pharmacol Ther 88(1):52–59PubMedCrossRefGoogle Scholar
  34. Harpaz R, DuMouchel W, Shah NH, Madigan D, Ryan P, Friedman C (2012) Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther 91(6):1010–1021PubMedCentralPubMedCrossRefGoogle Scholar
  35. Harrill AH, Rusyn I (2008) Systems biology and functional genomics approaches for the identification of cellular responses to drug toxicity. Expert Opin Drug Metab Toxicol 4(11):1379–1389PubMedCentralPubMedCrossRefGoogle Scholar
  36. He Z, Zhang J, Shi X-H, Hu L-L, Kong X et al (2010) Predicting drug-target interaction networks based on functional groups and biological features. PLoS One 5(3):e9603PubMedCentralPubMedCrossRefGoogle Scholar
  37. Hernández-Lemus E (2011) On the application of compressive sampling techniques to high throughput data in computational genomics. Theor Appl Inform 23(3–4):177–192Google Scholar
  38. Hernández-Lemus E, Rangel-Escareño C (2011) The role of information theory in gene regulatory network inference. In: Deloumeaux P, Gorzalka JD (eds) Information theory: new research, Mathematics research developments series. Nova Publishing, New YorkGoogle Scholar
  39. Hernández-Lemus E, Velázquez-Fernández D, Estrada-Gil JK, Silva-Zolezzi I, Herrera-Hernández MF, Jiménez-Sánchez G (2009) Information theoretical methods to deconvolute genetic regulatory networks applied to thyroid neoplasms. Physica A 388:5057–5069CrossRefGoogle Scholar
  40. Herwig R, Lehrach H (2006) Expression profiling of drug response–from genes to pathways. Dialogues Clin Neurosci 8(3):283–293PubMedCentralPubMedGoogle Scholar
  41. Holford N, Karlsson MO (2007) Time for quantitative clinical pharmacology: a proposal for a pharmacometrics curriculum. Clin Pharmacol Ther 82(1):103–105PubMedCrossRefGoogle Scholar
  42. Hoppe R, Brauch H, Kroetz DL, Esteller M (2011) Exploiting the complexity of the genome and transcriptome using pharmacogenomics towards personalized medicine. Genome Biol 12(1):301PubMedCentralPubMedCrossRefGoogle Scholar
  43. Huson DH, Mitra S, Weber N, Ruscheweyh H, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560PubMedCentralPubMedCrossRefGoogle Scholar
  44. Johnson T (2007) Bayesian method for disease gene detection and mapping, using a case and control design and DNA pooling. Biostatistics 8:546–565PubMedCrossRefGoogle Scholar
  45. Kahvejian A, Quackenbush J, Thompson JF (2008) What would you do if you could sequence everything? Nat Biotechnol 26(10):1125–1133PubMedCrossRefGoogle Scholar
  46. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006PubMedCentralPubMedGoogle Scholar
  47. Khatri P, Sarwal MM, Butte AJ (2011) Applications of translational bioinformatics in transplantation. Clin Pharmacol Ther 90(2):323–327PubMedCentralPubMedCrossRefGoogle Scholar
  48. Kohl P, Crampin EJ, Quinn TA, Noble D (2010) Systems biology: an approach. Clin Pharmacol Ther 88(1):25–33PubMedCrossRefGoogle Scholar
  49. Krissinel E (2007) On the relationship between sequence and structure similarities in proteomics. Bioinformatics 23:717–723PubMedCrossRefGoogle Scholar
  50. Krissinel E (2010) Crystal contacts as nature’s docking solutions. J Comput Chem 31(1):133–143PubMedCrossRefGoogle Scholar
  51. Krissinel E, Henrick K (2004) Secondary-structure matching (PDBeFold), a new tool for fast protein structure alignment in three dimensions. Acta Cryst D60:2256–2268Google Scholar
  52. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797PubMedCrossRefGoogle Scholar
  53. Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB (2012) Bioinformatics and variability in drug response: a protein structural perspective. J R Soc Interface 9(72):1409–1437PubMedCentralPubMedCrossRefGoogle Scholar
  54. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  55. Lesko LJ (2012) Drug research and translational bioinformatics. Clin Pharmacol Ther 91(6):960–962PubMedCrossRefGoogle Scholar
  56. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714PubMedCrossRefGoogle Scholar
  57. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20(2):265–272PubMedCentralPubMedCrossRefGoogle Scholar
  58. Li Y, Sidore C, Kang HM, Boehnke M, Abecasis G (2011) Low coverage sequencing: implications for the design of complex trait association studies. Genome Res 21:940–951PubMedCentralPubMedCrossRefGoogle Scholar
  59. Linares OA, Linares AL (2011) Computational opioid prescribing: a novel application of clinical pharmacokinetics. J Pain Palliat Care Pharmacother 25(2):125–135PubMedCentralPubMedCrossRefGoogle Scholar
  60. Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227(4693):1435–1441PubMedCrossRefGoogle Scholar
  61. Mac Gabhann F, Annex BH, Popel AS (2010) Gene therapy from the perspective of systems biology. Curr Opin Mol Ther 12(5):570–577PubMedCentralPubMedGoogle Scholar
  62. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies via imputation of genotypes. Nat Genet 39:906–913PubMedCrossRefGoogle Scholar
  63. Mitra S, Klar B, Huson DH (2009) Visual and statistical comparison of metagenomes. Bioinformatics 25(15):1849–1855PubMedCrossRefGoogle Scholar
  64. Navlakha S, Bar-Joseph Z (2011) Algorithms in nature: the convergence of systems biology and computational thinking. Mol Syst Biol 7:546PubMedCentralPubMedGoogle Scholar
  65. Nekrutenko A, Taylor J (2012) Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat Rev Genet 13(9):667–672PubMedCrossRefGoogle Scholar
  66. O’Connell J, Marchini J (2012) Joint genotype calling with array and sequence data. Genet Epidemiol 36(6):527–537. doi: 10.1002/gepi.21657 PubMedCrossRefGoogle Scholar
  67. Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G et al (2009) High-performance drug discovery: computational screening by combining docking and molecular dynamics simulations. PLoS Comput Biol 5(10):e1000528PubMedCentralPubMedCrossRefGoogle Scholar
  68. Ouzounis CA (2012) Rise and demise of bioinformatics? Promise and progress. PLoS Comput Biol 8(4):e1002487PubMedCentralPubMedCrossRefGoogle Scholar
  69. Overby CL, Tarczy-Hornoch P, Hoath JI, Kalet IJ, Veenstra D (2010) Feasibility of incorporating genomic knowledge into electronic medical records for pharmacogenomic clinical decision support. BMC Bioinformatics 11(Suppl 9):S10PubMedCentralPubMedCrossRefGoogle Scholar
  70. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2(12):e190PubMedCentralPubMedCrossRefGoogle Scholar
  71. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85(8):2444–2448PubMedCentralPubMedCrossRefGoogle Scholar
  72. Pleil JD, Sheldon LS (2011) Adapting concepts from systems biology to develop systems exposure event networks for exposure science research. Biomarkers 16(2):99–105PubMedCrossRefGoogle Scholar
  73. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 81(3):559–575PubMedCentralPubMedCrossRefGoogle Scholar
  74. Rebholz-Schuhmann D, Kirsch H, Arregui M, Gaudan S, Riethoven M, Stoehr P (2007) EBIMed–text crunching to gather facts for proteins from Medline. Bioinformatics 23(2):e237–e244PubMedCrossRefGoogle Scholar
  75. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276–277PubMedCrossRefGoogle Scholar
  76. Rinaldi F, Clematide S, Garten Y, Whirl-Carrillo M, Gong L, Hebert JM, Sangkuhl K, Thorn CF, Klein TE, Altman RB (2012) Using ODIN for a PharmGKB revalidation experiment. Database (Oxf) 2012:bas021Google Scholar
  77. Rodriguez B, Burrage K, Gavaghan D, Grau V, Kohl P, Noble D (2010) The systems biology approach to drug development: application to toxicity assessment of cardiac drugs. Clin Pharmacol Ther 88(1):130–134PubMedCrossRefGoogle Scholar
  78. Salomonis N, Hanspers K, Zambon AC, Vranizan K, Lawlor SC, Dahlquist KD, Doniger SW, Stuart J, Conklin BR, Pico AR (2007) GenMAPP 2: new features and resources for pathway analysis. BMC Bioinformatics 8:217PubMedCentralPubMedCrossRefGoogle Scholar
  79. Sarkar IN, Butte AJ, Lussier YA, Tarczy-Hornoch P, Ohno-Machado L (2011) Translational bioinformatics: linking knowledge across biological and clinical realms. J Am Med Inform Assoc 18:e354–e357CrossRefGoogle Scholar
  80. Schlitt T, Brazma A (2007) Current approaches to gene regulatory network modeling. BMC Bioinformatics 8(Suppl 6):S9PubMedCentralPubMedCrossRefGoogle Scholar
  81. Servin B, Stephens M (2007) Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet 3(7):e114PubMedCentralPubMedCrossRefGoogle Scholar
  82. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145PubMedCrossRefGoogle Scholar
  83. Silver PA, Way JC (2007) Molecular systems biology in drug development. Clin Pharmacol Ther 82(5):586–590PubMedCrossRefGoogle Scholar
  84. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123PubMedCentralPubMedCrossRefGoogle Scholar
  85. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197PubMedCrossRefGoogle Scholar
  86. Stabenau A, McVicker G, Melsopp C, Proctor G, Clamp M, Birney E (2004) The Ensembl core software libraries. Genome Res 4(5):929–933CrossRefGoogle Scholar
  87. Stajich J, Block D, Boulez K, Brenner S, Chervitz S, Dagdigian C, Fuellen G, Gilbert J, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall C, Osborne B, Pocock M, Schattner P, Senger M, Stein L, Stupka E, Wilkinson M, Birney E (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12(10):1611–1618PubMedCentralPubMedCrossRefGoogle Scholar
  88. Sun J, Wu Y, Xu H, Zhao Z (2012) DTome: a web-based tool for drug-target interactome construction. BMC Bioinformatics 13(Suppl 9):S7PubMedCentralPubMedCrossRefGoogle Scholar
  89. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568PubMedCentralPubMedCrossRefGoogle Scholar
  90. Tegnér JN, Compte A, Auffray C, An G, Cedersund G, Clermont G, Gutkin B, Oltvai ZN, Stephan KE, Thomas R, Villoslada P (2008) Computational disease modeling – fact or fiction? BMC Syst Biol 3:56CrossRefGoogle Scholar
  91. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCentralPubMedCrossRefGoogle Scholar
  92. Thorn CF, Klein TE, Altman RB (2010) Pharmacogenomics and bioinformatics: PharmGKB. Pharmacogenomics 11(4):501–505PubMedCentralPubMedCrossRefGoogle Scholar
  93. Vicini P (2010) Multiscale modeling in drug discovery and development: future opportunities and present challenges. Clin Pharmacol Ther 88(1):126–129PubMedCrossRefGoogle Scholar
  94. Warren RL, Butterfield YS, Morin RD, Siddiqui AS, Marra MA, Jones SJM (2005) Management and visualization of whole genome shotgun assemblies using SAM. Biotechniques 38:715–720PubMedCrossRefGoogle Scholar
  95. Wei T, Liao B, Ackermann BL, Jolly RA, Eckstein JA, Kulkarni NH, Helvering LM, Goldstein KM, Shou J, Estrem ST, Ryan TP, Colet JM, Thomas CE, Stevens JL, Onyia JE (2005) Data-driven analysis approach for biomarker discovery using molecular-profiling technologies. Biomarkers 10(2–3):153–172PubMedCrossRefGoogle Scholar
  96. Wist AD, Berger SI, Iyengar R (2009) Systems pharmacology and genome medicine: a future perspective. Genome Med 1(1):11PubMedCentralPubMedCrossRefGoogle Scholar
  97. Yang R, Niepel M, Mitchison TK, Sorger PK (2010) Dissecting variability in responses to cancer chemotherapy through systems pharmacology. Clin Pharmacol Ther 88(1):34–38PubMedCentralPubMedCrossRefGoogle Scholar
  98. Yao L, Evans JA, Rzhetsky A (2009) Novel opportunities for computational biology and sociology in drug discovery. Trends Biotechnol 27(9):531–540PubMedCentralPubMedCrossRefGoogle Scholar
  99. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Computational Genomics DepartmentNational Institute of Genomic MedicineMéxico CityMexico

Personalised recommendations