Designing and Implementing Pharmacogenomics Study

  • Yeşim Aydın Son
  • Şükrü Tüzmen
  • Candan Hızel


Pharmacogenomics of today has its origins in the 1950s with pioneering studies of monogenic variations in drug metabolism and pharmacokinetics. With the completion of the Human Genome Project in 2003 and the advances in genomics such as the high-throughput genomics technologies, we are now in the postgenomics era. This transition is increasingly marked with study of polygenic and multifactorial traits such as common complex human diseases as well as pharmacodynamic differences among populations. Changes that emerge from postgenomics medicine are not, however, limited to seismic shifts in scale and scope of pharmacogenetics research. Importantly, many low- and middle-income countries (LMICs) of the South, Asia-Pacific, Eastern Mediterranean, and the Middle East are becoming notable contributors with rapid globalization of science and increasing access to genomics technologies. This brings about, in parallel, an acute demand for regional capacity building in LMICs so that the future evaluation and implementation of postgenomics technologies in personalized medicine take place in an integrated, sustainable, and equitable manner. This chapter aims to highlight the potential applications and opportunities as well as technical and strategic issues that this field offers to influence medical care.


Drug Response GWAS Analysis Alternative Splice Form Pharmacogenomics Study Predictive Medicine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham JE, Maranian MJ, Driver KE, Platte R, Kalmyrzaev B, Baynes C, Luccarini C, Shah M, Ingle S, Greenberg D, Earl HM, Dunning AM, Pharoah PD, Caldas C (2010) CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen. Breast Cancer Res 12:R64PubMedCentralPubMedGoogle Scholar
  2. Albers LJ, Ozdemir V (2004) Pharmacogenomic-guided rational therapeutic drug monitoring: conceptual framework and application platforms for atypical antipsychotics. Curr Med Chem 11:297–312PubMedGoogle Scholar
  3. Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B, Janke O, Endruschat J, Durieux B, Roder N, Loffler K, Lange C, Fechtner M, Mopert K, Fisch G, Dames S, Arnold W, Jochims K, Giese K, Wiedenmann B, Scholz A, Kaufmann J (2008) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 68:9788–9798PubMedGoogle Scholar
  4. Altman DG, Goodman SN (1994) SN transfer of technology from statistical journals to the biomedical literature. Past Trends Future Predict 272:129–132Google Scholar
  5. Amarzguioui M, Prydz H (2004) An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 316:1050–1058PubMedGoogle Scholar
  6. Amarzguioui M, Holen T, Babaie E, Prydz H (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31:589–595PubMedCentralPubMedGoogle Scholar
  7. Anderson E, Boese Q, Khvorova A, Karpilow J (2008) Identifying siRNA-induced off-targets by microarray analysis. Methods Mol Biol 442:45–63PubMedGoogle Scholar
  8. Arabsolghar R, Rasti M (2012) Optimal electroporation condition for small interfering RNA transfection into MDA-MB-468 cell line. Iran J Med Sci 37:187–193PubMedCentralPubMedGoogle Scholar
  9. Azuaje F (2010) Bioinformatics and biomarker discovery: omic data analysis for personalized medicine. Wiley, ChichesterGoogle Scholar
  10. Bartlett G, Zgheib N, Manamperi A, Wang W, Hizel C, Kahveci R, Yazan Y (2012) Pharmacogenomics in primary care: a crucial entry point for global personalized medicine? Curr Pharmacogenomics Person Med 10:101–105PubMedCentralPubMedGoogle Scholar
  11. Becquemont L (2009) Pharmacogenomics of adverse drug reactions: practical applications and perspectives. Pharmacogenomics 10:961–969PubMedGoogle Scholar
  12. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437PubMedGoogle Scholar
  13. Boden D, Pusch O, Lee F, Tucker L, Shank PR, Ramratnam B (2003) Promoter choice affects the potency of HIV-1 specific RNA interference. Nucleic Acids Res 31:5033–5038PubMedCentralPubMedGoogle Scholar
  14. Caplen NJ, Mousses S (2003) Short interfering RNA (siRNA)-mediated RNA interference (RNAi) in human cells. Ann N Y Acad Sci 1002:56–62PubMedGoogle Scholar
  15. Castillo B, Bromberg L, López X, Badillo V, González Feliciano JA, González CI, Hatton TA, Barletta G (2012) Intracellular delivery of siRNA by polycationic superparamagnetic nanoparticles. J Drug Deliv 2012:218940PubMedCentralPubMedGoogle Scholar
  16. CDC (2006) Evaluation of genetic testing. ACCE: A CDC-sponsored project carried out by the Foundation of Blood Research.
  17. Chalupnikova K, Nejepinska J, Svoboda P (2013) Production and application of long dsRNA in mammalian cells. Methods Mol Biol 942:291–314. doi: 10.1007/978-1-62703-119-6_16 PubMedGoogle Scholar
  18. Chou WH, Yan FX, de Leon J, Barnhill J, Rogers T, Cronin M, Pho M, Xiao V, Ryder TB, Liu WW, Teiling C, Wedlund PJ (2000) Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol 20:246–251PubMedGoogle Scholar
  19. Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, Provost JP, Le Net JL, Baker D, Walley RJ, Everett JR, Nicholson JK (2006) Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440:1073–1077PubMedGoogle Scholar
  20. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK (2009) Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A 106:14728–14733 [Epub 2009 Aug 10]PubMedCentralPubMedGoogle Scholar
  21. Corrigan OP (2011) Personalized medicine in a consumer Age. Curr Pharmacogenomics Personal Med 9:168–176Google Scholar
  22. Crowley JJ, Sullivan PF, McLeod HL (2009) Pharmacogenomic genome-wide association studies: lessons learned thus far. Pharmacogenomics 10:161–163PubMedGoogle Scholar
  23. Daka A, Peer D (2012) RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev 64:1508–1521PubMedGoogle Scholar
  24. Daly AK (2010) Genome-wide association studies in pharmacogenomics. Nat Rev Genet 11:241–246PubMedGoogle Scholar
  25. Das AT, Brummelkamp TR, Westerhout EM, Vink M, Madiredjo M, Bernards R, Berkhout B (2004) Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 78:2601–2605PubMedCentralPubMedGoogle Scholar
  26. Das S, Ghosal S, Kozak K, Chakrabarti J (2012) An siRNA designing tool with a unique functional off-target filtering approach. J Biomol Struct Dyn [Epub ahead of print] PMID: 23140209Google Scholar
  27. Derrien B, Baumberger N, Schepetilnikov M, Viotti C, De Cillia J, Ziegler-Graff V, Isono E, Schumacher K, Genschik P (2012) Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc Natl Acad Sci U S A 109:15942–15946PubMedCentralPubMedGoogle Scholar
  28. Donohue MM, Tirschwell DL (2011) Implications of pharmacogenetic testing for patients taking warfarin or clopidogrel. Curr Neurol Neurosci Rep 11:52–60PubMedGoogle Scholar
  29. Dua P, Yoo JW, Kim S, Lee DK (2011) Modified siRNA structure with a single nucleotide bulge overcomes conventional siRNA-mediated off-target silencing. Mol Ther 19:1676–1687PubMedCentralPubMedGoogle Scholar
  30. Duncan TC (2009) Genome-wide association studies for discrete traits. Genet Epidemiol 33(Suppl 1):1098–2272Google Scholar
  31. Duncan TC et al (2009) Methodological issues in multistage genome-wide association studies. Stat Sci 24:414–429Google Scholar
  32. Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467PubMedGoogle Scholar
  33. Eberle MA (2007) Power to detect risk alleles using genome-wide tag SNP panels. PLoS Genet 3(10):e170PubMedCentralGoogle Scholar
  34. Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK, Downward J, Ellenberg J, Fraser AG, Hacohen N, Hahn WC, Jackson AL, Kiger A, Linsley PS, Lum L, Ma Y, Mathey-Prevot B, Root DE, Sabatini DM, Taipale J, Perrimon N, Bernards R (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3:777–779PubMedGoogle Scholar
  35. Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199–213PubMedGoogle Scholar
  36. Evrard A, Mbatchi L (2012) Genetic polymorphisms of drug metabolizing enzymes and transporters: the long way from bench to bedside. Curr Top Med Chem 12:1720–1729PubMedGoogle Scholar
  37. Faruki H, Heine U, Brown T, Koester R, Lai-Goldman M (2007) HLA-B*5701 clinical testing: early experience in the United States. Pharmacogenet Genomics 17:857–860PubMedGoogle Scholar
  38. Filipowicz W (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122:17–20PubMedGoogle Scholar
  39. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedGoogle Scholar
  40. Fisher R (1948) Combining independent tests of significance. Am Stat 2(Suppl):30Google Scholar
  41. Fisher R (1958) Statistical methods for research workers. Hafner, New YorkGoogle Scholar
  42. Frueh FW, Amur S, Mummaneni P, Epstein RS, Aubert RE, DeLuca TM, Verbrugge RR, Burckart GJ, Lesko LJ (2008) Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: prevalence of related drug use. Pharmacotherapy 28:992–998PubMedGoogle Scholar
  43. Ganesan AK, Ho H, Bodemann B, Petersen S, Aruri J, Koshy S, Richardson Z, Le LQ, Krasieva T, Roth MG, Farmer P, White MA (2008) Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet 4:e1000298PubMedCentralPubMedGoogle Scholar
  44. Gaur RK (2006) RNA interference: a potential therapeutic tool for silencing splice isoforms linked to human diseases. Biotechniques 40(Suppl):15–22Google Scholar
  45. Gervasini G, Benítez J, Carrillo JA (2010) Pharmacogenetic testing and therapeutic drug monitoring are complementary tools for optimal individualization of drug therapy. Eur J Clin Pharmacol 66:755–774PubMedGoogle Scholar
  46. Ghosh D, Poisson L (2009) “Omics” data and levels of evidence for biomarker discovery. Genomics 93:13–16PubMedGoogle Scholar
  47. Ginsburg GS, Willard HF (2009) Genomic and personalized medicine: foundations and applications. Transl Res 154:277–287PubMedGoogle Scholar
  48. Gitlin L, Karelsky S, Andino R (2002) Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418:430–434PubMedGoogle Scholar
  49. Goodswen S et al (2010) FunctSNP: an R package to link SNPs to functional knowledge and dbAutoMaker: a suite of Perl scripts to build SNP databases. BMC Bioinformatics 11(1):311PubMedCentralPubMedGoogle Scholar
  50. Gordon D et al (2002) Power and sample size calculations for case-control genetic association tests when errors present: application to single nucleotide polymorphisms. Hum Hered 54:22–33PubMedGoogle Scholar
  51. Grice GR, Seaton TL, Woodland AM et al (2006) Defining the opportunity for pharmacogenetic intervention in primary care. Pharmacogenomics 7(1):61–65PubMedGoogle Scholar
  52. Grishok A, Hoersch S, Sharp PA (2008) RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans. Proc Natl Acad Sci U S A 105:20386–20391PubMedCentralPubMedGoogle Scholar
  53. Grossman I (2007) Routine pharmacogenetic testing in clinical practice: dream or reality? Pharmacogenomics 8:1449–1459PubMedGoogle Scholar
  54. Gurwitz D, Lunshof JE (2011) Personalized participatory medicine: sharing knowledge and uncertainty. Genome Med 3:69PubMedCentralPubMedGoogle Scholar
  55. Gurwitz D, McLeod HL (2009) Genome-wide association studies: powerful tools for improving drug safety and efficacy. Pharmacogenomics 10:157–159PubMedGoogle Scholar
  56. Haley B, Tang G, Zamore PD (2003) In vitro analysis of RNA interference in Drosophila melanogaster. Methods 30:330–336PubMedGoogle Scholar
  57. Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555PubMedCentralPubMedGoogle Scholar
  58. Han SE, Kang H, Shim GY, Suh MS, Kim SJ, Kim JS, Oh YK (2008) Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA. Int J Pharm 353:260–269PubMedGoogle Scholar
  59. Hannon GJ (2002) RNA interference. Nature 418:244–251PubMedGoogle Scholar
  60. Heidel JD, Hu S, Liu XF, Triche TJ, Davis ME (2004) Lack of interferon response in animals to naked siRNAs. Nat Biotechnol 22:1579–1582PubMedGoogle Scholar
  61. Hizel C, Gök S, Sardas S, Bernard-Gallon D, Maugard C, Genç E, on behalf of the Istanbul Working Group on Personalized Medicine (2009) Personalized and predictive medicine in Turkey: a symposium report of the Istanbul Working Group on Personalized Medicine, Istanbul, Turkey, September 10–12, 2009. Curr Pharmacogenomics Person Med 7:297–301Google Scholar
  62. Holland AJ, Fachinetti D, Han JS, Cleveland DW (2012) Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. Proc Natl Acad Sci U S A 109:E3350–E3357PubMedCentralPubMedGoogle Scholar
  63. Hong-Guang Xie, Frueh FW (2005) Pharmacogenomics steps toward personalized medicine. Personal Med 2:325–337Google Scholar
  64. Huang RS, Ratain MJ (2009) Pharmacogenetics and pharmacogenomics of anticancer agents. CA Cancer J Clin 59:42–55PubMedCentralPubMedGoogle Scholar
  65. Hughes S, Hughes A, Brothers C, Spreen W, Thorborn D, CNA106030 Study Team (2008) PREDICT-1 (CNA106030): the first powered, prospective trial of pharmacogenetic screening to reduce drug adverse events. Pharm Stat 7:121–129PubMedGoogle Scholar
  66. Huppi K, Martin SE, Caplen NJ (2005) Defining and assaying RNAi in mammalian cells. Mol Cell 17:1–10PubMedGoogle Scholar
  67. Ingelman-Sundberg M, Gomez A (2010) The past, present and future of pharmacoepigenomics. Pharmacogenomics 11:625–627PubMedGoogle Scholar
  68. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637PubMedGoogle Scholar
  69. Jennings L, Van Deerlin VM, Gulley ML, College of American Pathologists Molecular Pathology Resource Committee (2009) Recommended principles and practices for validating clinical molecular pathology tests. Arch Pathol Lab Med 133:743–755PubMedGoogle Scholar
  70. Jones SW, Lindsay MA (2004) Overview of target validation and the impact of oligonucleotides. Curr Opin Mol Ther 6:546–550, ReviewPubMedGoogle Scholar
  71. Jones SW, Souza PM, Lindsay MA (2004) siRNA for gene silencing: a route to drug target discovery. Curr Opin Pharmacol 4:522–527PubMedGoogle Scholar
  72. Khoury MJ (2009) Interview: Dr. Muin J. Khoury discusses the future of public health genomics and why it matters for personalized medicine and global health. Curr Pharmacogenomics Person Med 7:158–163Google Scholar
  73. Khoury MJ, Rich EC, Randhawa G, Teutsch SM, Niederhuber J (2009) Comparative effectiveness research and genomic medicine: an evolving partnership for 21st century medicine. Genet Med 11:707–711PubMedGoogle Scholar
  74. Kim JK, Gabel HW, Kamath RS, Tewari M, Pasquinelli A, Rual JF, Kennedy S, Dybbs M, Bertin N, Kaplan JM, Vidal M, Ruvkun G (2005) Functional genomic analysis of RNA interference in C. elegans. Science 308:1164–1167PubMedGoogle Scholar
  75. Kim JY, Choung S, Lee EJ, Kim YJ, Choi YC (2007) Immune activation by siRNA/liposome complexes in mice is sequence- independent: lack of a role for Toll-like receptor 3 signaling. Mol Cells 24(2):247–254PubMedGoogle Scholar
  76. Kimura J, Nguyen ST, Liu H, Taira N, Miki Y, Yoshida K (2008) A functional genome-wide RNAi screen identifies TAF1 as a regulator for apoptosis in response to genotoxic stress. Nucleic Acids Res 36:5250–5259PubMedCentralPubMedGoogle Scholar
  77. Kirchheiner J, Fuhr U, Brockmöller J (2005) Pharmacogenetics-based therapeutic recommendations – ready for clinical practice? Nat Rev Drug Discov 4:639–647PubMedGoogle Scholar
  78. Kittler R, Surendranath V, Heninger AK, Slabicki M, Theis M, Putz G, Franke K, Caldarelli A, Grabner H, Kozak K, Wagner J, Rees E, Korn B, Frenzel C, Sachse C, Sönnichsen B, Guo J, Schelter J, Burchard J, Linsley PS, Jackson AL, Habermann B, Buchholz F (2007) Genome-wide resources of endoribonuclease-prepared short interfering RNAs for specific loss-of-function studies. Nat Methods 4(4):337–344PubMedGoogle Scholar
  79. Kitzmiller JP, Groen DK, Phelps MA, Sadee W (2011) Pharmacogenomic testing: relevance in medical practice: why drugs work in some patients but not in others. Cleve Clin J Med 78:243–257PubMedCentralPubMedGoogle Scholar
  80. Krynetski EY, Tai HL, Yates CR, Fessing MY, Loennechen T, Schuetz JD, Relling MV, Evans WE (1996) Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics 6:279–290PubMedGoogle Scholar
  81. Kubo T, Yanagihara K, Takei Y, Mihara K, Sato Y, Seyama T (2012) SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity. Biochem Biophys Res Commun 426(4):571–577PubMedGoogle Scholar
  82. Kuuselo R, Savinainen K, Azorsa DO, Basu GD, Karhu R, Tuzmen S, Mousses S, Kallioniemi A (2007) Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification. Cancer Res 67:1943–1949PubMedGoogle Scholar
  83. La Thangue NB, Kerr DJ (2011) Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol 8:587–596. doi: 10.1038/nrclinonc.2011.121 PubMedGoogle Scholar
  84. Lai-Goldman M, Faruki H (2008) Abacavir hypersensitivity: a model system for pharmacogenetic test adoption. Genet Med 10:874–878PubMedGoogle Scholar
  85. Lazarou J, Pomeranz B, Corey P (1998) Incidence of adverse drug reactions in hospitalized patients. JAMA 279:1200–1205PubMedGoogle Scholar
  86. Lee KC, Ma JD, Kuo GM (2010) Pharmacogenomics: bridging the gap between science and practice. J Am Pharm Assoc 50:e1–e14; quiz e15–17Google Scholar
  87. Lehmann EL (1993) The Fisher, Neyman-Pearson theories of testing hypotheses: one theory or two? J Am Stat Assoc 88:1241–1249Google Scholar
  88. Lesko LJ, Zineh I, Huang SM (2010) What is clinical utility and why should we care? Clin Pharmacol Ther 88:729–733PubMedGoogle Scholar
  89. Lima WF, Prakash TP, Murray HM, Kinberger GA, Li W, Chappell AE, Li CS, Murray SF, Gaus H, Seth PP, Swayze EE, Crooke ST (2012) Single-stranded siRNAs activate RNAi in animals. Cell 150(5):883–894PubMedGoogle Scholar
  90. Lindpaintner K (2002) The impact of pharmacogenetics and pharmacogenomics on drug discovery. Nat Rev Drug Discov 1:463–469PubMedGoogle Scholar
  91. Ma Z, Li J, He F, Wilson A, Pitt B, Li S (2005) Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun 330:755–759PubMedGoogle Scholar
  92. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A 105:512–517PubMedCentralPubMedGoogle Scholar
  93. Mariotti M, Castiglioni S, Maier JA (2009) Inhibition of T24 human bladder carcinoma cell migration by RNA interference suppressing the expression of HD-PTP. Cancer Lett 273:155–163PubMedGoogle Scholar
  94. Marsh S, Hoskins JM (2010) Irinotecan pharmacogenomics. Pharmacogenomics 11:1003–1010PubMedCentralPubMedGoogle Scholar
  95. Matranga C, Zamore PD (2007) Small silencing RNAs. Curr Biol 17:R789–R793PubMedGoogle Scholar
  96. McConnell KI, Schweller RM, Diehl MR, Suh J (2011) Live-cell microarray surface coatings supporting reverse transduction by adeno-associated viruses. BioTechniques 51(4):255–258PubMedGoogle Scholar
  97. McLeod HL, Krynetski EY, Relling MV, Evans WE (2000) Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 14:567–572PubMedGoogle Scholar
  98. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747PubMedGoogle Scholar
  99. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377PubMedGoogle Scholar
  100. Medarova Z, Kumar M, Ng SW, Yang J, Barteneva N, Evgenov NV, Petkova V, Moore A (2008) Multifunctional magnetic nanocarriers for image-tagged siRNA delivery to intact pancreatic islets. Transplantation 86:1170–1177PubMedCentralPubMedGoogle Scholar
  101. Meyer UA (2004) Pharmacogenetics – five decades of therapeutic lessons from genetic diversity. Nat Rev Genet 5:669–676PubMedGoogle Scholar
  102. Milos PM, Seymour AB (2004) Emerging strategies and applications of pharmacogenomics. Hum Genomics 1:444–455PubMedCentralPubMedGoogle Scholar
  103. Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M, Hautaniemi S, Elkahloun AG, Lotufo RA, Choudary A, Dougherty ER, Suh E, Kallioniemi O (2003) RNAi microarray analysis in cultured mammalian cells. Genome Res 13:2341–2347PubMedCentralPubMedGoogle Scholar
  104. Mrazek DA, Lerman C (2011) Facilitating clinical implementation of pharmacogenomics. JAMA 306:304–305PubMedCentralPubMedGoogle Scholar
  105. Naito Y, Yamada T, Ui-Tei K, Morishita S, Saigo K (2004) siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res 32(Web Server issue):W124–W129PubMedCentralPubMedGoogle Scholar
  106. Nakayashiki H, Nguyen QB (2008) RNA interference: roles in fungal biology. Curr Opin Microbiol 11:494–502PubMedGoogle Scholar
  107. Navratil V, de Chassey B, Combe CR, Lotteau V (2011) When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases. BMC Syst Biol 5:13PubMedCentralPubMedGoogle Scholar
  108. Neyman J, Pearson E (1933) On the problem of the most efficient tests of statistical hypotheses. Philos Trans R Soc A 231:289–337Google Scholar
  109. Nolte A, Ott K, Rohayem J, Walker T, Schlensak C, Wendel HP (2013) Modification of small interfering RNAs to prevent off-target effects by the sense strand. N Biotechnol 30:159–165PubMedGoogle Scholar
  110. Normile D (2007) Consortium hopes to map human history in Asia. Science 306(5702):1667Google Scholar
  111. O’Donnell PH, Bush A, Spitz J, Danahey K, Saner D, Das S, Cox NJ, Ratain MJ (2012) The 1200 patients project: creating a new medical model system for clinical implementation of pharmacogenomics. Clin Pharmacol Ther 92(4):446–449PubMedGoogle Scholar
  112. Ohrt T, Mutze J, Staroske W, Weinmann L, Hock J, Crell K, Meister G, Schwille P (2008) Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res 36:6439–6449PubMedCentralPubMedGoogle Scholar
  113. Ortega-Paino E, Fransson J, Ek S, Borrebaeck CA (2008) Functionally associated targets in mantle cell lymphoma as defined by DNA microarrays and RNA interference. Blood 111:1617–1624PubMedGoogle Scholar
  114. Ovcharenko D, Jarvis R, Hunicke-Smith S, Kelnar K, Brown D (2005) High-throughput RNAi screening in vitro: from cell lines to primary cells. RNA 11:985–993PubMedCentralPubMedGoogle Scholar
  115. Ozdemir V (2010) Pharmacogenomics: reflecting on the old and new social, ethical and policy issues in postgenomics medicine. In: Schwab M, Kaschka WP, Spina E (eds) Pharmacogenomics in psychiatry, vol 25, Advances in biological psychiatry. Karger, Basel, pp 12–29Google Scholar
  116. Ozdemir V, Knoppers BM (2010) One size does not fit all: toward “upstream ethics”? Am J Bioeth 10:42–44PubMedGoogle Scholar
  117. Ozdemir V, Husereau D, Hyland S, Samper S, Salleh MZ (2009) Personalized medicine beyond genomics: new technologies, global health diplomacy and anticipatory governance. Curr Pharmacogenomics Person Med 7:225–230PubMedCentralPubMedGoogle Scholar
  118. Ozdemir V, Joly Y, Knoppers BM (2011) ACCE, pharmacogenomics, and stopping clinical trials: time to extend the CONSORT statement? Am J Bioeth 11:11–13PubMedGoogle Scholar
  119. Ozdemir V, Fisher E, Dove ES, Burton H, Wright GEB, Masellis M, Warnich L (2012a) End of the beginning and public health pharmacogenomics: knowledge in ‘mode 2’ and P5 medicine. Curr Pharmacogenomics Person Med 10:1–6PubMedCentralPubMedGoogle Scholar
  120. Ozdemir V, Joly Y, Dove ES, Karalis A, Avard D, Knoppers BM (2012b) Are we asking the right ethics questions on drug shortages? Suggestions for a global and anticipatory ethics framework. Am J Bioeth 12:13–15PubMedGoogle Scholar
  121. Özer M, Demirci Y, Hizel C, Sarikaya S, Karalti İ, Kaspar Ç, Alpan S, Genç E (2013) Impact of genetic factors (CYP2C9, VKORC1 and CYP4F2) on warfarin dose requirement in the Turkish population. Basic Clin Pharmacol Toxicol 112:209–214PubMedGoogle Scholar
  122. Paddison PJ, Hannon GJ (2003) siRNAs and shRNAs: skeleton keys to the human genome. Curr Opin Mol Ther 5:217–224PubMedGoogle Scholar
  123. Palomaki GE, Bradley LA, Douglas MP, Kolor K, Dotson WD (2009) Can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan? An evidence-based review. Genet Med 11:21–34PubMedCentralPubMedGoogle Scholar
  124. Panagiotou AO, Ioannidis JPA (2012) What should the genome-wide significance threshold be? Empirical replication of borderline genetic associations. Int J Epidemiol 41(1):273–286PubMedGoogle Scholar
  125. Pang T (2009) Pharmacogenomics and personalized medicine for the developing world – too soon or just-in-time? A personal view from the World Health Organization. Curr Pharmacogenomics Person Med 7:149–157Google Scholar
  126. Patel C, Muthuswamy J (2012) High efficiency, site-specific transfection of adherent cells with siRNA using microelectrode arrays (MEA). J Vis Exp (67). PII:4415. doi: 10.3791/4415
  127. Petrocca F, Lieberman J (2011) Promise and challenge of RNA interference-based therapy for cancer. J Clin Oncol 29(6):747–754, ReviewPubMedGoogle Scholar
  128. Phillips KA (2008) Closing the evidence gap in the use of emerging testing technologies in clinical practice. JAMA 300:2542–2544PubMedCentralPubMedGoogle Scholar
  129. Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W (2001) Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 286:2270–2279PubMedGoogle Scholar
  130. Pico AR (2009) SNPLogic: an interactive single nucleotide polymorphism selection, annotation, and prioritization system. Nucleic Acids Res 37:D803–D809PubMedCentralPubMedGoogle Scholar
  131. Pieraets S, Cox L, Gielen O, Cools J (2012) Development of a siRNA and shRNA screening system based on a kinase fusion protein. RNA 18(6):1296–1306 [Epub 2012 Apr 26]PubMedCentralPubMedGoogle Scholar
  132. Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19(1):149–150PubMedGoogle Scholar
  133. Purcell S et al (2007) PLINK: a toolset for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCentralPubMedGoogle Scholar
  134. Rauch A, Nolan D, Martin A, McKinnon E, Almeida C, Mallal S (2006) Prospective genetic screening decreases the incidence of abacavir hypersensitivity reactions in the Western Australian HIV cohort study. Clin Infect Dis 43:99–102PubMedGoogle Scholar
  135. Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17:502–510PubMedGoogle Scholar
  136. Reiss SM, American Pharmacists Association (2011) Integrating pharmacogenomics into pharmacy practice via medication therapy management. J Am Pharm Assoc 51:e64–e74Google Scholar
  137. Rines DR, Gomez-Ferreria MA, Zhou Y, DeJesus P, Grob S, Batalov S, Labow M, Huesken D, Mickanin C, Hall J, Reinhardt M, Natt F, Lange J, Sharp DJ, Chanda SK, Caldwell JS (2008) Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells. Genome Biol 9:R44PubMedCentralPubMedGoogle Scholar
  138. Rocheleau CE (2012) RNA interference: systemic RNAi SIDes with endosomes. Curr Biol 22(20):R873–R875. doi: 10.1016/j.cub.2012.08.039 PubMedGoogle Scholar
  139. Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, Collins SR, Qu H, Shales M, Park HO, Hayles J, Hoe KL, Kim DU, Ideker T, Grewal SI, Weissman JS, Krogan NJ (2008) Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322:405–410PubMedCentralPubMedGoogle Scholar
  140. Rossi JJ (2008) Expression strategies for short hairpin RNA interference triggers. Hum Gene Ther 19:313–317PubMedCentralPubMedGoogle Scholar
  141. Ruffié J (1993) Naissance de la Médecine Prédictive. Odile Jacob, ParisGoogle Scholar
  142. Ryan MC, Zeeberg BR, Caplen NJ, Cleland JA, Kahn AB, Liu H, Weinstein JN (2008) SpliceCenter: a suite of web-based bioinformatic applications for evaluating the impact of alternative splicing on RT-PCR, RNAi, microarray, and peptide-based studies. BMC Bioinformatics 9:313PubMedCentralPubMedGoogle Scholar
  143. Saccone SF (2010) SPOT: a web-based tool for using biological databases to prioritize SNPs after a genome-wide association study. Nucleic Acids Res 38:W201–W209PubMedCentralPubMedGoogle Scholar
  144. Sadee W (2011) Genomics and personalized medicine. Int J Pharm 415:2–4PubMedGoogle Scholar
  145. Sagoo GS, Little J, Higgins JPT (2009) Systematic reviews of genetic association studies. Human Genome Epidemiology Network [Makale]. PLoS Med 6(3):e28PubMedGoogle Scholar
  146. Saleem S, Schwedes CC, Ellis LL, Grady ST, Adams RL, Johnson N, Whittington JR, Carney GE (2012) Drosophila melanogaster p24 trafficking proteins have vital roles in development and reproduction. Mech Dev 129(5–8):177–191PubMedGoogle Scholar
  147. Sanderson S, Zimmern R, Kroese M, Higgins J, Patch C, Emery J (2005) How can the evaluation of genetic tests be enhanced? Lessons learned from the ACCE framework and evaluating genetic tests in the United Kingdom. Genet Med 7:495–500PubMedGoogle Scholar
  148. Sano M, Sierant M, Miyagishi M, Nakanishi M, Takagi Y, Sutou S (2008) Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res 36:5812–5821PubMedCentralPubMedGoogle Scholar
  149. Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics 53:1253–1261PubMedGoogle Scholar
  150. Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M, Collins FS (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A 101:1892–1897PubMedCentralPubMedGoogle Scholar
  151. Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, Li MZ, Zhao Z, Smogorzewska A, Sowa ME, Ang XL, Westbrook TF, Liang AC, Chang K, Hackett JA, Harper JW, Hannon GJ, Elledge SJ (2008) Cancer proliferation gene discovery through functional genomics. Science 319:620–624PubMedCentralPubMedGoogle Scholar
  152. Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Vlak JM, Kohl A, Khromykh AA, Pijlman GP (2012) Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. J Virol 86:13486–13500PubMedCentralPubMedGoogle Scholar
  153. Schøler LV, Møller TH, Nørgaard S, Vestergaard L, Olsen A (2012) Isolating genes involved with genotoxic drug response in the nematode Caenorhabditis elegans using genome-wide RNAi screening. Methods Mol Biol 920:27–38. doi: 10.1007/978-1-61779-998-3_3 PubMedGoogle Scholar
  154. Schwarz EM, Kato M, Sternberg PW (2012) Functional transcriptomics of a migrating cell in Caenorhabditis elegans. Proc Natl Acad Sci U S A 109(40):16246–16251. doi: 10.1073/pnas.1203045109 [Epub 2012 Sep 18]PubMedCentralPubMedGoogle Scholar
  155. Scott SA (2011) Personalizing medicine with clinical pharmacogenetics. Genet Med 13:987–995. doi: 10.1097/GIM.0b013e318238b38c PubMedCentralPubMedGoogle Scholar
  156. Seip RL, Duconge J, Ruaño G (2010) Implementing genotype-guided antithrombotic therapy. Future Cardiol 6:409–424PubMedCentralPubMedGoogle Scholar
  157. Semizarov D, Kroeger P, Fesik S (2004) siRNA-mediated gene silencing: a global genome view. Nucleic Acids Res 32:3836–3845PubMedCentralPubMedGoogle Scholar
  158. Sgaier SK, Jha P, Mony P, Kurpad A, Lakshmi V, Kumar R, Ganguly NK (2007) Biobanks in developing countries: needs and feasibility. Science 318:1074–1075PubMedGoogle Scholar
  159. Sheffield LJ, Phillimore HE (2009) Clinical use of pharmacogenomic tests in. Clin Biochem Rev 30:55–65PubMedCentralPubMedGoogle Scholar
  160. Shen TH (2009) Carlson CS and Tarczy-Hornoch P SNPit: a federated data integration system for the purpose of functional SNP annotation. Comput Methods Programs Biomed 95(2):181–189PubMedCentralPubMedGoogle Scholar
  161. Shum D, Bhinder B, Ramirez CN, Radu C, Calder PA, Beauchamp L, Farazi T, Landthaler M, Tuschi T, Magdaleno S, Djaballah H (2013) An arrayed RNA interference genome-wide screen identifies candidate genes involved in the MicroRNA 21 biogenesis pathway. Assay Drug Dev Technol 11:191–205PubMedGoogle Scholar
  162. Sibley CR, Wood MJ (2011) Identification of allele-specific RNAi effectors targeting genetic forms of Parkinson’s disease. PLoS One 6(10):e26194 [Epub 2011]PubMedCentralPubMedGoogle Scholar
  163. Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR, Elledge SJ, Hannon GJ, Chang K (2008) Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319:617–620PubMedCentralPubMedGoogle Scholar
  164. Skol AD et al (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38:209–213PubMedGoogle Scholar
  165. Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, Hewitson M, Holz C, Khan M, Lazik S, Martin C, Nitzsche B, Ruer M, Stamford J, Winzi M, Heinkel R, Roder M, Finell J, Hantsch H, Jones SJ, Jones M, Piano F, Gunsalus KC, Oegema K, Gonczy P, Coulson A, Hyman AA, Echeverri CJ (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–469PubMedGoogle Scholar
  166. Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516PubMedCentralPubMedGoogle Scholar
  167. Squassina A, Manchia M, Manolopoulos VG, Artac M, Lappa-Manakou C, Karkabouna S, Mitropoulos K, Del Zompo M, Patrinos GP (2010) Realities and expectations of pharmacogenomics and personalized medicine: impact of translating genetic knowledge into clinical practice. Pharmacogenomics 11:1149–1167PubMedGoogle Scholar
  168. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440–9445PubMedCentralPubMedGoogle Scholar
  169. Stroschein-Stevenson SL, Foley E, O’Farrell PH, Johnson AD (2009) Phagocytosis of Candida albicans by RNAi-treated Drosophila S2 cells. Methods Mol Biol 470:347–358PubMedGoogle Scholar
  170. Stuart AS (2011) Personalizing medicine with clinical pharmacogenetics. Genet Med 13:987–995Google Scholar
  171. Suarez-Kurtz G (2004) Pharmacogenomics in admixed populations: The Brazilian Pharmacogenetics/pharmacogenomics network – REFARGEN. Pharmacogenomics J 4:347–348PubMedGoogle Scholar
  172. Sun TM, Du JZ, Yan LF, Mao HQ, Wang J (2008) Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials 29:4348–4355PubMedGoogle Scholar
  173. Sun X, Rogoff HA, Li CJ (2008) Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol 26:1379–1382PubMedGoogle Scholar
  174. Swen JJ, Huizinga TW, Gelderblom H, de Vries EG, Assendelft WJ, Kirchheiner J, Guchelaar HJ (2007) Translating pharmacogenomics: challenges on the road to the clinic. PLoS Med 4:e209PubMedCentralPubMedGoogle Scholar
  175. Teutsch SM, Bradley LA, Palomaki GE, Haddow JE, Piper M, Calonge N, Dotson WD, Douglas MP, Berg AO, EGAPP Working Group (2009) The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) initiative: methods of the EGAPP Working Group. Genet Med 11:3–14PubMedCentralPubMedGoogle Scholar
  176. Theis M, Buchholz F (2010) MISSION esiRNA for RNAi screening in mammalian cells. J Vis Exp (39). PII:2008. doi: 10.3791/2008
  177. Thomas RK, Weir B, Meyerson M (2006) Genomic approaches to lung cancer. Clin Cancer Res 12:4384s–4391sPubMedGoogle Scholar
  178. Tian Y, Liao IH, Zhan X, Gunther JR, Ander BP, Liu D, Lit L, Jickling GC, Corbett BA, Bos-Veneman NG, Hoekstra PJ, Sharp FR (2011) Exon expression and alternatively spliced genes in Tourette Syndrome. Am J Med Genet B Neuropsychiatr Genet 156B(1):72–78PubMedCentralPubMedGoogle Scholar
  179. Tomari Y, Du T, Zamore PD (2007) Sorting of Drosophila small silencing RNAs. Cell 130:299–308PubMedCentralPubMedGoogle Scholar
  180. Toriyabe N, Hayashi Y, Harashima H (2013) The transfection action activity of R8-modified nanoparticles and siRNA condensation using pH sensitive stearylated-octahistidine. Biomaterials 34:1337–1343PubMedGoogle Scholar
  181. Travella S, Keller B (2009) Down-regulation of gene expression by RNA-induced gene silencing. Methods Mol Biol 478:185–199PubMedGoogle Scholar
  182. Tucker BA, Scheetz TE, Mullins RF, DeLuca AP, Hoffmann JM, Johnston RM, Jacobson SG, Sheffield VC, Stone EM (2011) Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc Natl Acad Sci U S A 108(34):E569–E576PubMedCentralPubMedGoogle Scholar
  183. Tuschl T (2001) RNA interference and small interfering RNAs. Chembiochem 2:239–245PubMedGoogle Scholar
  184. Tuzmen S, Kiefer J, Mousses S (2007) Validation of short interfering RNA knockdowns by quantitative real-time PCR. Methods Mol Biol 353:177–203PubMedGoogle Scholar
  185. Tuzmen S, Tuzmen P, Arora S, Mousses S, Azorsa D (2011) RNAi-based functional pharmacogenomics. In: DiStefano JK (ed) Disease gene identification: methods and protocols, Part 4, vol 700, Methods in molecular biology. Springer, New York, pp 271–290Google Scholar
  186. Ui-Tei K, Naito Y, Saigo K (2007) Guidelines for the selection of effective short-interfering RNA sequences for functional genomics. Methods Mol Biol 361:201–216PubMedGoogle Scholar
  187. Uprichard SL (2005) The therapeutic potential of RNA interference. FEBS Lett 579:5996–6007PubMedGoogle Scholar
  188. Üstünkar G (2011) An integrative approach to structured SNP prioritization and representative SNP selection for genome-wide association studies: algorithms and systems. PhD thesis, Middle East Technical University, AnkaraGoogle Scholar
  189. Üstünkar G, Aydın Son Y (2011) METU-SNP: an integrated software system for SNP-complex disease association analysis. J Integr Bioinform 8:187PubMedGoogle Scholar
  190. Vainio P, Wolf M, Edgren H, He T, Kohonen P, Mpindi JP, Smit F, Verhaegh G, Schalken J, Perälä M, Iljin K, Kallioniemi O (2012) Integrative genomic, transcriptomic, and RNAi analysis indicates a potential oncogenic role for FAM110B in castration-resistant prostate cancer. Prostate 72(7):789–802PubMedGoogle Scholar
  191. Vanhecke D, Janitz M (2004) High-throughput gene silencing using cell arrays. Oncogene 23:8353–8358PubMedGoogle Scholar
  192. Volpe T, Schramke V, Hamilton GL, White SA, Teng G, Martienssen RA, Allshire RC (2003) RNA interference is required for normal centromere function in fission yeast. Chromosome Res 11:137–146PubMedGoogle Scholar
  193. Wang L (2010) Pharmacogenomics: a systems approach. Wiley Interdiscip Rev Syst Biol Med 2:3–22PubMedGoogle Scholar
  194. Wang W, Barratt B, Clayton D, Todd J (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109–118PubMedGoogle Scholar
  195. Wang J, Liang H, Zou G (2009) Optimal 2-stage design with given power in association studies. Biostat 10(2):324–326Google Scholar
  196. Wegmann D, Dupanloup I, Excoffier L (2008) Width of gene expression profile drives alternative splicing. PLoS One 3(10):e3587PubMedCentralPubMedGoogle Scholar
  197. Wendler F, Gillingham AK, Sinka R, Rosa-Ferreira C, Gordon DE, Franch-Marro X, Peden AA, Vincent JP, Munro S (2010) A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway. EMBO J 29(2):304–314PubMedCentralPubMedGoogle Scholar
  198. Wheeler DB, Carpenter AE, Sabatini DM (2005) Cell microarrays and RNA interference chip away at gene function. Nat Genet 37(Suppl):S25–S30PubMedGoogle Scholar
  199. Willard HF, Angrist M, Ginsburg GS (2005) Genomic medicine: genetic variation and its impact on the future of health care. Philos Trans R Soc Lond B Biol Sci 360:1543–1550PubMedCentralPubMedGoogle Scholar
  200. Williams-Jones B, Corrigan OP (2003) Rhetoric and hype: where’s the ‘ethics’ in pharmacogenomics? Am J Pharmacogenomics 3:375–383PubMedGoogle Scholar
  201. Wilson PA, Plucinski M (2011) A simple Bayesian estimate of direct RNAi gene regulation events from differential gene expression profiles. BMC Genomics 12:250PubMedCentralPubMedGoogle Scholar
  202. Wolf CR, Smith G, Smith RL (2000) Science, medicine, and the future. Pharmacogenetics 320:987–990Google Scholar
  203. Wu N, Castel D, Debily MA, Vigano MA, Alibert O, Mantovani R, Iljin K, Romeo PH, Gidrol X (2011) Large scale RNAi screen reveals that the inhibitor of DNA binding 2 (ID2) protein is repressed by p53 family member p63 and functions in human keratinocyte differentiation. J Biol Chem 286(23):20870–20879PubMedCentralPubMedGoogle Scholar
  204. Xu Z, Taylor JA (2009) SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res 37:W600–W605PubMedCentralPubMedGoogle Scholar
  205. Yesupriya A et al (2008) The continued need to synthesize the results of genetic associations across multiple studies. Genet Med 10(8):633–635PubMedGoogle Scholar
  206. Yuan H (2006) FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 34:W635–W641PubMedCentralPubMedGoogle Scholar
  207. Zamore PD (2004) Plant RNAi: How a viral silencing suppressor inactivates siRNA. Curr Biol 14:R198–R200PubMedGoogle Scholar
  208. Zhang XD (2010) An effective method for controlling false discovery and false nondiscovery rates in genome-scale RNAi screens. J Biomol Screen 15(9):1116–1122PubMedGoogle Scholar
  209. Zhang X, Yang X, Chung N, Gates A, Stec E, Kunapuli P, Holder D, Ferrer M, Espeseth A (2006) Robust statistical methods for hit selection in RNA interference high-throughput screening experiments. Pharmacogenomics 7:299–309PubMedGoogle Scholar
  210. Zhou H, DeLoid G, Browning E, Gregory DJ, Tan F, Bedugnis AS, Imrich A, Koziel H, Kramnik I, Lu Q, Kobzik L (2012) Genome-wide RNAi screen in IFN-γ-treated human macrophages identifies genes mediating resistance to the intracellular pathogen Francisella tularensis. PLoS One 7(2):e31752 [Epub 2012 Feb 16]PubMedCentralPubMedGoogle Scholar
  211. Zimmern RL (2009) Genomic medicine: the future is now. Lessons for Hong Kong from the House of Lords Report on Genomic Medicine. Hong Kong Med J 15:324–325PubMedGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Yeşim Aydın Son
    • 1
    • 2
  • Şükrü Tüzmen
    • 3
    • 4
  • Candan Hızel
    • 5
    • 6
  1. 1.Department of Health Informatics, Informatics InstituteMiddle East Technical University (METU)AnkaraTurkey
  2. 2.GENformatik, CSOMETU TechnokentAnkaraTurkey
  3. 3.Department of Biological Sciences, Faculty of Arts and SciencesEastern Mediterranean University (EMU)FamagustaNorth Cyprus
  4. 4.Pharmaceutical Genomics DivisionTranslational Genomics Research Institute (TGen)ScottsdaleUSA
  5. 5.Faculty of PharmacyAnadolu UniversityEskişehirTurkey
  6. 6.C2H-VichyGenomicsVichyFrance

Personalised recommendations