Advertisement

Pharmacogenetics and Pharmacogenomics of Chronic Kidney Disease Comorbidities and Kidney Transplantation

  • Clarice Chemello
  • Margarita Aguilera
  • Marisa Cañadas Garre
  • Miguel A. Calleja Hernández
Chapter

Abstract

Chronic kidney disease (CKD) is a worldwide major public health problem associated with increased risk of mortality and rate of hospitalization and decreased life expectancy. Progression from early to late stages of CKD generally results in the onset of new symptoms and concomitant complications. Frequent complications and comorbidities of CKD include fluid and electrolyte abnormalities, secondary hyperparathyroidism and renal osteodystrophy (known as Chronic Kidney Disease-Bone Mineral Disorder – CKD-BMD), hypertension and hyperlipidemia, anemia, metabolic acidosis, and several other comorbidities involving malnutrition, pruritus, and uremic bleeding. CKD patients are at increased risk of cardiovascular disease (CVD), which includes coronary heart disease (CHD), cerebrovascular disease, peripheral vascular disease, and heart failure. The management and prevention of these comorbidities, as well as the kidney transplant complications, are complex.

Pharmacogenetics and pharmacogenomics have been applied to the management of CKD patients in both conservative and renal replacement treatments (dialysis and transplantation) trying to avoid the occurrence of drug-related problems and appearance of comorbidities. This chapter will discuss important findings in CKD pharmacogenetic and pharmacogenomic studies conducted to date and future research directions in this field. The focus will be on the CKD comorbidities (CKD-BMD and CVD) and calcineurin inhibitors (cyclosporine and tacrolimus) as immunosuppressive therapy. Although many studies are limited by small sample sizes and replication of the findings is needed, several candidate genes have been identified and are discussed here: CYP3A5, CYP3A4, ABCB1, CASR, VDR, GC, MTHFR, and RFC1. Thus, the future is promising for a personalized treatment of CKD, which will improve therapeutic outcomes, minimize side effects, and lead to a more cost-effective care.

Keywords

Chronic Kidney Disease Glomerular Filtration Rate Parathyroid Gland Chronic Kidney Disease Patient Reduce Folate Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, Jacobs EJ, Ascherio A, Helzlsouer K, Jacobs KB, Li Q, Weinstein SJ, Purdue M, Virtamo J, Horst R, Wheeler W, Chanock S, Hunter DJ, Hayes RB, Kraft P, Albanes D (2010) Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 9(13):2739–2745CrossRefGoogle Scholar
  2. Alfirevic A, Pirmohamed M (2010) Drug-induced hypersensitivity reactions and pharmacogenomics: past, present and future. Pharmacogenomics 11(4):497–499PubMedCrossRefGoogle Scholar
  3. Anglicheau D, Legendre C, Beaune P, Thervet E (2007) Cytochrome P450 3A polymorphisms and immunosuppressive drugs: an update. Pharmacogenomics 8(7):835–849PubMedCrossRefGoogle Scholar
  4. Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O’Malley BW (1988) Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A 85(10):3294–3298PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bakris GL, Ritz E (2009) Hypertension and kidney disease, a marriage that should be prevented. Kidney Int 75:449–452PubMedCrossRefGoogle Scholar
  6. Birdwell KA, Grady B, Choi L, Bian A, Denny JC, Jiang M, Vranic G, Basford M, Cowan JD, Richardson DM, Robinson MP, Ikizler TA, Ritchie MD, Stein CM, Haas DW (2012) The use of a DNA biobank linked to electronic medical records to characterize pharmacogenomic predictors of tacrolimus dose requirement in kidney transplant recipients. Pharmacogenet Genomics 22(1):32–42PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bu FX, Armas L, Lappe J, Zhou Y, Gao G, Wang HW, Recker R, Zhao LJ (2010) Comprehensive association analysis of nine candidate genes with serum 25-hydroxy vitamin D levels among healthy Caucasian subjects. Hum Genet 128:549–556PubMedCrossRefGoogle Scholar
  8. Burckart G, Amur S (2010) Update on the clinical pharmacogenomics of organ transplantation. Pharmacogenomics 11(2):227–236PubMedCrossRefGoogle Scholar
  9. Cabrera SS (2004) Definición y clasificación de los estadios de la enfermedad renal crónica. Prevalencia. Claves para el diagnóstico precoz. Factores de riesgo de enfermedad renal crónica. Nefrología 24(6):27–34Google Scholar
  10. Chango A, Emery-Fillon N, de Courcy GP, Lambert D, Pfister M, Rosenblatt DS, Nicolas JP (2000) A polymorphism (80G->A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab 70(4):310–315PubMedCrossRefGoogle Scholar
  11. Chatzikyriakidou A, Vakalis KV, Kolaitis N, Kolios G, Naka KK, Michalis LK, Georgiou I (2008) Distinct association of SLC19A1 polymorphism −43TNC with red cell folate levels and of MTHFR polymorphism 677CNT with plasma folate levels. Clin Biochem 41:174–176PubMedCrossRefGoogle Scholar
  12. Chua EW, Kennedy MA (2012) Current state and future prospects of direct-to-consumer pharmacogenetics. Front Pharmacol 3:152, Epub 2012 Aug 20PubMedCentralPubMedGoogle Scholar
  13. Cormier C, Courbebaisse M, Maury E, Thervet E, Souberbielle JC (2010) Effect of vitamin D deficiency on cardiovascular risk. J Mal Vasc 35(4):235–241PubMedCrossRefGoogle Scholar
  14. De Meyer M, Haufroid V, Elens L, Fusaro F, Patrono D, De Pauw L, Kanaan N, Goffin E, Mourad M (2012) Donor age and ABCB1 1199G>A genetic polymorphism are independent factors affecting long-term renal function after kidney transplantation. J Surg Res 178(2):988–995PubMedCrossRefGoogle Scholar
  15. Deverka PA, McLeod HL (2008) Harnessing economic drivers for successful clinical implementation of pharmacogenetic testing. Clin Pharmacol Ther 84(2):191–193PubMedCrossRefGoogle Scholar
  16. Deverka PA, Vernon J, McLeod HL (2010) Economic opportunities and challenges for pharmacogenomics. Annu Rev Pharmacol Toxicol 50:423–437PubMedCrossRefGoogle Scholar
  17. DiPiro JT et al (2005) Pharmacotherapy: a pathophysiologic approach, 6th edn. The McGraw-Hill Companies, New York. ISBN: 0-07-141613-7Google Scholar
  18. Domenici FA, Vannucchi MTI, Simões-Ambrosio LMC, Vannucchi H (2007) Hyperhomocysteinemia and polymorphisms of the methylenetetrahydrofolate gene in hemodialysis and peritoneal dialysis patients. Mol Nutr Food Res 51:1430–1436PubMedCrossRefGoogle Scholar
  19. Drüeke TB (2004) Modulation and action of the calcium-sensing receptor. Nephrol Dial Transplant 19(Suppl 5):v20–v26PubMedCrossRefGoogle Scholar
  20. Elens L, van Schaik RH, Panin N, de Meyer M, Wallemacq P, Lison D, Mourad M, Haufroid V (2011) Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors’ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics 12(10):1383–1396PubMedCrossRefGoogle Scholar
  21. Erturk S (2006) Gene polymorphism association studies in dialysis: bone and mineral metabolism. Semin Dial 19(3):232–237PubMedCrossRefGoogle Scholar
  22. Fang Y, van Meurs JBJ, Arp P (2009) Vitamin D binding protein genotype and osteoporosis. Calcif Tissue Int 85(2):85–93PubMedCentralPubMedCrossRefGoogle Scholar
  23. Frase WD (2009) Hyperparathyroidism. Lancet 374:145–158CrossRefGoogle Scholar
  24. Fu L, Yun F, Oczak M, Wong BYL, Vieth R, Cole DEC (2009) Common genetic variants of the vitamin D binding protein (DBP) predict differences in response of serum 25-hydroxyvitamin D [25(OH)D] to vitamin supplementation. Clin Biochem 42:1174–1177PubMedCrossRefGoogle Scholar
  25. Fung MM, Salem RM, Lipkowitz MS, Bhatnagar V, Pandey B, Schork NJ, O’Connor DT, AASK Study Investigators (2012) Methylenetetrahydrofolate reductase (MTHFR) polymorphism A1298C (Glu429Ala) predicts decline in renal function over time in the African-American Study of Kidney Disease and Hypertension (AASK) Trial and Veterans Affairs Hypertension Cohort (VAHC). Nephrol Dial Transplant 27(1):197–205PubMedCentralPubMedCrossRefGoogle Scholar
  26. Gago EV, Cadarso-Suárez C, Perez-Fernandez R, Burgos RR, Mugica JD, Iglesias CS (2005) Association between vitamin D receptor FokI polymorphism and serum parathyroid hormone level in patients with chronic renal failure. J Endocrinol Invest 28:117–121Google Scholar
  27. Galbiatti AL, Ruiz MT, Rezende PD (2011) A80G polymorphism of reduced folate carrier 1 (RFC1) gene and head and neck squamous cell carcinoma etiology in Brazilian population. Mol Biol Rep 38(2):1071–1078PubMedCrossRefGoogle Scholar
  28. Gervasini G, Garcia M, Macias RM, Cubero JJ, Caravaca F, Benitez J (2012) Impact of geneticpolymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transpl Int 25(4):471–480PubMedCrossRefGoogle Scholar
  29. Giacomini KM, Brett CM, Altman RB, Benowitz NL, Dolan ME, Flockhart DA, Johnson JA, Hayes DF, Klein T, Krauss RM, Kroetz DL, McLeod HL, Nguyen AT, Ratain MJ, Relling MV, Reus V, Roden DM, Schaefer CA, Shuldiner AR, Skaar T, Tantisira K, Tyndale RF, Wang L, Weinshilboum RM, Weiss ST, Zineh I (2007) The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther 81(3):328–345PubMedCrossRefGoogle Scholar
  30. Giannini S, D’Angelo A, Nobile M, Carraro G, Rigotti P, Silva-Netto F, Pavan S, Marchini F, Zaninotto M, Dalle Carbonare L, Sartori L, Crepaldi G (2002) The effects of vitamin D receptor polymorphism on secondary hyperparathyroidism and bone density after renal transplantation. J Bone Miner Res 17(10):1768–1773PubMedCrossRefGoogle Scholar
  31. Gong L, Owen RP, Gor W, Altman RB, Klein TE (2008) PharmGKB: an integrated resource of pharmacogenomic data and knowledge. Curr Protoc Bioinformatics 23:14.7.1–14.7.17Google Scholar
  32. Goodman WG, Quarles LD (2008) Development and progression of secondary hyperparathyroidism in chronic kidney disease: lessons from molecular genetics. Kidney Int 74:276–288PubMedCrossRefGoogle Scholar
  33. Goodsaid FM, Amur S, Aubrecht J, Burczynski ME, Carl K, Catalano J, Charlab R, Close S, Cornu-Artis C, Essioux L, Fornace AJ Jr, Hinman L, Hong H, Hunt I, Jacobson-Kram D, Jawaid A, Laurie D, Lesko L, Li HH, Lindpaintner K, Mayne J, Morrow P, Papaluca-Amati M, Robison TW, Roth J, Schuppe-Koistinen I, Shi L, Spleiss O, Tong W, Truter SL, Vonderscher J, Westelinck A, Zhang L, Zineh I (2010) Voluntary exploratory data submissions to the US FDA and the EMA: experience and impact. Nat Rev Drug Discov 9(6):435–445PubMedCrossRefGoogle Scholar
  34. Grzela T, Chudzinski W, Lasiecka Z, Niderla J, Wilczynski G, Gornicka B, Wasiutynski A, Durlik M, Boszczyk A, Brawura-Biskupski-Samaha R, Dziunycz P, Milewski L, Lazarczyk M, Lazarczyk M, Nawrot I (2006) The calcium-sensing receptor and vitamin D receptor expression in tertiary hyperparathyroidism. Int J Mol Med 17(5):779–783PubMedGoogle Scholar
  35. Gurwitz D, Pirmohamed M (2010) Pharmacogenomics: the importance of accurate phenotypes. Pharmacogenomics 11(4):469–470PubMedCrossRefGoogle Scholar
  36. Haga SB, Burke W (2008) Pharmacogenetic testing: not as simple as it seems. Genet Med 10(6):391–395PubMedCrossRefGoogle Scholar
  37. Hodges LM, Markova SM, Chinn LW, Gow JM, Kroetz DL, Klein TE, Altman RB (2011) Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics 21(3):152–161PubMedCentralPubMedCrossRefGoogle Scholar
  38. Huang SM, Temple R (2008) Is this the drug or dose for you? Impact and consideration of ethnic factors in global drug development, regulatory review, and clinical practice. Clin Pharmacol Ther 84(3):287–294PubMedCrossRefGoogle Scholar
  39. Ieiri I, Takane H, Otsubo K (2004) The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet 43(9):553–576PubMedCrossRefGoogle Scholar
  40. International HapMap Project. Available in: http://hapmap.ncbi.nlm.nih.gov/. Accessed in Sept 2012
  41. Jamison RL, Shih MC, Humphries DE, Guarino PD, Kaufman JS, Goldfarb DS, Warren SR, Gaziano JM, Lavori P, Investigators VAS (2009) Effect of the MTHFR C677T and A1298C polymorphisms on survival in patients with advanced CKD and ESRD: a prospective study. Am J Kidney Dis 53(5):779–789PubMedCrossRefGoogle Scholar
  42. Kasper DL, Braunwald E, Hauser S, Longo D, Jameson JL, Fauci AS (2005) Harrison’s principles of internal medicine, 16th edn. Copyright© 2005 by The McGraw-Hill Companies, Inc., New York. ISBN-13: 978-0071402354Google Scholar
  43. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD–MBD). Kidney Int 76(Suppl 113):S1–S130Google Scholar
  44. Krüger B, Schröppel B, Murphy BT (2008) Genetic polymorphism and the fate of the transplanted organ. Transplant Rev 22:131–140CrossRefGoogle Scholar
  45. Laaksonen MML, Outila TA, Kärkkäinen MUM, Kemi VE, Rita HJ, Perola M, Valsta LM, Lamberg-Allardt CJ (2009) Association of vitamin D receptor, calcium-sensing receptor and parathyroid hormone gene polymorphisms with calcium homeostasis and peripheral bone density in adults finns. J Nutrigenet Nutrigenomics 2:55–64PubMedCrossRefGoogle Scholar
  46. Lamba J, Hebert JM, Schuetz EG, Klein TE, Altman RB (2012) PharmGKB summary: very important pharmacogene information for CYP3A5. Pharmacogenet Genomics 22(7):555–558PubMedCentralPubMedCrossRefGoogle Scholar
  47. Li Y, Hu X, Cai B, Chen J, Bai Y, Tang J, Liao Y, Wang L (2012) Meta-analysis of the effect of MDR1 C3435 polymorphism on tacrolimus pharmacokinetics in renal transplant recipients. Transpl Immunol 27(1):12–18PubMedCrossRefGoogle Scholar
  48. Limdi NA, Veenstra DL (2010) Expectations, validity, and reality in pharmacogenetics. J Clin Epidemiol 63(9):960–969PubMedCentralPubMedCrossRefGoogle Scholar
  49. MacPhee IAM (2010) Use of pharmacogenetics to optimize immunosuppressive therapy. Ther Drug Monit 32(3):261–264PubMedCrossRefGoogle Scholar
  50. McCann LM, Beto J (2010) Roles of calcium-sensing receptor and vitamin D receptor in the pathophysiology of secondary hyperparathyroidism. J Ren Nutr 20(3):141–150PubMedCrossRefGoogle Scholar
  51. Miyamoto K, Kesterson RA, Yamamoto H, Taketani Y, Nishiwaki E, Tatsumi S, Inoue Y, Morita K, Takeda E, Pike JW (1997) Structural organization of the human vitamin D receptor chromosomal gene and its promoter. Mol Endocrinol 11(8):1165–1179PubMedCrossRefGoogle Scholar
  52. Morrison NA, George PM, Vaughan T, Tilyard MW, Frampton CM, Gilchrist NL (2005) Vitamin D receptor genotypes influence the success of calcitriol therapy for recurrent vertebral fracture in osteoporosis. Pharmacogenet Genomics 15(2):127–135PubMedCrossRefGoogle Scholar
  53. Mourad M, Wallemacq P, De Meyer M, Malaise J, De Pauw L, Eddour DC, Goffin E, Lerut J, Haufroid V (2008) Biotransformation enzymes and drug transporters pharmacogenetics in relation to immunosuppressive drugs: impact on pharmacokinetics and clinical outcome. Transplantation 85(7 Suppl):S19–S24PubMedCrossRefGoogle Scholar
  54. MTHFR in OMIM. Online c. Available in: http://www.ncbi.nlm.nih.gov/omim/607093. Accessed in Aug 2012
  55. Naesens M, Sarwal MM (2010) Monitoring calcineurin inhibitor therapy: localizing the moving target. Transplantation 89(11):1308–1309PubMedCrossRefGoogle Scholar
  56. Naesens M, Lerut E, de Jonge H, Van Damme B, Vanrenterghem Y, Kuypers DR (2009) Donor age and renal P-glycoprotein expression associate with chronic histological damage in renal allografts. J Am Soc Nephrol 20(11):2468–2480PubMedCentralPubMedCrossRefGoogle Scholar
  57. National Institute of Health (NIH). Available in: http://www.ncbi.nlm.nih.gov/projects/SNP/. Accessed in Sept 2012
  58. National Kidney Foundation Kidney Disease Outcomes Quality Initiative (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Available in: http://www.kidney.org/professionals/kdoqi/guidelines_ckd/p4_class.htm. Accessed in July 2012
  59. National Kidney Foundation Kidney Disease Outcomes Quality Initiative (2002) K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Available in: http://www.kidney.org/professionals/kdoqi/guidelines_bone/index.htm. Accessed in Sept 2012
  60. Op den Buijsch RAM, Christiaans MHL, Stolk LML, de Vries JE, Cheung CY, Undre NA, van Hooff JP, van Dieijen-Visser MP, Bekers O (2007) Tacrolimus pharmacokinetics and pharmacogenetics: influence of adenosine triphosphate-binding cassette B1 (ABCB1) and cytochrome (CYP) 3A Polymorphisms. Fundam Clin Pharmacol 21:427–435PubMedCrossRefGoogle Scholar
  61. Passey C, Birnbaum AK, Brundage RC, Oetting WS, Israni AK, Jacobson PA (2011) Dosing equation for tacrolimus using genetic variants and clinical factors. Br J Clin Pharmacol 72(6):948–957PubMedCentralPubMedCrossRefGoogle Scholar
  62. Passey C, Birnbaum AK, Brundage RC, Schladt DP, Oetting WS, Leduc RE, Israni AK, Guan W, Matas AJ, Jacobson PA (2012) Validation of tacrolimus equation to predict troughs using genetic and clinical factors. Pharmacogenomics 13(10):1141–1147PubMedCentralPubMedCrossRefGoogle Scholar
  63. Payne K, Shabaruddin FH (2010) Cost–effectiveness analysis in pharmacogenomics. Pharmacogenomics 11(5):643–646PubMedCrossRefGoogle Scholar
  64. PharmGKB, Pharmacogenomics Knowledge Base. Available in: http://www.pharmgkb.org/index.jsp. Accessed Sept 2012
  65. Riccardi D, Martin D (2008) The role of the calcium-receptor in the pathophysiology of secondary hyperparathyroidism. NDT Plus 1(Suppl 1):i7–i11CrossRefGoogle Scholar
  66. Rodríguez M, Nemeth E, Martín D (2005) The Calcium-sensing receptor: a key factor in the pathogenesis of secondary hyperparathyroidism. Am J Physiol Renal Physiol 288:F253–F264PubMedCrossRefGoogle Scholar
  67. Rothe H, Mayer G (2006) Clinical importance of calcium-sensing receptor gene polymorphism Arg990Gly in the age of calcimimetic therapy. Curr Pharmacogenomics Person Med 4:153–156CrossRefGoogle Scholar
  68. Rothe H, Shapiro W, Sun WY, Matalon A (2008) CaSR polymorphism Arg990Gly and response to calcimimetic agents in end-stage kidney disease patients with secondary hyperparathyroidism and in cell culture. Per Med 5(2):109–116CrossRefGoogle Scholar
  69. Rothe HM, Shapiro WB, Sun WY, Chou SY (2005) Calcium-sensing receptor gene polymorphism Arg990Gly and its possible effect on response to cinacalcet HCl. Pharmacogenet Genomics 15:29–34PubMedCrossRefGoogle Scholar
  70. Santoro A, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Struchiner CJ, Ojopi EB, Suarez-Kurtz G (2011) Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients. Pharmacogenomics 12(9):1293–1303PubMedCrossRefGoogle Scholar
  71. Sinotte M, Diorio C, Bérubé S, Pollak M, Brisson J (2009) Genetic polymorphisms of the vitamin D binding protein and plasma concentrations of 25-hydroxyvitamin D in premenopausal women. Am J Clin Nutr 89:634–640PubMedCrossRefGoogle Scholar
  72. Shuker N, Bouamar R, Weimar W, van Schaik RH, van Gelder T, Hesselink DA (2012) ATP-binding cassette transporters as pharmacogenetic biomarkers for kidney transplantation. Clin Chim Acta 413(17–18):1326–1337PubMedCrossRefGoogle Scholar
  73. Speeckaert M, Huang G, Delanghe JR, Taes YEC (2006) Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta 372:33–42PubMedCrossRefGoogle Scholar
  74. Staatz C, Goodman LK, Tett SE (2010) Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin Pharmacokinet 49(3):141–175PubMedCrossRefGoogle Scholar
  75. Stemer G, Lemmens-Gruber R (2010) Clinical pharmacy services and solid organ transplantation: a literature review. Pharm World Sci 32:7–18PubMedCrossRefGoogle Scholar
  76. Stenvinkel P (Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden) (2010) Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease (Review). J Intern Med 268:456–467CrossRefGoogle Scholar
  77. Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H, Rongen GA, van Schaik RH, Schalekamp T, Touw DJ, van der Weide J, Wilffert B, Deneer VH, Guchelaar HJ (2011) Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther 89(5):662–673PubMedCrossRefGoogle Scholar
  78. Thervet E, Loriot MA, Barbier S, Buchler M, Ficheux M, Choukroun G, Toupance O, Touchard G, Alberti C, Le Pogamp P, Moulin B, Le Meur Y, Heng AE, Subra JF, Beaune P, Legendre C (2010) Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther 87(6):721–726PubMedGoogle Scholar
  79. Thorn CF, Klein TE, Altman RB (2010) Pharmacogenomics and bioinformatics: PharmGKB. Pharmacogenomics 11(4):501–505PubMedCentralPubMedCrossRefGoogle Scholar
  80. Tomalik-Scharte D, Lazar A, Fuhr U, Kirchheiner J (2008) The clinical role of genetics polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J 8:4–15PubMedCrossRefGoogle Scholar
  81. Trivedi R, Mithal A, Chattopadhyay N (2008) Recent updates on the calcium-sensing receptor as a drug target. Curr Med Chem 15(2):178–186PubMedCrossRefGoogle Scholar
  82. U.S. Pharmacist. Postgraduate Health Care Education (2007) The role of the pharmacist in the identification and management of secondary hyperparathyroidism. Available in: http://www.uspharmacist.com/continuing_education/ceviewtest/lessonid/105514. Accessed in Aug 2012
  83. Vijverberg SJH, Pieters T, Cornel MC (2010) Ethical and social issues in pharmacogenomics testing. Curr Pharm Des 16(2):245–252PubMedCrossRefGoogle Scholar
  84. Waller S (2011) Parathyroid hormone and growth in chronic kidney disease. Pediatr Nephrol 26(2):195–204PubMedCrossRefGoogle Scholar
  85. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, Kiel DP, Streeten EA, Ohlsson C, Koller DL, Peltonen L, Cooper JD, O’Reilly PF, Houston DK, Glazer NL, Vandenput L, Peacock M, Shi J, Rivadeneira F, McCarthy MI, Anneli P, de Boer IH, Mangino M, Kato B, Smyth DJ, Booth SL, Jacques PF, Burke GL, Goodarzi M, Cheung CL, Wolf M, Rice K, Goltzman D, Hidiroglou N, Ladouceur M, Wareham NJ, Hocking LJ, Hart D, Arden NK, Cooper C, Malik S, Fraser WD, Hartikainen AL, Zhai G, Macdonald HM, Forouhi NG, Loos RJ, Reid DM, Hakim A, Dennison E, Liu Y, Power C, Stevens HE, Jaana L, Vasan RS, Soranzo N, Bojunga J, Psaty BM, Lorentzon M, Foroud T, Harris TB, Hofman A, Jansson JO, Cauley JA, Uitterlinden AG, Gibson Q, Järvelin MR, Karasik D, Siscovick DS, Econs MJ, Kritchevsky SB, Florez JC, Todd JA, Dupuis J, Hyppönen E, Spector TD (2010) Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376:180–188PubMedCentralPubMedCrossRefGoogle Scholar
  86. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W (2011) Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 11(4):274–286PubMedCentralPubMedCrossRefGoogle Scholar
  87. Ware N (2012) The role of genetics in drug dosing. Pediatr Nephrol 27:1489–1498PubMedCentralPubMedCrossRefGoogle Scholar
  88. Wehland M, Bauer S, Brakemeier S, Burgwinkel P, Glander P, Kreutz R, Lorkowski C, Slowinski T, Neumayer HH, Budde K (2011) Differential impact of the CYP3A5*1 and CYP3A5*3 alleles on predose concentrations of two tacrolimus formulations. Pharmacogenet Genomics 21(4):179–184PubMedGoogle Scholar
  89. World Health Organization (2010) Global observatory on donation and transplantation. Available in: http://www.transplant-observatory.org/pages/home.aspx. Accessed in Sept 2012
  90. World Health Organization (WHO). International Classification of Diseases (ICD-10) (2007) Available in: http://apps.who.int/classifications/apps/icd/icd10online/. Accessed in July 2012
  91. Yasuda SU, Zhang L, Huang SM (2008) The role of ethnicity in variability in response to drugs: focus on clinical pharmacology studies. Clin Pharmacol Ther 84(3):417–423PubMedCrossRefGoogle Scholar
  92. Yun FHJ, Wong BYL, Chase M, Shuen AY, Canaff L, Thongthai K, Siminovitch K, Hendy GN, Cole DE (2007) Genetic variation at the calcium-sensing receptor (CASR) locus: implications for clinical molecular diagnostics. Clin Biochem 40(8):551–561PubMedCrossRefGoogle Scholar
  93. Zaza G, Granata S, Sallustio F, Grandaliano G, Schena FP (2009) Pharmacogenomics: a new paradigm to personalize treatments in nephrology patients. Clin Exp Immunol 159:268–276PubMedGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Clarice Chemello
    • 1
    • 2
  • Margarita Aguilera
    • 2
  • Marisa Cañadas Garre
    • 2
  • Miguel A. Calleja Hernández
    • 2
  1. 1.Department of Pharmaceutical Sciences, Center of Health SciencesFederal University of Santa CatarinaFlorianopolisBrazil
  2. 2.Pharmacogenetics Unit. Pharmacy ServiceUniversity Hospital Virgen de las NievesGranadaSpain

Personalised recommendations