Personalized Medicine in Cell Therapy and Transplantation

  • Madhusudana Girija Sanal


Developments in cell therapy and organ transplantation would transform personalized medicine as perceived today. Adult stem cells and induced pluripotent stem cell (iPSC) derivatives can be used to repair, rejuvenate, or replace damaged organs. Transplanted cells act by secreted factors, cell-cell interaction, and immune modulation or by repopulating the damaged tissue. Repopulating organs with genetically corrected progenitor cells or differentiated cells could correct several rare genetic diseases at a very personal level. Cell therapy has applications in curing infections as well from life-threatening fungal infections to HIV. Today tools such as zinc finger nucleases and TALENS make it possible to manipulate human genome precisely. In the future transplantable personalized whole organs will be generated using iPSC and tetraploid complementation, and techniques which are still in infancy. Cells and organs will be engineered and standardized to be compatible with a wide range of drugs and environmental conditions or become more personalized for special needs. Three dimensional printing technologies can now generate simple organs like urinary bladder in a personalized way, but in the future, it might be possible to “print” more complex organs. Genetically engineered cells would play a major role in the future of fighting cancer in a personalized manner. Stem cell biology, genetic engineering, and regenerative medicine catapulted by latest developments in basic sciences would revolutionize human life, and we need to prepare and sensitize our society well ahead.


Stem Cell Amyotrophic Lateral Sclerosis Embryonic Stem Cell Cell Therapy Somatic Cell Nuclear Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author acknowledges Prof. Anna Velcich, Ph.D., Albert Einstein College of Medicine, New York, for her constructive criticism and comments. The author is thankful to Prof. Mitradas Panicker, National Center for Biological Sciences, Bangalore, for the thoughts and inspiration imparted. The author is thankful to Megha Majumdar and friends for proof reading and corrections.


  1. Adler DS, Lazarus H, Nair R, Goldberg JL, Greco NJ, Lassar T, Laughlin MJ, Das H, Pompili VJ (2011) Safety and efficacy of bone marrow-derived autologous CD133+ stem cell therapy. Front Biosci (Elite Ed) 3:506–514CrossRefGoogle Scholar
  2. Ahmadi H, Farahani MM, Kouhkan A, Moazzami K, Fazeli R, Sadeghian H, Namiri M, Madani-Civi M, Baharvand H, Aghdami N (2012) Five-year follow-up of the local autologous transplantation of CD133+ enriched bone marrow cells in patients with myocardial infarction. Arch Iran Med 15(1):32–35PubMedGoogle Scholar
  3. Arsanjani MH (2006) Negotiating the UN declaration on human cloning. Am J Int Law 100(1):164, ISSN: 00029300CrossRefGoogle Scholar
  4. Caulfield T, Ogbogu U, Nelson E, Einsiedel E, Knoppers B, McDonald M, Brunger F, Downey R, Fernando K, Galipeau J, Geransar R, Griener G, Hyun I, Isasi R, Kardel M, Knowles L, Kucic T, Lotjonen S, Lyall D, Magnus D, Mathews DJ, Nisbet M, Nisker J, Pare G, Pattinson S, Pullman D, Rudnicki M, Williams-Jones B, Zimmerman S (2007) Stem cell research ethics: consensus statement on emerging issues. J Obstet Gynaecol Can 29(10):843–848. Erratum in: J Obstet Gynaecol Can 29(12):971. Grenier, Glenn [corrected to Griener, Glenn]Google Scholar
  5. Cayo MA, Cai J, Delaforest A, Noto FK, Nagaoka M, Clark BS, Collery RF, Si-Tayeb K, Duncan SA (2012) JD induced pluripotent stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology 56(6):2163–2171PubMedCrossRefGoogle Scholar
  6. David R, Franz WM (2012) From pluripotency to distinct cardiomyocyte subtypes. Physiology (Bethesda) 27(3):119–129CrossRefGoogle Scholar
  7. Davies JB, Sandstrom S, Shorrocks A, Wolff, EN (2007) Estimating the level and distribution of global household wealth. Working Papers UNU-WIDER Research Paper, World Institute for Development Economic Research (UNU-WIDER)Google Scholar
  8. Dhawan A, Mitry RR, Hughes RD (2006) Hepatocyte transplantation for liver-based metabolic disorders. J Inherit Metab Dis 29(2–3):431–435PubMedCrossRefGoogle Scholar
  9. Dill T, Schächinger V, Rolf A, Möllmann S, Thiele H, Tillmanns H, Assmus B, Dimmeler S, Zeiher AM, Hamm C (2009) Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am Heart J 157(3):541–547PubMedCrossRefGoogle Scholar
  10. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221, Epub 2008 Jul 31PubMedCrossRefGoogle Scholar
  11. Ding J, Yannam GR, Roy-Chowdhury N, Hidvegi T, Basma H, Rennard SI, Wong RJ, Avsar Y, Guha C, Perlmutter DH, Fox IJ, Roy-Chowdhury J (2011) Spontaneous hepatic repopulation in transgenic mice expressing mutant human α1-antitrypsin by wild-type donor hepatocytes. J Clin Invest 121(5):1930–1934. doi: 10.1172/JCI45260 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Egli D, Chen AE, Saphier G, Ichida J, Fitzgerald C, Go KJ, Acevedo N, Patel J, Baetscher M, Kearns WG, Goland R, Leibel RL, Melton DA, Eggan K (2011) Reprogramming within hours following nuclear transfer into mouse but not human zygotes. Nat Commun. 2011 Oct 4; 2:488. doi: 10.1038/ncomms1503 Google Scholar
  13. Fagerholm P, Lagali NS, Merrett K et al (2010) A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med 2(46):46–61Google Scholar
  14. Garg V, Garg H, Khan A, Trehanpati N, Kumar A, Sharma BC, Sakhuja P, Sarin SK (2012) Granulocyte colony-stimulating factor mobilizes CD34(+) cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology 142(3):505–512, e1PubMedCrossRefGoogle Scholar
  15. Gordon MY, Levicar N, Pai M, Bachellier P, Dimarakis I, Al-Allaf F, M’Hamdi H, Thalji T, Welsh JP, Marley SB, Davies J, Dazzi F, Marelli-Berg F, Tait P, Playford R, Jiao L, Jensen S, Nicholls JP, Ayav A, Nohandani M, Farzaneh F, Gaken J, Dodge R, Alison M, Apperley JF, Lechler R, Habib NA (2006) Characterization clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor. Stem Cells 24(7):1822–1830, Epub 2006 Mar 23PubMedCrossRefGoogle Scholar
  16. Grompe M (2002) Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. 1991. J Hepatol 37(4):422–424PubMedCrossRefGoogle Scholar
  17. Guha C, Roy-Chowdhury N, Jauregui H, Roy-Chowdhury J (2001) Hepatocyte-based gene therapy. J Hepatobiliary Pancreat Surg 8(1):51–57PubMedCrossRefGoogle Scholar
  18. Haldane JBS (1923) Science and the future. A paper read to the Heretics, Cambridge, on February 4th, 1923 Transcribed by: Cosma Rohilla Shalizi Berkeley, California 10 April 1993. Available online:
  19. Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, Mitsialis SA, Kourembanas S (2012) Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ 2(2):170–181PubMedCentralPubMedCrossRefGoogle Scholar
  20. Horslen SP, McCowan TC, Goertzen TC, Warkentin PI, Cai HB, Strom SC, Fox IJ (2003) Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics 111(6 Pt 1):1262–1267PubMedCrossRefGoogle Scholar
  21. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2(2):022001. doi: 10.1088/1758-5082/2/2/022001, Epub 2010 Jun 2Google Scholar
  22. Ji J, Ng SH, Sharma V, Neculai D, Hussein S, Sam M, Trinh Q, Church GM, McPherson JD, Nagy A, Batada NN (2012) Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cells 30(3):435–440. doi: 10.1002/stem.1011 PubMedCrossRefGoogle Scholar
  23. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821Google Scholar
  24. Jung KC, Park CG, Jeon YK, Park HJ, Ban YL, Min HS, Kim EJ, Kim JH, Kang BH, Park SP, Bae Y, Yoon IH, Kim YH, Lee JI, Kim JS, Shin JS, Yang J, Kim SJ, Rostlund E, Muller WA, Park SH (2011) In situ induction of dendritic cell-based T cell tolerance in humanized mice and nonhuman primates. J Exp Med 208(12):2477–2488PubMedCentralPubMedCrossRefGoogle Scholar
  25. Kisseleva T, Gigante E, Brenner DA (2010) Recent advances in liver stem cell therapy. Curr Opin Gastroenterol 26(4):395–402PubMedCrossRefGoogle Scholar
  26. Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui J, Knisely AS, Hirabayashi M, Nakauchi H (2010) Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142(5):787–799PubMedCrossRefGoogle Scholar
  27. Li J, Li D, Liu X, Tang S, Wei F (2012) Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. J Inflamm (Lond) 9(1):33CrossRefGoogle Scholar
  28. Macchiarini P (2011) Bioartificial tracheobronchial transplantation. Interview with Paolo Macchiarini. Regen Med 6(6 Suppl):14–15PubMedCrossRefGoogle Scholar
  29. Mathé G, Schwarzenberg L, Méry AM, Cattan A, Schneider M, Amiel JL, Schlumberger JR, Poisson J, Wajener G (1965) Extensive histological and cytological study of the so-called “complete” remission of acute leukemia. Bull Mem Soc Med Hop Paris 116(16):1691–1698Google Scholar
  30. Martins-Taylor K, Nisler BS, Taapken SM, Compton T, Crandall L, Montgomery KD, Lalande M, Xu R (2011) Recurrent copy number variations in human induced pluripotent stem cells. Nat Biotechnol 29(6):488–491. doi: 10.1038/nbt.1890 PubMedCrossRefGoogle Scholar
  31. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276(5309):60–66PubMedCrossRefGoogle Scholar
  32. Mrksich M, Dike LE, Tien J, Ingber DE, Whitesides GM (1997) Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp Cell Res 235(2):305–313PubMedCrossRefGoogle Scholar
  33. Nakano T, Ando S, Takata N et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10(6):771–785PubMedCrossRefGoogle Scholar
  34. Overturf K, al-Dhalimy M, Ou CN, Finegold M, Grompe M (1997) Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol 151(5):1273–1280PubMedCentralPubMedGoogle Scholar
  35. Papaioannou I, Simons JP, Owen JS (2012) Oligonucleotide-directed gene-editing technology: mechanisms and future prospects. Expert Opin Biol Ther 12(3):329–342PubMedCrossRefGoogle Scholar
  36. Pincock S (2011) Anthony Atala: at the cutting edge of regenerative surgery. Lancet 378(9800):1371PubMedCrossRefGoogle Scholar
  37. Puppi J, Strom SC, Hughes RD, Bansal S, Castell JV, Dagher I, Ellis EC, Nowak G, Ericzon BG, Fox IJ, Gómez-Lechón MJ, Guha C, Gupta S, Mitry RR, Ohashi K, Ott M, Reid LM, Roy-Chowdhury J, Sokal E, Weber A, Dhawan A (2012) Improving the techniques for human hepatocyte transplantation: report from a consensus meeting in London. Cell Transplant 21(1):1–10PubMedCrossRefGoogle Scholar
  38. Raya A, Rodríguez-Pizà I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castellà M, Río P, Sleep E, González F, Tiscornia G, Garreta E, Aasen T, Veiga A, Verma IM, Surrallés J, Bueren J, Izpisúa Belmonte JC (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460(7251):53–59PubMedCentralPubMedCrossRefGoogle Scholar
  39. Rosler ES, Brandt JE, Chute J, Hoffman R (2000) An in vivo competitive repopulation assay for various sources of human hematopoietic stem cells. Blood 96(10):3414–3421PubMedGoogle Scholar
  40. Saha S, Bhanja P, Kabarriti R, Liu L, Alfieri AA, Guha C (2011) Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One 6(9):e24072PubMedCentralPubMedCrossRefGoogle Scholar
  41. Salako SE (2008) The UNESCO Universal Declaration on Bioethics and Human Rights: protecting future generations and the quest for a global consensus. Med Law 27(4):805–823PubMedGoogle Scholar
  42. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725PubMedCrossRefGoogle Scholar
  43. Sanal MG (2009) Adipose tissue transplantation may be a potential treatment for diabetes, atherosclerosis and nonalcoholic steatohepatitis. Med Hypotheses 72(3):247–249, Epub 2008 Nov 28PubMedCrossRefGoogle Scholar
  44. Sanal MG (2011) Future of liver transplantation: non-human primates for patient-specific organs from induced pluripotent stem cells. World J Gastroenterol 17(32):3684–3690PubMedCentralPubMedCrossRefGoogle Scholar
  45. Shafa M, Sjonnesen K, Yamashita A, Liu S, Michalak M, Kallos MS, Rancourt DE (2012a) Expansion and long-term maintenance of induced pluripotent stem cells in stirred suspension bioreactors. J Tissue Eng Regen Med 6(6):462–472. doi: 10.1002/term.450 PubMedCrossRefGoogle Scholar
  46. Shafa M, Day B, Yamashita A, Meng G, Liu S, Krawetz R, Rancourt DE (2012b) Derivation of iPSCs in stirred suspension bioreactors. Nat Methods 9(5):465–466. doi: 10.1038/nmeth.1973 PubMedCrossRefGoogle Scholar
  47. Shehata N, Lin Y, Pendergrast J, Branch DR (2007) Cellular therapies: a Canadian blood services research and development symposium. Transfus Med Rev 21(4):317–336PubMedCrossRefGoogle Scholar
  48. Sorich MJ, McKinnon RA (2012) Personalized medicine: potential, barriers and contemporary issues. Curr Drug Metab 13(7):1000–1006PubMedCrossRefGoogle Scholar
  49. Spandorfer SD, Barmat L, Navarro J, Burmeister L, Veeck L, Clarke R, Liu HC, Rosenwaks Z (2002) Autologous endometrial coculture in patients with a previous history of poor quality embryos. J Assist Reprod Genet 19(7):309–312PubMedCentralPubMedCrossRefGoogle Scholar
  50. Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24(20):2239–2263PubMedCentralPubMedCrossRefGoogle Scholar
  51. Swistowski A, Zeng X (2012) Scalable production of transplantable dopaminergic neurons from hESCs and iPSCs in xeno-free defined conditions. Curr Protoc Stem Cell Biol, Chapter 2:Unit2D.12. doi: 10.1002/9780470151808.sc02d12s22, PMID: 22872425
  52. Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11(2):147–152PubMedCrossRefGoogle Scholar
  53. Till JE, McCulloch EA (1963) Early repair processes in marrow cells irradiated and proliferating in vivo. Radiat Res 18:96–105Google Scholar
  54. Trounson A (2009) New perspectives in human stem cell therapeutic research. BMC Med 7:29, ReviewPubMedCentralPubMedCrossRefGoogle Scholar
  55. Weiden PL, Sullivan KM, Flournoy N, Storb R, Thomas ED (1981) Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med 304(25):1529–1533Google Scholar
  56. Welck M, Borg P, Ellis H (2010) James Blundell MD Edin FRCP (1790–1877): pioneer of blood transfusion. J Med Biogr 18(4):194–197PubMedCrossRefGoogle Scholar
  57. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordóñez A, Hannan NR, Rouhani FJ, Darche S, Alexander G, Marciniak SJ, Fusaki N, Hasegawa M, Holmes MC, Di Santo JP, Lomas DA, Bradley A, Vallier L (2011) Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478(7369):391–394. doi: 10.1038/nature10424 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Institute of Liver and Biliary SciencesNew DelhiIndia

Personalised recommendations