Pharmacogenomics and Personalized Medicine in Infertility

  • Subeer S. Majumdar
  • Indrashis Bhattacharya
  • Meraj Khan


Around 60–80 million couples are infertile around the globe, and in a large proportion of western world, constant decline in fertility is a major cause of concern. Although infertility per se may not threaten physical health, it is a source of distress, as societal norms tend to equate infertility with failure. Given the complexity of the process of gametogenesis and the large number of genes involved, it is likely that a significant proportion of infertility phenotypes are genetic in origin. Pharmacogenomics has aggressively been studied and addressed for life-threatening illnesses like cancer, cardiovascular disorders, depression, HIV, tuberculosis, asthma, and diabetes. However, this field has not advanced sufficiently to address issues related to personalized treatment for infertility, mainly because infertility fails to fit into the definition of a major disease and is lower in order of priority than other ailments. Here, we will discuss the present status of knowledge which may be a starting point for expansion into pharmacogenomics of male and female infertility. Polymorphisms in several genes are studied in relation to controlled ovarian hyperstimulation (COH) outcome in infertile women undergoing IVF treatment in clinics, and therapies based on genetic background has just begun to emerge. Except this, no major advancement has yet occurred in this field, but a huge scope of pharmacogenomics and personalized medicine for treatment of infertility exists because several genes and their SNPs have already been proven to be associated with infertility, and they may provide strong basis for personalized therapies.


Polycystic Ovary Syndrome Male Infertility Premature Ovarian Failure Female Infertility Noonan Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aaltonen J, Laitinen MP, Vuojolainen K, Jaatinen R, Horelli-Kuitunen N, Seppa L, Louhio H, Tuuri T, Sjoberg J, Butzow R et al (1999) Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab 84:2744–2750PubMedCrossRefGoogle Scholar
  2. Altmäe S, Hovatta O, Stavreus-Evers A, Salumets A (2011) Genetic predictors of controlled ovarian hyperstimulation: where do we stand today? Hum Reprod Update 17(6):813–828. doi: 10.1093/humupd/dmr034 Google Scholar
  3. Alviggi C, Clarizia R, Coppola M, De Rosa G, De Biasio K, Pettersson K, De Placido G, Umaidan P (2009) A common LH polymorphism is associated with higher FSH consumption during ovarian stimulation for IVF/CSI cycles. Int J Gynecol Obstet 107S2:S105CrossRefGoogle Scholar
  4. Aston KI, Carrell DT (2009) Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J Androl 30(6):711–725. doi: 10.2164/jandrol.109.007971 PubMedCrossRefGoogle Scholar
  5. Aydos SE, Taspinar M, Sunguroglu A, Aydos K (2009) Association of CYP1A1 and glutathione S-transferase polymorphisms with male factor infertility. Fertil Steril 92(2):541–547. doi: 10.1016/j.fertnstert.2008.07.017 PubMedCrossRefGoogle Scholar
  6. Baird DT, Benagiano G, Cohen J (2002) Physiopathological determinants of human infertility. Hum Reprod Update 8(5):435–447CrossRefGoogle Scholar
  7. Bayne RA, Forster T, Burgess ST, Craigon M, Walton MJ, Baird DT, Ghazal P, Anderson RA (2008) Molecular profiling of the human testis reveals stringent pathway-specific regulation of RNA expression following gonadotropin suppression and progestogen treatment. J Androl 29(4):389–403PubMedCrossRefGoogle Scholar
  8. Becquemont L (2009) Pharmacogenomics of adverse drug reactions: practical applications and perspectives. Pharmacogenomics 10(6):961–969PubMedCrossRefGoogle Scholar
  9. Berger K, Billerbeck AE, Costa EM, Carvalho LS, Arnhold IJ, Mendonca BB (2005) Frequency of the allelic variant (Trp8Arg/Ile15Thr) of the luteinizing hormone gene in a Brazilian cohort of healthy subjects and in patients with hypogonadotropic hypogonadism. Clinics (Sao Paulo) 60:461–464Google Scholar
  10. Cappallo-Obermann H, von Kopylow K, Schulze W, Spiess AN (2010) A biopsy sample reduction approach to identify significant alterations of the testicular transcriptome in the presence of Y-chromosomal microdeletions that are independent of germ cell composition. Hum Genet 128(4):421–431. doi: 10.1007/s00439-010-0865-9 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chalmel F, Lardenois A, Evrard B, Mathieu R, Feig C, Demougin P, Gattiker A, Schulze W, Jégou B, Kirchhoff C, Primig M (2012) Global human tissue profiling and protein network analysis reveals distinct levels of transcriptional germline-specificity and identifies target genes for male infertility. Hum Reprod 27(11):3233–3248. doi: 10.1093/humrep/des301 Google Scholar
  12. Chengalvala MV, Meade EH Jr, Cottom JE, Hoffman WH, Shanno LK, Wu MM, Kopf GS, Shen ES (2006) Regulation of female fertility and identification of future contraceptive targets. Curr Pharm Des 12(30):3915–3928PubMedCrossRefGoogle Scholar
  13. Desai SS, Achrekar SK, Pathak BR, Desai SK, Mangoli VS, Mangoli RV, Mahale SD (2011) Follicle-stimulating hormone receptor polymorphism (G-29A) is associated with altered level of receptor expression in Granulosa cells. J Clin Endocrinol Metab 96(9):2805–2812. doi: 10.1210/jc.2011-1064 PubMedCrossRefGoogle Scholar
  14. De Placido G, Alviggi C, Mollo A, Strina I, Ranieri A, Alviggi E, Wilding M, Varricchio MT, Borrelli AL, Conforti S (2004) Effects of recombinant LH (rLH) supplementation during controlled ovarian hyperstimulation (COH) in normogonadotrophic women with an initial inadequate response to recombinant FSH (rFSH) after pituitary downregulation. Clin Endocrinol 60:637–643CrossRefGoogle Scholar
  15. Ellis PJ, Furlong RA, Conner SJ, Kirkman-Brown J, Afnan M, Barratt C, Griffin DK, Affara NA (2007) Coordinated transcriptional regulation patterns associated with infertility phenotypes in men. J Med Genet 44(8):498–508PubMedCentralPubMedCrossRefGoogle Scholar
  16. Feig C, Kirchhoff C, Ivell R, Naether O, Schulze W, Spiess AN (2007) A new paradigm for profiling testicular gene expression during normal and disturbed human spermatogenesis. Mol Hum Reprod 13(1):33–43PubMedCrossRefGoogle Scholar
  17. Ferlin A (2011) Update on genetics in male infertility. Endocr Abstr 26:S11.1.
  18. Furui K, Suganuma N, Tsukahara S, Asada Y, Kikkawa F, Tanaka M, Ozawa T, Tomoda Y (1994) Identification of two point mutations in the gene coding luteinizing hormone (LH) beta-subunit, associated with immunologically anomalous LH variants. J Clin Endocrinol Metab 78:107–113PubMedCrossRefGoogle Scholar
  19. Galan JJ, De Felici M, Buch B, Rivero MC, Segura A, Royo JL, Cruz N, Real LM, Ruiz A (2006) Association of genetic markers within the KIT and KITLG genes with human male infertility. Hum Reprod 21(12):3185–3192PubMedCrossRefGoogle Scholar
  20. Gatta V, Raicu F, Ferlin A, Antonucci I, Scioletti AP, Garolla A, Palka G, Foresta C, Stuppia L (2010) Testis transcriptome analysis in male infertility: new insight on the pathogenesis of oligo-azoospermia in cases with and without AZFc microdeletion. BMC Genomics 11:401. doi: 10.1186/1471-2164-11-401 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Gemmell NJ, Slate J (2006) Heterozygote advantage for fecundity. PLoS One 1:e125PubMedCentralPubMedCrossRefGoogle Scholar
  22. Gharani N, Waterworth DM, Batty S, White D, Gilling-Smith C, Conway GS, McCarthy M, Franks S, Williamson R (1997) Association of the steroid synthesis gene CYP11a with polycystic ovary syndrome and hyperandrogenism. Hum Mol Genet 6:397–402PubMedCrossRefGoogle Scholar
  23. Giacomini KM, Brett CM, Altman RB, Benowitz NL, Dolan ME, Flockhart DA, Johnson JA, Hayes DF, Klein T, Krauss RM, Kroetz DL, McLeod HL, Nguyen AT, Ratain MJ, Relling MV, Reus V, Roden DM, Schaefer CA, Shuldiner AR, Skaar T, Tantisira K, Tyndale RF, Wang L, Weinshilboum RM, Weiss ST, Zineh I (2007) The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther 81:328–345PubMedCrossRefGoogle Scholar
  24. Giudice LC (2004) Microarray expression profiling reveals candidate genes for human uterine receptivity. Am J Pharmacogenomics 4(5):299–312PubMedCrossRefGoogle Scholar
  25. Goldenberg N, Glueck CJ (2008) Is pharmacogenomics our future? Metformin, ovulation and polymorphism of the STK11 gene in polycystic ovary syndrome. Pharmacogenomics 9:1163–1165PubMedCrossRefGoogle Scholar
  26. Goldenberg RL, Vaitukaitis JL, Ross GT (1972) Estrogen and follicle stimulation hormone interactions on follicle growth in rats. Endocrinology 90:1492–1498PubMedCrossRefGoogle Scholar
  27. Goldsmith P, Fenton H, Morris-Stiff G, Ahmad N, Fisher J, Prasad KR (2010) Metabonomics: a useful tool for the future surgeon. J Surg Res 160:122–132PubMedCrossRefGoogle Scholar
  28. Grady BJ, Ritchie MD (2011) Statistical optimization of pharmacogenomics association studies: key considerations from study design to analysis. Curr Pharmacogenomics Personal Med 9(1):41–66CrossRefGoogle Scholar
  29. Haavisto AM, Pettersson K, Bergendahl M, Virkamaki A, Huhtaniemi I (1995) Occurrence and biological properties of a common genetic variant of luteinizing hormone. J Clin Endocrinol Metab 80:1257–1263PubMedCrossRefGoogle Scholar
  30. Haiman CA, Hankinson SE, Spiegelman D, De Vivo I, Colditz GA, Willett WC, Speizer FE, Hunter DJ (2000) A tetranucleotide repeat polymorphism in CYP19 and breast cancer risk. Int J Cancer 87:204–210PubMedCrossRefGoogle Scholar
  31. Haller-Kikkatalo K, Salumets A, Raivo U (2012) Review on autoimmune reactions in female infertility: antibodies to follicle stimulating hormone. Clin Dev Immunol 2012:1–15, Article ID 762541CrossRefGoogle Scholar
  32. Hardelin JP, Dode C (2008) The complex genetics of Kallmann syndrome: KAL1, FGFR1, FGF8, PROKR2, PROK2, et al. Sex Dev 2:181–193PubMedCrossRefGoogle Scholar
  33. Hess AP, Nayak NR, Giudice LC (2006) Oviduct and endometrium: cyclic changes in the primate oviduct and endometrium. In: Neill JD (ed) The physiology of reproduction, 3rd edn. Elsevier, St. Louis, pp 359–403Google Scholar
  34. Horcajadas JA, Pellicer A, Simón C (2007) Wide genomic analysis of human endometrial receptivity: new times, new opportunities. Hum Reprod Update 13(1):77–86PubMedCrossRefGoogle Scholar
  35. Hwang K, Yatsenko AN, Jorgez CJ, Mukherjee S, Nalam RL, Matzuk MM, Lamb DJ (2011) Mendelian genetics of male infertility. Ann N Y Acad Sci 1214:E1–E17CrossRefGoogle Scholar
  36. Kao LC, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, Osteen K, Taylor RN, Lessey BA, Giudice LC (2002) Global gene profiling in human endometrium during the window of implantation. Endocrinology 143(6):2119–2138PubMedCrossRefGoogle Scholar
  37. Kerkela E, Skottman H, Friden B, Bjuresten K, Kere J, Hovatta O (2007) Exclusion of coding-region mutations in luteinizing hormone and follicle-stimulating hormone receptor genes as the cause of ovarian hyperstimulation syndrome. Fertil Steril 87:603–606PubMedCrossRefGoogle Scholar
  38. Kosova G, Scott NM, Niederberger C, Prins GS, Ober C (2012) Genome-wide association study identifies candidate genes for male fertility traits in humans. Am J Hum Genet 90(6):950–961. doi: 10.1016/j.ajhg.2012.04.016 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Kovanci E, Rohozinski J, Simpson JL, Heard MJ, Bishop CE, Carson SA (2007) Growth differentiating factor-9 mutations may be associated with premature ovarian failure. Fertil Steril 87:143–146PubMedCrossRefGoogle Scholar
  40. Laanpere M, Altma¨e S, Kaart T, Stavreus-Evers A, Nilsson TK, Salumets A (2011) Folate-metabolizing gene variants and pregnancy outcome of IVF. Reprod Biomed Online 22:603–614PubMedCrossRefGoogle Scholar
  41. Lalioti MD (2011) Impact of follicle stimulating hormone receptor variants in fertility. Curr Opin Obstet Gynecol 23(3):158–167. doi: 10.1097/GCO.0b013e3283455288 PubMedCrossRefGoogle Scholar
  42. Lardone MC, Parada-Bustamante A, Ebensperger M, Valdevenito R, Kakarieka E, Martínez D, Pommer R, Piottante A, Castro A (2011) DAX-1 and DAX-1A expression in human testicular tissues with primary spermatogenic failure. Mol Hum Reprod 17(12):739–746. doi: 10.1093/molehr/gar051 PubMedCrossRefGoogle Scholar
  43. Lee HC, Jeong YM, Lee SH, Cha KY, Song SH, Kim NK, Lee KW, Lee S (2006) Association study of four polymorphisms in three folate-related enzyme genes with non-obstructive male infertility. Hum Reprod 21:3162–3170PubMedCrossRefGoogle Scholar
  44. Legro RS (2008) Individualizing infertility therapy with pharmacogenomics: vanity or vanguard? Pharmacogenomics 9 (9):1179–1181. doi: 10.2217/14622416.9.9.1179 PubMedCrossRefGoogle Scholar
  45. Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, Carson SA, Steinkampf MP, Coutifaris C, McGovern PG, Cataldo NA, Gosman GG, Nestler JE, Giudice LC, Ewens KG, Spielman RS, Leppert PC, Myers ER (2008) Evaluation of ovulatory response to treatment of polycystic ovary syndrome is associated with a polymorphism in the STK11 gene. J Clin Endocrinol Metab 93(3):792–800PubMedCentralPubMedCrossRefGoogle Scholar
  46. Lian J, Zhang X, Tian H, Liang N, Wang Y, Liang C, Li X, Sun F (2009) Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol 7:13. doi: 10.1186/1477-7827-7-13 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Lin YH, Lin YM, Teng YN, Hsieh TY, Lin YS, Kuo PL (2006) Identification of ten novel genes involved in human spermatogenesis by microarray analysis of testicular tissue. Fertil Steril 86(6):1650–1658PubMedCrossRefGoogle Scholar
  48. Loutradis D, Theofanakis C, Anagnostou E, Mavrogianni D, Partsinevelos GA (2012) Genetic profile of SNP(s) and ovulation induction. Curr Pharm Biotechnol 13(3):417–425PubMedCrossRefGoogle Scholar
  49. Majumdar SS, Usmani A, Bhattacharya I, Sarda K, Gautam M, Sharma D, Basu S, Dhup S (2009) A method for rapid generation of transgenic animals to evaluate testis genes during sexual maturation. J Reprod Immunol 83(1–2):36–39Google Scholar
  50. Matzuk MM, Lamb DJ (2002) Genetic dissection of mammalian fertility pathways. Nat Cell Biol 4(Suppl):S41–S49PubMedGoogle Scholar
  51. Matzuk MM, Lamb DJ (2008) The biology of infertility: research advances and clinical challenges. Nat Med 14(11):1197–1213PubMedCentralPubMedCrossRefGoogle Scholar
  52. Merisalu A, Punab M, Altmae S, Haller K, Tiido T, Peters M, Salumets A (2007) The contribution of genetic variations of aryl hydrocarbon receptor pathway genes to male factor infertility. Fertil Steril 88:854–859PubMedCrossRefGoogle Scholar
  53. Montjean D, De La Grange P, Gentien D, Rapinat A, Belloc S, Cohen-Bacrie P, Menezo Y, Benkhalifa M (2012) Sperm transcriptome profiling in oligozoospermia. J Assist Reprod Genet 29(1):3–10. doi: 10.1007/s10815-011-9644-3 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Mooij PN, Wouters MG, Thomas CM, Doesburg WH, Eskes TK (1992) Disturbed reproductive performance in extreme folic acid deficient golden hamsters. Eur J Obstet Gynecol Reprod Biol 43:71–75PubMedCrossRefGoogle Scholar
  55. Navarro-Costa P, Nogueira P, Carvalho M, Leal F, Cordeiro I, Calhaz-Jorge C, Gonçalves J, Plancha CE (2010) Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm. Hum Reprod 25(10):2647–2654. doi: 10.1093/humrep/deq200 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Nieschlag E, Leifke E (1997) Empirical therapies for idiopathic infertility. In: Nieschlag E, Behre HM (eds) Andrology: male reproductive health and dysfunction. Springer, Heidelberg, pp 313–319CrossRefGoogle Scholar
  57. Nuti F, Krausz C (2008) Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod Biomed Online 16(4):504–513PubMedCrossRefGoogle Scholar
  58. Ogorevc J, Dovc P, Kunej T (2011) Polymorphisms in microRNA targets: a source of new molecular markers for male reproduction. Asian J Androl 13:505–508PubMedCentralPubMedCrossRefGoogle Scholar
  59. Okada H, Tajima A, Shichiri K, Tanaka A, Tanaka K, Inoue I (2008) Genome-wide expression of azoospermia testes demonstrates a specific profile and implicates ART3 in genetic susceptibility. PLoS Genet 4(2):e26. doi: 10.1371/journal.pgen.0040026 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Oliveira A, Neto A, Almeida C, Silva-Ramos M, Versos R, Barros A, Sousa M, Carvalho F (2012) Comparative study of gene expression in patients with varicocele by microarray technology. Andrologia 44(Suppl 1):260–265. doi: 10.1111/j.1439-0272.2011.01173.x PubMedCrossRefGoogle Scholar
  61. Otsuka M, Zheng M, Hayashi M, Lee JD, Yoshino O, Lin S, Han J (2008) Impaired micro RNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest 118(5):1944–1954PubMedCentralPubMedCrossRefGoogle Scholar
  62. Overbeek A, Lambalk N (2009) Pharmacogenomics of ovulation induction: facilitating decisions on who, when and how to treat. Pharmacogenomics 10(9):1377–1379. doi: 10.2217/pgs.09.110 PubMedCrossRefGoogle Scholar
  63. Palmer JS, Zhao ZZ, Hoekstra C, Hayward NK, Webb PM, Whiteman DC, Martin NG, Boomsma DI, Duffy DL, Montgomery GW (2006) Novel variants in growth differentiation factor 9 in mothers of dizygotic twins. J Clin Endocrinol Metab 91:4713–4716PubMedCrossRefGoogle Scholar
  64. Papaioannou MD, Nef S (2010) MicroRNAs in the testis: building up male fertility. J Androl 31(1):26–33PubMedCrossRefGoogle Scholar
  65. Park JH, Lee HC, Jeong YM, Chung TG, Kim HJ, Kim NK, Lee SH, Lee S (2005) MTHFR C677T polymorphism associates with unexplained infertile male factors. J Assist Reprod Genet 22:361–368PubMedCrossRefGoogle Scholar
  66. Perez Mayorga M, Gromoll J, Behre HM, Gassner C, Nieschlag E, Simoni M (2000) Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J Clin Endocrinol Metab 85:3365–3369PubMedCrossRefGoogle Scholar
  67. Plaseski T, Noveski P, Popeska Z, Efremov GD, Plaseska-Karanfilska D (2012) Association study of single-nucleotide polymorphisms in FASLG, JMJDIA, LOC203413, TEX15, BRDT, OR2W3, INSR, and TAS2R38 genes with male infertility. J Androl 33(4):675–683. doi: 10.2164/jandrol.111.013995 PubMedCrossRefGoogle Scholar
  68. Ponnampalam AP, Weston GC, Susil B, Rogers PA (2006) Molecular profiling of human endometrium during the menstrual cycle. Aust N Z J Obstet Gynaecol 46(2):154–158PubMedCrossRefGoogle Scholar
  69. Ramanujam LN, Liao WX, Roy AC, Loganath A, Goh HH, Ng SC (1999) Association of molecular variants of luteinizing hormone with menstrual disorders. Clin Endocrinol 51:243–246CrossRefGoogle Scholar
  70. Roberto T, Donati MB, Iacoviello L (2004) Trends in pharmacogenomics of drugs acting on hypertension. Pharmacol Res 49:351–356CrossRefGoogle Scholar
  71. Ruiz-Sanz JI, Aurrekoetxea I, Matorras R, Ruiz-Larrea MB (2010) Ala16Val SOD2 polymorphism is associated with higher pregnancy rates in in vitro fertilization cycles. Fertil Steril 95:1601–1605PubMedCrossRefGoogle Scholar
  72. Safarinejad MR, Shafiei N, Safarinejad S (2010) The association of glutathione-S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) with idiopathic male infertility. J Hum Genet 55(9):565–570. doi: 10.1038/jhg.2010.59 PubMedCrossRefGoogle Scholar
  73. Salenave S, Trabado S, Maione L, Brailly-Tabard S, Young J (2012) Male acquired hypogonadotropic hypogonadism: diagnosis and treatment. Ann Endocrinol 73(2):141–146CrossRefGoogle Scholar
  74. Schaison G, Young J, Pholsena M, Nahoul K, Couzinet B (1993) Failure of combined follicle stimulating hormone-testosterone administration to initiate and/or maintain spermatogenesis in men with hypogonadotropic hypogonadism. J Clin Endocrinol Metab 77(6):1545–1549PubMedCrossRefGoogle Scholar
  75. Schwartz CE, Dean J, Howard-Peebles PN et al (1994) Obstetrical and gynecological complications in fragile X carriers: a multicenter study. Am J Med Genet 51:400–402PubMedCrossRefGoogle Scholar
  76. Sebastian S, Bulun SE (2001) A highly complex organization of the regulatory region of the human CYP19 (aromatase) gene revealed by the Human Genome Project. J Clin Endocrinol Metab 86:4600–4602PubMedCrossRefGoogle Scholar
  77. Shahid M, Dhillon VS, Khalil HS, Sexana A, Husain SA (2011) Associations of Y-chromosome subdeletion gr/gr with the prevalence of Y-chromosome haplogroups in infertile patients. Eur J Hum Genet 19(1):23–29. doi: 10.1038/ejhg.2010.151 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Speroff L, Fritz MA (2005) Clinical gynecologic endocrinology and infertility. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  79. Spiess AN, Feig C, Schulze W, Chalmel F, Cappallo-Obermann H, Primig M, Kirchhoff C (2007 Nov) Cross-platform gene expression signature of human spermatogenic failure reveals inflammatory-like response. Hum Reprod 22(11):2936–2946PubMedCrossRefGoogle Scholar
  80. Squassina A, Manchia M, Manolopoulos VG, Artac M, Lappa-Manakou C, Karkabouna S, Mitropoulos K, Del Zompo M, Patrinos GP (2010) Realities and expectations of pharmacogenomics and personalized medicine: impact of translating genetic knowledge into clinical practice. Pharmacogenomics 11(8):1149–1167PubMedCrossRefGoogle Scholar
  81. Simoni M, Tüttelmann F, Michel C, Böckenfeld Y, Nieschlag E, Gromoll J (2008) Polymorphisms of the luteinizing hormone/chorionic gonadotropin receptor gene: association with maldescended testes and male infertility. Pharmacogenet Genomics 18(3):193–200. doi: 10.1097/FPC.0b013e3282f4e98c PubMedCrossRefGoogle Scholar
  82. Tüttelmann F, Rajpert-De Meyts E, Nieschlag E, Simoni M (2007 Dec) Gene polymorphisms and male infertility–a meta-analysis and literature review. Reprod Biomed Online 15(6):643–658PubMedCrossRefGoogle Scholar
  83. Twigt JM, Hammiche F, Sinclair KD, Beckers NG, Visser JA, Lindemans J, de Jong FH, Laven JS, Steegers-Theunissen RP (2011) Preconception folic acid use modulates estradiol and follicular responses to ovarian stimulation. J Clin Endocrinol Metab 96:E322–E329PubMedCrossRefGoogle Scholar
  84. Tworoger SS, Chubak J, Aiello EJ, Ulrich CM, Atkinson C, Potter JD, Yasui Y, Stapleton PL, Lampe JW, Farin FM et al (2004) Association of CYP17, CYP19, CYP1B1, and COMT polymorphisms with serum and urinary sex hormone concentrations in postmenopausal women. Cancer Epidemiol Biomarkers Prev 13:94–101PubMedCrossRefGoogle Scholar
  85. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914PubMedCrossRefGoogle Scholar
  86. Watanabe M, Sueoka K, Sasagawa I, Nakabayashi A, Yoshimura Y, Ogata T (2004) Association of male infertility with Pro185Ala polymorphism in the aryl hydrocarbon receptor repressor gene: implication for the susceptibility to dioxins. Fertil Steril 82(suppl 3):1067–1071PubMedCrossRefGoogle Scholar
  87. Wittenberger MD, Hagerman RJ, Sherman SL, McConkie-Rosell A, Welt CK, Rebar RW, Corrigan EC, Simpson JL, Nelson LM (2007) The FMR1 premutation and reproduction. Fertil Steril 87:456–465PubMedCrossRefGoogle Scholar
  88. Wu Wu Q, Xing J, Xue W, Sun J, Wang X, Jin X (2009) Influence of polymorphism of glutathione S-transferase T1 on Chinese infertile patients with varicocele. Fertil Steril 91(3):960–962. doi: 10.1016/j.fertnstert.2007.08.061 CrossRefGoogle Scholar
  89. Wu W, Hu Z, Qin Y, Dong J, Dai J, Lu C, Zhang W, Shen H, Xia Y, Wang X (2012) Seminal plasma microRNAs: potential biomarkers for spermatogenesis status. Mol Hum Reprod 18(10):489–497PubMedCrossRefGoogle Scholar
  90. Yang B, Wang H, Gao XK, Chen BQ, Zhang YQ, Liu HL, Wang Y, Qin WJ, Qin RL, Shao GX, Shao C (2004) Expression and significance of Rap1A in testes of azoospermic subjects. Asian J Androl 6(1):35–40PubMedGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Subeer S. Majumdar
    • 1
  • Indrashis Bhattacharya
    • 2
  • Meraj Khan
    • 3
  1. 1.Division of Cellular EndocrinologyNational Institute of ImmunologyDelhiIndia
  2. 2.Department of ZoologyHindu College, University of DelhiDelhiIndia
  3. 3.Department of PhysiologyAIIMSDelhiIndia

Personalised recommendations