Pharmacogenomics and Personalized Medicine for Infectious Diseases

  • Nirmal Kumar Ganguly
  • Gautam Kumar Saha


Humans have been plagued by the scourge of invasion by pathogens leading to infectious diseases from the time in memoriam and are still the cause of morbidity and mortality among millions of individuals. Trying to understand the disease mechanisms and finding the remedial measures have been the quest of humankind. The susceptibility to disease of an individual in a given population is determined by ones genetic buildup. Response to treatment and the disease prognosis also depends upon individual’s genetic predisposition. The environmental stress induces mutations and is leading to the emergence of ever-increasing more dreaded infectious pathogens, and now we are in the era of increasing antibiotic resistance that has thrown up a challenge to find new treatment regimes. Discoveries in the science of high-throughput sequencing and array technologies have shown new hope and are bringing a revolution in human health. The information gained from sequencing of both human and pathogen genomes is a way forward in deciphering host-pathogen interactions. Deciphering the pathogen virulence factors, host susceptibility genes, and the molecular programs involved in the pathogenesis of disease has paved the way for discovery of new molecular targets for drugs, diagnostic markers, and vaccines. The genomic diversity in the human population leads to differences in host responses to drugs and vaccines and is the cause of poor response to treatment as well as adverse reactions. The study of pharmacogenomics of infectious diseases is still at an early stage of development, and many intricacies of the host-pathogen interaction are yet to be understood in full measure. However, progress has been made over the decades of research in some of the important infectious diseases revealing how the host genetic polymorphisms of drug-metabolizing enzymes and transporters affect the bioavailability of the drugs which further determine the efficacy and toxicology of the drugs used for treatment. Further, the field of structural biology and chemistry has intertwined to give rise to medical structural genomics leading the way to the discovery of new drug targets against infectious diseases. This chapter explores how the advent of “omics” technologies is making a beginning in bringing about a change in the prevention, diagnosis, and treatments of the infectious diseases and hence paving way for personalized medicine.


Human Immunodeficiency Virus Human Leukocyte Antigen Visceral Leishmaniasis Human Leukocyte Antigen Class Cutaneous Leishmaniasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abel L, Vu DL, Oberti J, Nguyen VT, Van VC, Guilloud-Bataille M, Schurr E, Lagrange PH (1995) Complex segregation analysis of leprosy in southern Vietnam. Genet Epidemiol 12(1):63–82PubMedGoogle Scholar
  2. Abel L, Sanchez FO, Oberti J, Thuc NV, Hoa LV, Lap VD, Skamene E, Lagrange PH, Schurr E (1998) Susceptibility to leprosy is linked to the human Nramp1 gene. J Infect Dis 177(1):133–145PubMedGoogle Scholar
  3. Adjei GO, Kristensen K, Goka BQ, Hoegberg LC, Alifrangis M, Rodrigues OP, Kurtzhals JA (2008) Effect of concomitant artesunate administration and cytochrome P4502c8 polymorphisms on the pharmacokinetics of amodiaquine in Ghanaian children with uncomplicated malaria. Antimicrob Agents Chemother 52(12):4400–4406PubMedCentralPubMedGoogle Scholar
  4. Agaisse H, Burrack LS, Philips JA, Rubin EJ, Perrimon N, Higgins DE (2005) Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science 309(5738):1248–1251PubMedGoogle Scholar
  5. Alexander J, Bryson K (2005) T helper (H)1/Th2 and leishmania: paradox rather than paradigm. Immunol Lett 99(1):17–23PubMedGoogle Scholar
  6. Alonso DP, Ferreira AF, Ribolla PE, de Miranda Santos IK, do Socorro Pires e Cruz M, de Carvalho FA, Abatepaulo AR et al (2007) Genotypes of the mannan-binding lectin gene and susceptibility to visceral leishmaniasis and clinical complications. J Infect Dis 195(8):1212–1217PubMedGoogle Scholar
  7. Altare F, Durandy A, Lammas D, Emile JF, Lamhamedi S, Le Deist F, Drysdale P et al (1998) Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 280(5368):1432–1435PubMedGoogle Scholar
  8. Alving AS, Carson PE, Flanagan CL, Ickes CE (1956) Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124(3220):484–485PubMedGoogle Scholar
  9. Amato VS, Tuon FF, Bacha HA, Neto VA, Nicodemo AC (2008) Mucosal leishmaniasis: current scenario and prospects for treatment. Acta Trop 105(1):1–9PubMedGoogle Scholar
  10. Ameen M (2007) Cutaneous leishmaniasis: therapeutic strategies and future directions. Expert Opin Pharmacother 8(16):2689–2699PubMedGoogle Scholar
  11. Antoniou M, Haralambous C, Mazeris A, Pratlong F, Dedet JP, Soteriadou K (2008) Leishmania donovani leishmaniasis in Cyprus. Lancet Infect Dis 8(1):6–7PubMedGoogle Scholar
  12. Antony PM, Balling R, Vlassis N (2012) From systems biology to systems biomedicine. Curr Opin Biotechnol 23(4):604–608PubMedGoogle Scholar
  13. Bacellar O, Lessa H, Schriefer A, Machado P, Ribeiro de Jesus A, Dutra WO, Gollob KJ, Carvalho EM (2002) Up-regulation of Th1-type responses in mucosal leishmaniasis patients. Infect Immun 70(12):6734–6740PubMedCentralPubMedGoogle Scholar
  14. Barral-Netto M, Badaro R, Barral A, Almeida RP, Santos SB, Badaro F, Pedral-Sampaio D et al (1991a) Tumor necrosis factor (cachectin) in human visceral leishmaniasis. J Infect Dis 163(4):853–857PubMedGoogle Scholar
  15. Barral-Netto M, Barral A, Santos SB, Carvalho EM, Badaro R, Rocha H, Reed SG, Johnson WD Jr (1991b) Soluble Il-2 receptor as an agent of serum-mediated suppression in human visceral leishmaniasis. J Immunol 147(1):281–284PubMedGoogle Scholar
  16. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV (1998) Variations in the Nramp1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 338(10):640–644PubMedGoogle Scholar
  17. Ben Mahmoud L, Ghozzi H, Kamoun A, Hakim A, Hachicha H, Hammami S, Sahnoun Z et al (2012) Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. Pathol Biol (Paris) 60(5):324–330Google Scholar
  18. Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide protein data bank (wwPDB): ensuring a single, uniform archive of Pdb data. Nucleic Acids Res 35(Database issue):D301–D303PubMedCentralPubMedGoogle Scholar
  19. Blackwell J, Freeman J, Bradley D (1980) Influence of H-2 complex on acquired resistance to Leishmania donovani infection in mice. Nature 283(5742):72–74PubMedGoogle Scholar
  20. Blackwell JM, Goswami T, Evans CA, Sibthorpe D, Papo N, White JK, Searle S et al (2001) SLC11A1 (formerly Nramp1) and disease resistance. Cell Microbiol 3(12):773–784PubMedCentralPubMedGoogle Scholar
  21. Bourreau E, Prevot G, Gardon J, Pradinaud R, Launois P (2001) High intralesional interleukin-10 messenger RNA expression in localized cutaneous leishmaniasis is associated with unresponsiveness to treatment. J Infect Dis 184(12):1628–1630PubMedGoogle Scholar
  22. Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9(7):554–566PubMedGoogle Scholar
  23. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319(5865):921–926PubMedGoogle Scholar
  24. Brinster S, Lamberet G, Staels B, Trieu-Cuot P, Gruss A, Poyart C (2009) Type II fatty acid synthesis is not a suitable antibiotic target for gram-positive pathogens. Nature 458(7234):83–86PubMedGoogle Scholar
  25. Bucheton B, Abel L, El-Safi S, Kheir MM, Pavek S, Lemainque A, Dessein AJ (2003a) A major susceptibility locus on chromosome 22q12 plays a critical role in the control of kala-azar. Am J Hum Genet 73(5):1052–1060PubMedCentralPubMedGoogle Scholar
  26. Bucheton B, Abel L, Kheir MM, Mirgani A, El-Safi SH, Chevillard C, Dessein A (2003b) Genetic control of visceral leishmaniasis in a Sudanese population: candidate gene testing indicates a linkage to the Nramp1 region. Genes Immun 4(2):104–109PubMedGoogle Scholar
  27. Bucheton B, Argiro L, Chevillard C, Marquet S, Kheir MM, Mergani A, El-Safi SH, Dessein AJ (2007) Identification of a novel G245R polymorphism in the IL-2 receptor beta membrane proximal domain associated with human visceral leishmaniasis. Genes Immun 8(1):79–83PubMedGoogle Scholar
  28. Buxbaum LU, Denise H, Coombs GH, Alexander J, Mottram JC, Scott P (2003) Cysteine protease B of Leishmania mexicana inhibits host Th1 responses and protective immunity. J Immunol 171(7):3711–3717PubMedGoogle Scholar
  29. Cabrera M, Shaw MA, Sharples C, Williams H, Castes M, Convit J, Blackwell JM (1995) Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. J Exp Med 182(5):1259–1264PubMedGoogle Scholar
  30. Caramia G, Ruffini E (2012) Proper antibiotic therapy. From penicillin to pharmacogenomic. Minerva Pediatr 64(2):225–237PubMedGoogle Scholar
  31. Cascorbi I, Roots I (1999) Pitfalls in N-acetyltransferase 2 genotyping. Pharmacogenetics 9(1):123–127PubMedGoogle Scholar
  32. Castellucci L, Menezes E, Oliveira J, Magalhaes A, Guimaraes LH, Lessa M, Ribeiro S et al (2006) Il6–174 G/C promoter polymorphism influences susceptibility to mucosal but not localized cutaneous leishmaniasis in Brazil. J Infect Dis 194(4):519–527PubMedGoogle Scholar
  33. Castes M, Trujillo D, Rojas ME, Fernandez CT, Araya L, Cabrera M, Blackwell J, Convit J (1993) Serum levels of tumor necrosis factor in patients with American cutaneous leishmaniasis. Biol Res 26(1–2):233–238PubMedGoogle Scholar
  34. Cavaco I, Stromberg-Norklit J, Kaneko A, Msellem MI, Dahoma M, Ribeiro VL, Bjorkman A, Gil JP (2005) CYP2C8 polymorphism frequencies among malaria patients in Zanzibar. Eur J Clin Pharmacol 61(1):15–18PubMedGoogle Scholar
  35. Center of Disease Control researchers, The Yellow Book, CDC Health Information for International Travel (2012), Chapter 3, Infectious diseases related to travel. Accessed Feb 2013
  36. Chigutsa E, Visser ME, Swart EC, Denti P, Pushpakom S, Egan D, Holford NH et al (2011) The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: dosing implications. Antimicrob Agents Chemother 55(9):4122–4127PubMedCentralPubMedGoogle Scholar
  37. Cho HJ, Koh WJ, Ryu YJ, Ki CS, Nam MH, Kim JW, Lee SY (2007) Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis (Edinb) 87(6):551–556Google Scholar
  38. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51(13):3661–3680PubMedGoogle Scholar
  39. Convit J, Ulrich M, Zerpa O, Borges R, Aranzazu N, Valera M, Villarroel H, Zapata Z, Tomedes I (2003) Immunotherapy of American cutaneous leishmaniasis in Venezuela during the period 1990–99. Trans R Soc Trop Med Hyg 97(4):469–472PubMedGoogle Scholar
  40. Cranswick N, Mulholland K (2005) Isoniazid treatment of children: can genetics help guide treatment? Arch Dis Child 90(6):551–553PubMedCentralPubMedGoogle Scholar
  41. Crofton J (1994) Global challenge of tuberculosis. Lancet 344(8922):609PubMedGoogle Scholar
  42. Cupolillo E, Brahim LR, Toaldo CB, de Oliveira-Neto MP, de Brito ME, Falqueto A, de Farias Naiff M, Grimaldi G Jr (2003) Genetic polymorphism and molecular epidemiology of Leishmania (Viannia) braziliensis from different hosts and geographic areas in Brazil. J Clin Microbiol 41(7):3126–3132PubMedCentralPubMedGoogle Scholar
  43. Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI, Goldstein JA (2001) Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11(7):597–607PubMedGoogle Scholar
  44. De Groot AS, Saint-Aubin C, Bosma A, Sbai H, Rayner J, Martin W (2001) Rapid determination of HLA B*07 ligands from the West Nile virus NY99 genome. Emerg Infect Dis 7(4):706–713PubMedCentralPubMedGoogle Scholar
  45. Devadatta S, Gangadharam PR, Andrews RH, Fox W, Ramakrishnan CV, Selkon JB, Velu S (1960) Peripheral neuritis due to isoniazid. Bull World Health Organ 23:587–598PubMedCentralPubMedGoogle Scholar
  46. Di YM, Chow VD, Yang LP, Zhou SF (2009) Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Curr Drug Metab 10(7):754–780PubMedGoogle Scholar
  47. Donald PR, Sirgel FA, Venter A, Parkin DP, Seifart HI, van de Wal BW, Werely C, van Helden PD, Maritz JS (2004) The influence of human N-acetyltransferase genotype on the early bactericidal activity of isoniazid. Clin Infect Dis 39(10):1425–1430PubMedGoogle Scholar
  48. Donald PR, Parkin DP, Seifart HI, Schaaf HS, van Helden PD, Werely CJ, Sirgel FA, Venter A, Maritz JS (2007) The influence of dose and N-acetyltransferase-2 (NAT2) genotype and phenotype on the pharmacokinetics and pharmacodynamics of isoniazid. Eur J Clin Pharmacol 63(7):633–639PubMedGoogle Scholar
  49. Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK, Downward J et al (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3(10):777–779PubMedGoogle Scholar
  50. Edwards AM, Bountra C, Kerr DJ, Willson TM (2009) Open access chemical and clinical probes to support drug discovery. Nat Chem Biol 5(7):436–440PubMedGoogle Scholar
  51. Edwards-Smith CJ, Jonsson JR, Purdie DM, Bansal A, Shorthouse C, Powell EE (1999) Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa. Hepatology 30(2):526–530PubMedGoogle Scholar
  52. Ellard GA, Gammon PT (1976) Pharmacokinetics of isoniazid metabolism in man. J Pharmacokinet Biopharm 4(2):83–113PubMedGoogle Scholar
  53. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357(2):289–298PubMedGoogle Scholar
  54. Evans WE, Johnson JA (2001) Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu Rev Genomics Hum Genet 2:9–39PubMedGoogle Scholar
  55. Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286(5439):487–491PubMedGoogle Scholar
  56. Faria DR, Gollob KJ, Barbosa J Jr, Schriefer A, Machado PR, Lessa H, Carvalho LP et al (2005) Decreased in situ expression of interleukin-10 receptor is correlated with the exacerbated inflammatory and cytotoxic responses observed in mucosal leishmaniasis. Infect Immun 73(12):7853–7859PubMedCentralPubMedGoogle Scholar
  57. Ganguly S, Das NK, Panja M, Pal S, Modak D, Rahaman M, Mallik S et al (2008) Increased levels of interleukin-10 and IgG3 are hallmarks of Indian post-kala-azar dermal leishmaniasis. J Infect Dis 197(12):1762–1771PubMedGoogle Scholar
  58. Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Alonso PL, Collins FH, Duffy PE (2008) Malaria: progress, perils, and prospects for eradication. J Clin Invest 118(4):1266–1276PubMedCentralPubMedGoogle Scholar
  59. Gruenheid S, Pinner E, Desjardins M, Gros P (1997) Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 185(4):717–730PubMedCentralPubMedGoogle Scholar
  60. Gurarie D, Zimmerman PA, King CH (2006) Dynamic regulation of single- and mixed-species malaria infection: insights to specific and non-specific mechanisms of control. J Theor Biol 240(2):185–199PubMedGoogle Scholar
  61. Gurumurthy P, Raghupati Sarma G, Jayasankar K et al (1992) Single-dose pharmacokinetics of isoniazid and rifampicin in patients with chronic renal failure. Indian J Tuberc 39:221–228Google Scholar
  62. Gurumurthy P, Ramachandran G, Hemanth Kumar AK, Rajasekaran S, Padmapriyadarsini C, Swaminathan S, Bhagavathy S et al (2004) Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency virus disease. Antimicrob Agents Chemother 48(11):4473–4475PubMedCentralPubMedGoogle Scholar
  63. Gyamfi MA, Fujieda M, Kiyotani K, Yamazaki H, Kamataki T (2005) High prevalence of cytochrome P450 2A6*1A alleles in a black African population of Ghana. Eur J Clin Pharmacol 60(12):855–857PubMedGoogle Scholar
  64. Hamon MA, Cossart P (2008) Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe 4(2):100–109PubMedGoogle Scholar
  65. Handman E, Elso C, Foote S (2005) Genes and susceptibility to leishmaniasis. Adv Parasitol 59:1–75PubMedGoogle Scholar
  66. Haquin S, Oeuillet E, Pajon A, Harris M, Jones AT, van Tilbeurgh H, Markley JL, Zolnai Z, Poupon A (2008) Data management in structural genomics: an overview. Methods Mol Biol 426:49–79PubMedGoogle Scholar
  67. Hatton CS, Peto TE, Bunch C, Pasvol G, Russell SJ, Singer CR, Edwards G, Winstanley P (1986) Frequency of severe neutropenia associated with amodiaquine prophylaxis against malaria. Lancet 1(8478):411–414PubMedGoogle Scholar
  68. Hatzigeorgiou DE, He S, Sobel J, Grabstein KH, Hafner A, Ho JL (1993) Il-6 down-modulates the cytokine-enhanced antileishmanial activity in human macrophages. J Immunol 151(7):3682–3692PubMedGoogle Scholar
  69. Hayney MS, Poland GA, Jacobson RM, Schaid DJ, Lipsky JJ (1996) The influence of the HLA-DRB1*13 allele on measles vaccine response. J Investig Med 44(5):261–263PubMedGoogle Scholar
  70. Hayney MS, Poland GA, Jacobson RM, Rabe D, Schaid DJ, Jacobsen SJ, Lipsky JJ (1998) Relationship of HLA-DQA1 alleles and humoral antibody following measles vaccination. Int J Infect Dis 2(3):143–146PubMedGoogle Scholar
  71. Hayrinen J, Jennings H, Raff HV, Rougon G, Hanai N, Gerardy-Schahn R, Finne J (1995) Antibodies to polysialic acid and its N-propyl derivative: binding properties and interaction with human embryonal brain glycopeptides. J Infect Dis 171(6):1481–1490PubMedGoogle Scholar
  72. Hayton K, Su XZ (2004) Genetic and biochemical aspects of drug resistance in malaria parasites. Curr Drug Targets Infect Disord 4(1):1–10PubMedGoogle Scholar
  73. Herwaldt BL (1999) Leishmaniasis. Lancet 354(9185):1191–1199PubMedGoogle Scholar
  74. Hoon S, Smith AM, Wallace IM, Suresh S, Miranda M, Fung E, Proctor M et al (2008) An integrated platform of genomic assays reveals small-molecule bioactivities. Nat Chem Biol 4(8):498–506PubMedGoogle Scholar
  75. Hooper DC (2001) Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis 32(Suppl 1):S9PubMedGoogle Scholar
  76. Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY, Chang FY, Lee SD (2002) Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 35(4):883–889PubMedGoogle Scholar
  77. Huang YS, Chern HD, Su WJ, Wu JC, Chang SC, Chiang CH, Chang FY, Lee SD (2003) Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology 37(4):924–930PubMedGoogle Scholar
  78. Huang YS, Su WJ, Huang YH, Chen CY, Chang FY, Lin HC, Lee SD (2007) Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H: quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. J Hepatol 47(1):128–134PubMedGoogle Scholar
  79. Hyde JE (2007) Drug-resistant malaria – an insight. FEBS J 274(18):4688–4698PubMedCentralPubMedGoogle Scholar
  80. Ilett KF, Ethell BT, Maggs JL, Davis TM, Batty KT, Burchell B, Binh TQ et al (2002) Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos 30(9):1005–1012PubMedGoogle Scholar
  81. Jayaram R, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, Nandi V et al (2003) Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother 47(7):2118–2124PubMedCentralPubMedGoogle Scholar
  82. Jeena PM, Bishai WR, Pasipanodya JG, Gumbo T (2011) In silico children and the glass mouse model: clinical trial simulations to identify and individualize optimal isoniazid doses in children with tuberculosis. Antimicrob Agents Chemother 55(2):539–545PubMedCentralPubMedGoogle Scholar
  83. Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3(4):281–294PubMedGoogle Scholar
  84. Ji B, Truffot-Pernot C, Lacroix C, Raviglione MC, O’Brien RJ, Olliaro P, Roscigno G, Grosset J (1993) Effectiveness of rifampin, rifabutin, and rifapentine for preventive therapy of tuberculosis in mice. Am Rev Respir Dis 148(6 Pt 1):1541–1546PubMedGoogle Scholar
  85. Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, Newport M, Levin M et al (1996) Interferon-gamma-receptor deficiency in an infant with fatal bacille calmette-guerin infection. N Engl J Med 335(26):1956–1961PubMedGoogle Scholar
  86. Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondaneche MC, Tuerlinckx D, Blanche S, Emile JF et al (1997) Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus calmette-guerin infection and a sibling with clinical tuberculosis. J Clin Invest 100(11):2658–2664PubMedCentralPubMedGoogle Scholar
  87. Kalow W, Tang BK, Endrenyi L (1998) Hypothesis: comparisons of inter- and intra-individual variations can substitute for twin studies in drug research. Pharmacogenetics 8(4):283–289PubMedGoogle Scholar
  88. Kamali-Sarvestani E, Rasouli M, Mortazavi H, Gharesi-Fard B (2006) Cytokine gene polymorphisms and susceptibility to cutaneous leishmaniasis in Iranian patients. Cytokine 35(3–4):159–165PubMedGoogle Scholar
  89. Kankare J, Salminen T, Lahti R, Cooperman BS, Baykov AA, Goldman A (1996) Structure of Escherichia coli inorganic pyrophosphatase at 2.2 A resolution. Acta Crystallogr D Biol Crystallogr 52(Pt 3):551–563PubMedGoogle Scholar
  90. Karplus TM, Jeronimo SM, Chang H, Helms BK, Burns TL, Murray JC, Mitchell AA et al (2002) Association between the tumor necrosis factor locus and the clinical outcome of Leishmania chagasi infection. Infect Immun 70(12):6919–6925PubMedCentralPubMedGoogle Scholar
  91. Kelly BL, Stetson DB, Locksley RM (2003) Leishmania major lack antigen is required for efficient vertebrate parasitization. J Exp Med 198(11):1689–1698PubMedCentralPubMedGoogle Scholar
  92. Kerb R, Fux R, Morike K, Kremsner PG, Gil JP, Gleiter CH, Schwab M (2009) Pharmacogenetics of antimalarial drugs: effect on metabolism and transport. Lancet Infect Dis 9(12):760–774PubMedGoogle Scholar
  93. Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, Scheidel B, Jakob V, Rodamer M, Cascorbi I et al (2005) Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother 49(5):1733–1738PubMedCentralPubMedGoogle Scholar
  94. Kita T, Tanigawara Y, Chikazawa S, Hatanaka H, Sakaeda T, Komada F, Iwakawa S, Okumura K (2001) N-Acetyltransferase2 genotype correlated with isoniazid acetylation in Japanese tuberculous patients. Biol Pharm Bull 24(5):544–549PubMedGoogle Scholar
  95. Kolesar JM, Allen PG, Doran CM (1997) Direct quantification of HIV-1 RNA by capillary electrophoresis with laser-induced fluorescence. J Chromatogr B Biomed Sci Appl 697(1–2):189–194PubMedGoogle Scholar
  96. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang CY et al (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135(1):49–60PubMedCentralPubMedGoogle Scholar
  97. Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, Brass AL et al (2008) RNA interference screen for human genes associated with West Nile virus infection. Nature 455(7210):242–245PubMedCentralPubMedGoogle Scholar
  98. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedGoogle Scholar
  99. Lara ML, Layrisse Z, Scorza JV, Garcia E, Stoikow Z, Granados J, Bias W (1991) Immunogenetics of human American cutaneous leishmaniasis: study of HLA haplotypes in 24 families from Venezuela. Hum Immunol 30(2):129–135PubMedGoogle Scholar
  100. Lawrence SH, Ramirez UD, Tang L, Fazliyez F, Kundrat L, Markham GD, Jaffe EK (2008) Shape shifting leads to small-molecule allosteric drug discovery. Chem Biol 15(6):586–596PubMedCentralPubMedGoogle Scholar
  101. Lee SW, Chung LS, Huang HH, Chuang TY, Liou YH, Wu LS (2010) NAT2 and CYP2E1 polymorphisms and susceptibility to first-line anti-tuberculosis drug-induced hepatitis. Int J Tuberc Lung Dis 14(5):622–626PubMedGoogle Scholar
  102. Leiro-Fernandez V, Valverde D, Vazquez-Gallardo R, Botana-Rial M, Constenla L, Agundez JA, Fernandez-Villar A (2011) N-acetyltransferase 2 polymorphisms and risk of anti-tuberculosis drug-induced hepatotoxicity in Caucasians. Int J Tuberc Lung Dis 15(10):1403–1408PubMedGoogle Scholar
  103. Li XQ, Bjorkman A, Andersson TB, Ridderstrom M, Masimirembwa CM (2002) Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther 300(2):399–407PubMedGoogle Scholar
  104. Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM (2003) Identification of human cytochrome P(450)S that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol 59(5–6):429–442PubMedGoogle Scholar
  105. Lin JT, Juliano JJ, Wongsrichanalai C (2010) Drug-resistant malaria: the Era of Act. Curr Infect Dis Rep 12(3):165–173PubMedCentralPubMedGoogle Scholar
  106. Liuzzi M, Deziel R, Moss N, Beaulieu P, Bonneau AM, Bousquet C, Chafouleas JG et al (1994) A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo. Nature 372(6507):695–698PubMedGoogle Scholar
  107. Louie L, Matsumura SO, Choi E, Louie M, Simor AE (2000) Evaluation of three rapid methods for detection of methicillin resistance in staphylococcus aureus. J Clin Microbiol 38(6):2170–2173PubMedCentralPubMedGoogle Scholar
  108. Louzir H, Melby PC, Ben Salah A, Marrakchi H, Aoun K, Ben Ismail R, Dellagi K (1998) Immunologic determinants of disease evolution in localized cutaneous leishmaniasis due to Leishmania major. J Infect Dis 177(6):1687–1695PubMedGoogle Scholar
  109. Luzzatto L (2010) The rise and fall of the antimalarial Lapdap: a lesson in pharmacogenetics. Lancet 376(9742):739–741PubMedGoogle Scholar
  110. Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, Goodman ZD et al (2001) Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358(9286):958–965PubMedGoogle Scholar
  111. Mansueto P, Vitale G, Di Lorenzo G, Rini GB, Mansueto S, Cillari E (2007) Immunopathology of leishmaniasis: an update. Int J Immunopathol Pharmacol 20(3):435–445PubMedGoogle Scholar
  112. Marahatta SB, Gautam S, Dhital S, Pote N, Jha AK, Mahato R, Mishra S et al (2011) Katg (Ser 315 Thr) gene mutation in isoniazid resistant Mycobacterium tuberculosis. Kathmandu Univ Med J (KUMJ) 9(33):19–23Google Scholar
  113. Marquet S, Schurr E (2001) Genetics of susceptibility to infectious diseases: tuberculosis and leprosy as examples. Drug Metab Dispos 29(4 Pt 2):479–483PubMedGoogle Scholar
  114. Marsden PD (1986) Mucosal leishmaniasis (Espundia Escomel, 1911). Trans R Soc Trop Med Hyg 80(6):859–876PubMedGoogle Scholar
  115. McIlleron H, Willemse M, Werely CJ, Hussey GD, Schaaf HS, Smith PJ, Donald PR (2009) Isoniazid plasma concentrations in a cohort of South African children with tuberculosis: implications for international pediatric dosing guidelines. Clin Infect Dis 48(11):1547–1553PubMedGoogle Scholar
  116. Mebrahtu YB, Van Eys G, Guizani I, Lawyer PG, Pamba H, Koech D, Roberts C et al (1993) Human cutaneous Leishmaniasis caused by Leishmania donovani s.l. in Kenya. Trans R Soc Trop Med Hyg 87(5):598–601PubMedGoogle Scholar
  117. Meddeb-Garnaoui A, Gritli S, Garbouj S, Ben Fadhel M, El Kares R, Mansour L, Kaabi B et al (2001) Association analysis of HLA-class II and class III gene polymorphisms in the susceptibility to mediterranean visceral leishmaniasis. Hum Immunol 62(5):509–517PubMedGoogle Scholar
  118. Mehlotra RK, Henry-Halldin CN, Zimmerman PA (2009) Application of pharmacogenomics to malaria: a holistic approach for successful chemotherapy. Pharmacogenomics 10(3):435–449PubMedCentralPubMedGoogle Scholar
  119. Melby PC, Andrade-Narvaez FJ, Darnell BJ, Valencia-Pacheco G, Tryon VV, Palomo-Cetina A (1994) Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis. Infect Immun 62(3):837–842PubMedCentralPubMedGoogle Scholar
  120. Melby PC, Andrade-Narvaez F, Darnell BJ, Valencia-Pacheco G (1996) In situ expression of interleukin-10 and interleukin-12 in active human cutaneous leishmaniasis. FEMS Immunol Med Microbiol 15(2–3):101–107PubMedGoogle Scholar
  121. Menzies D, Benedetti A, Paydar A, Martin I, Royce S, Pai M, Vernon A, Lienhardt C, Burman W (2009) Effect of duration and intermittency of rifampin on tuberculosis treatment outcomes: a systematic review and meta-analysis. PLoS Med 6(9):e1000146PubMedCentralPubMedGoogle Scholar
  122. Mitchison DA (1984) Drug resistance in mycobacteria. Br Med Bull 40(1):84–90PubMedGoogle Scholar
  123. Mohamed HS, Ibrahim ME, Miller EN, Peacock CS, Khalil EA, Cordell HJ, Howson JM et al (2003) Genetic susceptibility to visceral leishmaniasis in the Sudan: linkage and association with IL4 and IFNGR1. Genes Immun 4(5):351–355PubMedGoogle Scholar
  124. Mohamed HS, Ibrahim ME, Miller EN, White JK, Cordell HJ, Howson JM, Peacock CS et al (2004) SLC11A1 (formerly Nramp1) and susceptibility to visceral leishmaniasis in the Sudan. Eur J Hum Genet 12(1):66–74PubMedGoogle Scholar
  125. Musa AM, Khalil EA, Mahgoub FA, Elgawi SH, Modabber F, Elkadaru AE, Aboud MH et al (2008) Immunochemotherapy of persistent post-kala-azar dermal leishmaniasis: a novel approach to treatment. Trans R Soc Trop Med Hyg 102(1):58–63PubMedGoogle Scholar
  126. Nelson SD, Mitchell JR, Timbrell JA, Snodgrass WR, Corcoran GB 3rd (1976) Isoniazid and iproniazid: activation of metabolites to toxic intermediates in man and rat. Science 193(4256):901–903PubMedGoogle Scholar
  127. Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R, Levin M (1996) A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 335(26):1941–1949PubMedGoogle Scholar
  128. Noedl H, Socheat D, Satimai W (2009) Artemisinin-resistant malaria in Asia. N Engl J Med 361(5):540–541PubMedGoogle Scholar
  129. Nylen S, Sacks D (2007) Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 28(9):378–384PubMedGoogle Scholar
  130. Ohno M, Yamaguchi I, Yamamoto I, Fukuda T, Yokota S, Maekura R, Ito M et al (2000) Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis 4(3):256–261PubMedGoogle Scholar
  131. Oksanen E, Ahonen AK, Tuominen H, Tuominen V, Lahti R, Goldman A, Heikinheimo P (2007) A complete structural description of the catalytic cycle of yeast pyrophosphatase. Biochemistry 46(5):1228–1239PubMedGoogle Scholar
  132. Olivo-Diaz A, Debaz H, Alaez C, Islas VJ, Perez-Perez H, Hobart O, Gorodezky C (2004) Role of HLA class II alleles in susceptibility to and protection from localized cutaneous leishmaniasis. Hum Immunol 65(3):255–261PubMedGoogle Scholar
  133. Olliaro PL, Guerin PJ, Gerstl S, Haaskjold AA, Rottingen JA, Sundar S (2005) Treatment options for visceral leishmaniasis: a systematic review of clinical studies done in India, 1980–2004. Lancet Infect Dis 5(12):763–774PubMedGoogle Scholar
  134. Orrell C, Little F, Smith P, Folb P, Taylor W, Olliaro P, Barnes KI (2008) Pharmacokinetics and tolerability of artesunate and amodiaquine alone and in combination in healthy volunteers. Eur J Clin Pharmacol 64(7):683–690PubMedCentralPubMedGoogle Scholar
  135. Parikh S, Ouedraogo JB, Goldstein JA, Rosenthal PJ, Kroetz DL (2007) Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin Pharmacol Ther 82(2):197–203PubMedGoogle Scholar
  136. Parkin DP, Vandenplas S, Botha FJ, Vandenplas ML, Seifart HI, van Helden PD, van der Walt BJ, Donald PR, van Jaarsveld PP (1997) Trimodality of isoniazid elimination: phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med 155(5):1717–1722PubMedGoogle Scholar
  137. Paul WE, Seder RA (1994) Lymphocyte responses and cytokines. Cell 76(2):241–251PubMedGoogle Scholar
  138. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6(1):29–40PubMedGoogle Scholar
  139. Petzl-Erler ML, Belich MP, Queiroz-Telles F (1991) Association of mucosal leishmaniasis with HLA. Hum Immunol 32(4):254–260PubMedGoogle Scholar
  140. Phillips-Howard PA, West LJ (1990) Serious adverse drug reactions to pyrimethamine-sulphadoxine, pyrimethamine-dapsone and to amodiaquine in Britain. J R Soc Med 83(2):82–85PubMedCentralPubMedGoogle Scholar
  141. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M, Jennings GT et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287(5459):1816–1820PubMedGoogle Scholar
  142. Poland GA (1999a) Current paradoxes and changing paradigms in vaccinology. Vaccine 17(13–14):1605–1611PubMedGoogle Scholar
  143. Poland GA (1999b) Immunogenetic mechanisms of antibody response to measles vaccine: the role of the HLA genes. Vaccine 17(13–14):1719–1725PubMedGoogle Scholar
  144. Poland GA, Jacobson RM, Schaid D, Moore SB, Jacobsen SJ (1998) The association between HLA class I alleles and measles vaccine-induced antibody response: evidence of a significant association. Vaccine 16(19):1869–1871PubMedGoogle Scholar
  145. Poland GA, Jacobson RM, Colbourne SA, Thampy AM, Lipsky JJ, Wollan PC, Roberts P, Jacobsen SJ (1999c) Measles antibody seroprevalence rates among immunized Inuit, Innu and Caucasian subjects. Vaccine 17(11–12):1525–1531PubMedGoogle Scholar
  146. Pratlong F, Bastien P, Perello R, Lami P, Dedet JP (1995) Human cutaneous leishmaniasis caused by Leishmania donovani sensu stricto in Yemen. Trans R Soc Trop Med Hyg 89(4):398–399PubMedGoogle Scholar
  147. Price RR, Viscount HB, Stanley MC, Leung KP (2007) Targeted profiling of oral bacteria in human saliva and in vitro biofilms with quantitative real-time PCR. Biofouling 23(3–4):203–213PubMedGoogle Scholar
  148. Raymond JM, Dumas F, Baldit C, Couzigou P, Beraud C, Amouretti M (1989) Fatal acute hepatitis due to amodiaquine. J Clin Gastroenterol 11(5):602–603PubMedGoogle Scholar
  149. Reed SG, Scott P (1993) T-cell and cytokine responses in leishmaniasis. Curr Opin Immunol 5(4):524–531PubMedGoogle Scholar
  150. Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3(8):660–672PubMedGoogle Scholar
  151. Requena JM, Iborra S, Carrion J, Alonso C, Soto M (2004) Recent advances in vaccines for leishmaniasis. Expert Opin Biol Ther 4(9):1505–1517PubMedGoogle Scholar
  152. Revets H, Marissens D, de Wit S, Lacor P, Clumeck N, Lauwers S, Zissis G (1996) Comparative evaluation of NASBA HIV-1 RNA Qt, AMPLICOR-HIV monitor, and QUANTIPLEX HIV RNA assay, three methods for quantification of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 34(5):1058–1064PubMedCentralPubMedGoogle Scholar
  153. Roca-Feltrer A, Carneiro I, Armstrong Schellenberg JR (2008) Estimates of the burden of malaria morbidity in Africa in children under the age of 5 years. Trop Med Int Health 13(6):771–783PubMedGoogle Scholar
  154. Roederer MW, McLeoda H, Juliano JJ (2011) WHO Bulletin of World Health Organization: can pharmacogenomics improve malaria drug policy?
  155. Rogers PD, Stiles JK, Chapman SW, Cleary JD (2000) Amphotericin B induces expression of genes encoding chemokines and cell adhesion molecules in the human monocytic cell line THP-1. J Infect Dis 182(4):1280–1283PubMedGoogle Scholar
  156. Roy CR, Mocarski ES (2007) Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 8(11):1179–1187PubMedGoogle Scholar
  157. Roy B, Chowdhury A, Kundu S, Santra A, Dey B, Chakraborty M, Majumder PP (2001) Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 ‘null’ mutation. J Gastroenterol Hepatol 16(9):1033–1037PubMedGoogle Scholar
  158. Roy PD, Majumder M, Roy B (2008) Pharmacogenomics of anti-TB drugs-related hepatotoxicity. Pharmacogenomics 9(3):311–321PubMedGoogle Scholar
  159. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409(6822):928–933PubMedGoogle Scholar
  160. Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2(11):845–858PubMedGoogle Scholar
  161. Saha S, Mondal S, Ravindran R, Bhowmick S, Modak D, Mallick S, Rahman M et al (2007) IL-10- and TGF-beta-mediated susceptibility in kala-azar and post-kala-azar dermal leishmaniasis: the significance of amphotericin B in the control of Leishmania donovani infection in India. J Immunol 179(8):5592–5603PubMedGoogle Scholar
  162. Salhi A, Rodrigues V Jr, Santoro F, Dessein H, Romano A, Castellano LR, Sertorio M et al (2008) Immunological and genetic evidence for a crucial role of IL-10 in cutaneous lesions in humans infected with Leishmania braziliensis. J Immunol 180(9):6139–6148PubMedGoogle Scholar
  163. Salih MA, Ibrahim ME, Blackwell JM, Miller EN, Khalil EA, ElHassan AM, Musa AM, Mohamed HS (2007) IFNG and IFNGR1 gene polymorphisms and susceptibility to post-kala-azar dermal leishmaniasis in Sudan. Genes Immun 8(1):75–78PubMedCentralPubMedGoogle Scholar
  164. Samaranayake TN, Dissanayake VH, Fernando SD (2008) Clinical manifestations of cutaneous leishmaniasis in Sri Lanka – possible evidence for genetic susceptibility among the Sinhalese. Ann Trop Med Parasitol 102(5):383–390PubMedGoogle Scholar
  165. Sarma GR, Kailasam S, Mitchison DA, Nair NG, Radhakrishna S, Tripathy SP (1975) Studies of serial plasma isoniazid concentrations with different doses of a slow-release preparation of isoniazid. Tubercle 56(4):314–323PubMedGoogle Scholar
  166. Sarma GR, Immanuel C, Kailasam S, Narayana AS, Venkatesan P (1986) Rifampin-induced release of hydrazine from isoniazid. A possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampin. Am Rev Respir Dis 133(6):1072–1075PubMedGoogle Scholar
  167. Schaaf HS, Parkin DP, Seifart HI, Werely CJ, Hesseling PB, van Helden PD, Maritz JS, Donald PR (2005) Isoniazid pharmacokinetics in children treated for respiratory tuberculosis. Arch Dis Child 90(6):614–618PubMedCentralPubMedGoogle Scholar
  168. Schlagenhauf P, Petersen E (2008) Malaria chemoprophylaxis: strategies for risk groups. Clin Microbiol Rev 21(3):466–472PubMedCentralPubMedGoogle Scholar
  169. Schriefer A, Schriefer AL, Goes-Neto A, Guimaraes LH, Carvalho LP, Almeida RP, Machado PR et al (2004) Multiclonal Leishmania braziliensis population structure and its clinical implication in a region of endemicity for American tegumentary leishmaniasis. Infect Immun 72(1):508–514PubMedCentralPubMedGoogle Scholar
  170. Selkon JB, Fox W, Gangadharam PR, Ramachandran K, Ramakrishnan CV, Velu S (1961) Rate of inactivation of isoniazid in south Indian patients with pulmonary tuberculosis. 2. Clinical implications in the treatment of pulmonary tuberculosis with isoniazid either alone or in combination with PAS. Bull World Health Organ 25:779–792PubMedCentralPubMedGoogle Scholar
  171. Sharma SK, Balamurugan A, Saha PK, Pandey RM, Mehra NK (2002) Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. Am J Respir Crit Care Med 166(7):916–919PubMedGoogle Scholar
  172. Sharma NL, Mahajan VK, Kanga A, Sood A, Katoch VM, Mauricio I, Singh CD et al (2005) Localized cutaneous leishmaniasis due to Leishmania donovani and Leishmania tropica: preliminary findings of the study of 161 new cases from a new endemic focus in Himachal Pradesh, India. Am J Trop Med Hyg 72(6):819–824PubMedGoogle Scholar
  173. Simon T, Becquemont L, Mary-Krause M, de Waziers I, Beaune P, Funck-Brentano C, Jaillon P (2000) Combined glutathione-S-transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin Pharmacol Ther 67(4):432–437PubMedGoogle Scholar
  174. Siqueira HR, Freitas FA, Oliveira DN, Barreto AM, Dalcolmo MP, Albano RM (2009a) Clinical evolution of a group of patients with multidrug-resistant TB treated at a referral center in the city of Rio De Janeiro, Brazil. J Bras Pneumol 35(1):54–62PubMedGoogle Scholar
  175. Siqueira HR, Freitas FA, Oliveira DN, Barreto AM, Dalcolmo MP, Albano RM (2009b) Isoniazid-resistant mycobacterium tuberculosis strains arising from mutations in two different regions of the katG gene. J Bras Pneumol 35(8):773–779PubMedGoogle Scholar
  176. Sivula T, Salminen A, Parfenyev AN, Pohjanjoki P, Goldman A, Cooperman BS, Baykov AA, Lahti R (1999) Evolutionary aspects of inorganic pyrophosphatase. FEBS Lett 454(1–2):75–80PubMedGoogle Scholar
  177. Speers DJ (2006) Clinical applications of molecular biology for infectious diseases. Clin Biochem Rev 27(1):39–51PubMedCentralPubMedGoogle Scholar
  178. Stober CB, Lange UG, Roberts MT, Gilmartin B, Francis R, Almeida R, Peacock CS, McCann S, Blackwell JM (2006) From genome to vaccines for leishmaniasis: screening 100 novel vaccine candidates against murine Leishmania major infection. Vaccine 24(14):2602–2616PubMedGoogle Scholar
  179. Strange RC, Jones PW, Fryer AA (2000) Glutathione S-transferase: genetics and role in toxicology. Toxicol Lett 112–113:357–363PubMedGoogle Scholar
  180. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA et al (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287(5459):1809–1815PubMedGoogle Scholar
  181. Tostmann A, Boeree MJ, Aarnoutse RE, de Lange WC, van der Ven AJ, Dekhuijzen R (2008) Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol 23(2):192–202PubMedGoogle Scholar
  182. Tuberculosis Research Centre Madras, study (1970) A controlled comparison of a twice-weekly and three once-weekly regimens in the initial treatment of pulmonary tuberculosis. Bull World Health Organ 43(1):143–206Google Scholar
  183. Tuberculosis Research Centre Madras, study (1973) Controlled comparison of oral twice-weekly and oral daily isoniazid plus PAS in newly diagnosed pulmonary tuberculosis. Br Med J 2(5857):7–11Google Scholar
  184. Valderramos SG, Fidock DA (2006) Transporters involved in resistance to antimalarial drugs. Trends Pharmacol Sci 27(11):594–601PubMedCentralPubMedGoogle Scholar
  185. Van Soolingen D (2001) Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J Intern Med 249(1):1–26PubMedGoogle Scholar
  186. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO et al (2001) The sequence of the human genome. Science 291(5507):1304–51PubMedGoogle Scholar
  187. Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D, Skamene E et al (1995) The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182(3):655–666PubMedGoogle Scholar
  188. Vuilleumier N, Rossier MF, Chiappe A, Degoumois F, Dayer P, Mermillod B, Nicod L, Desmeules J, Hochstrasser D (2006) CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Eur J Clin Pharmacol 62(6):423–429PubMedGoogle Scholar
  189. Weiner M, Burman W, Vernon A, Benator D, Peloquin CA, Khan A, Weis S et al (2003) Low isoniazid concentrations and outcome of tuberculosis treatment with once-weekly isoniazid and rifapentine. Am J Respir Crit Care Med 167(10):1341–1347PubMedGoogle Scholar
  190. Weiner M, Peloquin C, Burman W, Luo CC, Engle M, Prihoda TJ, Mac Kenzie WR et al (2010) Effects of tuberculosis, race, and human gene SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother 54(10):4192–4200PubMedCentralPubMedGoogle Scholar
  191. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172):1001–1009PubMedGoogle Scholar
  192. White NJ (2008) Qinghaosu (artemisinin): the price of success. Science 320(5874):330–334PubMedGoogle Scholar
  193. Wilkins JJ, Langdon G, McIlleron H, Pillai G, Smith PJ, Simonsson US (2011) Variability in the population pharmacokinetics of isoniazid in South African tuberculosis patients. Br J Clin Pharmacol 72(1):51–62PubMedCentralPubMedGoogle Scholar
  194. Yamada S, Tang M, Richardson K, Halaschek-Wiener J, Chan M, Cook VJ, Fitzgerald JM et al (2009) Genetic variations of NAT2 and CYP2E1 and isoniazid hepatotoxicity in a diverse population. Pharmacogenomics 10(9):1433–1445PubMedGoogle Scholar
  195. Yeung S, Pongtavornpinyo W, Hastings IM, Mills AJ, White NJ (2004) Antimalarial drug resistance, artemisinin-based combination therapy, and the contribution of modeling to elucidating policy choices. Am J Trop Med Hyg 71(2 Suppl):179–186PubMedGoogle Scholar
  196. Yue J, Peng RX, Yang J, Kong R, Liu J (2004) CYP2E1 mediated isoniazid-induced hepatotoxicity in rats. Acta Pharmacol Sin 25(5):699–704PubMedGoogle Scholar
  197. Yusof W, Gan SH (2009) High prevalence of CYP2A6*4 and CYP2A6*9 alleles detected among a Malaysian population. Clin Chim Acta 403(1–2):105–109PubMedGoogle Scholar
  198. Zhao H, Li R, Wang Q, Yan Q, Deng JH, Han D, Bai Y, Young WY, Guan MX (2004) Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12s rRNA gene in a large Chinese family. Am J Hum Genet 74(1):139–152PubMedCentralPubMedGoogle Scholar
  199. Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E et al (2008) Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4(5):495–504PubMedGoogle Scholar
  200. Zijlstra E, Zijlstra EE, Musa AM, Khalil EA, el-Hassan IM, el-Hassan AM (2003) Post-kala-azar dermal leishmaniasis. Lancet Infect Dis 3(2):87–98PubMedGoogle Scholar
  201. Zilber LA, Bajdakova ZL, Gardasjan AN, Konovalov NV, Bunina TL, Barabadze EM (1963) The prevention and treatment of isoniazid toxicity in the therapy of pulmonary tuberculosis. 2. An assessment of the prophylactic effect of pyridoxine in low dosage. Bull World Health Organ 29:457–481PubMedGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Policy Centre for Biomedical Research, Translational Health Science and Technology Institute (Department of Biotechnology Institute, Government of India)Office@National Institute of ImmunologyNew DelhiIndia

Personalised recommendations