Pharmacogenomics in Type 2 Diabetes Mellitus and Metabolic Disorders

  • Sandhiya Selvarajan
  • Melvin George
  • Suresh Kumar Srinivasamurthy


Pharmacogenomics, a newly growing branch of medicine, makes use of an individual’s genetic information to guide therapy and has become an important tool in achieving ‘personalised medicine’. The discovery of novel genetic polymorphisms in drug transporters, targets and metabolising enzymes has given an insight into the biological phenomena of drug efficacy and toxicity. Type 2 diabetes mellitus has been on the rise in both developed and developing countries owing to increase in life span as well as change in lifestyle. The advances in the field of pharmacogenomics has revealed diverse issues associated with onset of type 2 diabetes and genetic variants associated with varied responses to commonly prescribed antidiabetic drugs. Genetic polymorphisms like A1369 variant increasing MgATPase activity of KATP channel have been found to provide a plausible molecular mechanism by which the K23/A1369 haplotype increases susceptibility to type 2 diabetes in humans homozygous for these variants. The oral hypoglycaemic drugs sulfonylureas act through KATP channel blockade resulting in stimulation of insulin release from pancreatic β-cells and have been a basis of type 2 diabetes pharmacotherapy since long time. However, sulfonylureas have been found to have interindividual variability in drug response and adverse effects. Interindividual variations in efficacy and adverse events are also recognised with metformin, a biguanide which improves insulin resistance in type 2 diabetes. Genetic polymorphisms in OCT1 and OCT2, two organic cation transporters, have been found to be associated with changes in responses to metformin. Similarly, the regulatory and glucose homeostasis-related single nucleotide polymorphisms (SNPs) in peroxisome proliferator-activated receptor (PPAR) agonist-modulated genes can be used to explain the interindividual variability in response to thiazolidinediones. In addition, the identification of genetic defects responsible for inherited metabolic disorders like phenylketonuria, urea cycle disorder and Niemann–Pick disease has opened a promising approach to promote drug development in enzyme-deficient diseases. The detection of association of Niemann–Pick disease, type C1, gene-like 1 (NPC1L1) variation with response to ezetimibe, a cholesterol uptake inhibitor, has confirmed the role of pharmacogenomics in drug therapy of metabolic disorders. Hence, this chapter will discuss in detail the application of pharmacogenomics in drug response pertaining to type 2 diabetes mellitus and other metabolic disorders.


Urea Cycle Disorder Carbamyl Phosphate TCF7L2 Gene Glycaemic Status Urea Cycle Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aquilante CL (2010) Sulfonylurea pharmacogenomics in Type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev Cardiovasc Ther 8(3):359–372PubMedCentralPubMedCrossRefGoogle Scholar
  2. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH (2009) Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J 9(4):242–247PubMedCrossRefGoogle Scholar
  3. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH (2010) Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response. Pharmacogenet Genomics 20(1):38–44PubMedCrossRefGoogle Scholar
  4. Bodhini D, Radha V, Dhar M, Narayani N, Mohan V (2007) The rs12255372(G/T) and rs7903146(C/T) polymorphisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians. Metabolism 56(9):1174–1178PubMedCrossRefGoogle Scholar
  5. Boesgaard TW, Grarup N, Jorgensen T, Borch-Johnsen K, Hansen T, Pedersen O (2010) Variants at DGKB/TMEM195, ADRA2A, GLIS3 and C2CD4B loci are associated with reduced glucose-stimulated beta cell function in middle-aged Danish people. Diabetologia 53(8):1647–1655PubMedCrossRefGoogle Scholar
  6. Capuano M, Garcia-Herrero CM, Tinto N, Carluccio C, Capobianco V, Coto I et al (2012) Glucokinase (GCK) mutations and their characterization in MODY2 children of southern Italy. PLoS One 7(6):e38906PubMedCentralPubMedCrossRefGoogle Scholar
  7. Daimon M, Oizumi T, Karasawa S, Kaino W, Takase K, Tada K et al (2011) Association of the clusterin gene polymorphisms with type 2 diabetes mellitus. Metabolism 60(6):815–822PubMedCrossRefGoogle Scholar
  8. del Barrio SJ (2010) Pharmacogenomics in clinical trials. Rev Derecho Genoma Hum 33:197–216Google Scholar
  9. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42(2):105–116PubMedCentralPubMedCrossRefGoogle Scholar
  10. Eisensmith RC, Woo SL (1991) Phenylketonuria and the phenylalanine hydroxylase gene. Mol Biol Med 8(1):3–18PubMedGoogle Scholar
  11. Ellard S (2000) Hepatocyte nuclear factor 1 alpha (HNF-1 alpha) mutations in maturity-onset diabetes of the young. Hum Mutat 16(5):377–385PubMedCrossRefGoogle Scholar
  12. Ezzati M, Riboli E (2012) Can noncommunicable diseases be prevented? Lessons from studies of populations and individuals. Science 337(6101):1482–1487PubMedCrossRefGoogle Scholar
  13. Grarup N, Rose CS, Andersson EA, Andersen G, Nielsen AL, Albrechtsen A et al (2007) Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes 56(12):3105–3111PubMedCrossRefGoogle Scholar
  14. Heni M, Ketterer C, Thamer C, Herzberg-Schafer SA, Guthoff M, Stefan N et al (2010) Glycemia determines the effect of type 2 diabetes risk genes on insulin secretion. Diabetes 59(12):3247–3252PubMedCentralPubMedCrossRefGoogle Scholar
  15. Higgins JW, Bedwell DW, Zamek-Gliszczynski MJ (2012) Ablation of both organic cation transporter (OCT)1 and OCT2 alters metformin pharmacokinetics but has no effect on tissue drug exposure and pharmacodynamics. Drug Metab Dispos 40(6):1170–1177PubMedCrossRefGoogle Scholar
  16. Hjiej H, Doyen C, Couprie C, Kaye K, Contejean Y (2008) Substitutive and dietetic approaches in childhood autistic disorder: interests and limits. Encéphale 34(5):496–503PubMedCrossRefGoogle Scholar
  17. Hoerger TJ, Segel JE, Gregg EW, Saaddine JB (2008) Is glycemic control improving in U.S. adults? Diabetes Care 31(1):81–86PubMedCrossRefGoogle Scholar
  18. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359(15):1577–1589PubMedCrossRefGoogle Scholar
  19. Holstein A, Hahn M, Korner A, Stumvoll M, Kovacs P (2011) TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes. BMC Med Genet 12:30PubMedCentralPubMedCrossRefGoogle Scholar
  20. Huidekoper HH, Ackermans MT, Koopman R, van Loon LJ, Sauerwein HP, Wijburg FA (2012) Normal rates of whole-body fat oxidation and gluconeogenesis after overnight fasting and moderate-intensity exercise in patients with medium-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis Sep 14. [Epub ahead of print]Google Scholar
  21. Ip W, Shao W, Chiang YT, Jin T (2012) The Wnt signaling pathway effector TCF7L2 is up-regulated by insulin and represses hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 303(9):E1166–E1176PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355(23):2427–2443PubMedCrossRefGoogle Scholar
  23. Kalow W (2002) Pharmacogenetics and personalised medicine. Fundam Clin Pharmacol 16(5):337–342PubMedCrossRefGoogle Scholar
  24. Kalow W (2004) Human pharmacogenomics: the development of a science. Hum Genomics 1(5):375–380PubMedCentralPubMedCrossRefGoogle Scholar
  25. Kiani JG, Saeed M, Parvez SH, Frossard PM (2005) Association of G-protein beta-3 subunit gene (GNB3) T825 allele with Type II diabetes. Neuro Endocrinol Lett 26(2):87–88PubMedGoogle Scholar
  26. Kirchheiner J, Roots I, Goldammer M, Rosenkranz B, Brockmoller J (2005) Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin Pharmacokinet 44(12):1209–1225PubMedCrossRefGoogle Scholar
  27. Li Q, Liu F, Zheng TS, Tang JL, Lu HJ, Jia WP (2010) SLC22A2 gene 808 G/T variant is related to plasma lactate concentration in Chinese type 2 diabetics treated with metformin. Acta Pharmacol Sin 31(2):184–190PubMedCrossRefGoogle Scholar
  28. Li C, Han J, Shang D, Li J, Wang Y, Wang Y et al (2012) Identifying disease related sub-pathways for analysis of genome-wide association studies. Gene 503(1):101–109PubMedCrossRefGoogle Scholar
  29. Makino H, Shimizu I, Murao S, Kondo S, Tabara Y, Fujiyama M et al (2009) A pilot study suggests that the G/G genotype of resistin single nucleotide polymorphism at −420 may be an independent predictor of a reduction in fasting plasma glucose and insulin resistance by pioglitazone in type 2 diabetes. Endocr J 56(9):1049–1058PubMedCrossRefGoogle Scholar
  30. Mannino GC, Sesti G (2012) Individualized therapy for type 2 diabetes: clinical implications of pharmacogenetic data. Mol Diagn Ther 16(5):285–302PubMedCrossRefGoogle Scholar
  31. Mooyaart AL, Valk EJ, van Es LA, Bruijn JA, de Heer E, Freedman BI et al (2011) Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia 54(3):544–553PubMedCentralPubMedCrossRefGoogle Scholar
  32. Muntau AC, Roschinger W, Habich M, Demmelmair H, Hoffmann B, Sommerhoff CP et al (2002) Tetrahy-drobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 347(26):2122–2132PubMedCrossRefGoogle Scholar
  33. Nebert DW, Zhang G, Vesell ES (2008) From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab Rev 40(2):187–224PubMedCentralPubMedCrossRefGoogle Scholar
  34. Okano Y, Kudo S, Nishi Y, Sakaguchi T, Aso K (2011) Molecular characterization of phenylketonuria and tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency in Japan. J Hum Genet 56(4):306–312PubMedCrossRefGoogle Scholar
  35. Oztekin O, Durmaz E, Kalay S, Flanagan SE, Ellard S, Bircan I (2012) Successful sulfonylurea treatment of a neonate with neonatal diabetes mellitus due to a novel missense mutation, p.P1199L, in the ABCC8 gene. J Perinatol 32(8):645–647PubMedCrossRefGoogle Scholar
  36. Pascucci T, Ventura R, Puglisi-Allegra S, Cabib S (2002) Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. Neuroreport 13(18):2561–2564PubMedCrossRefGoogle Scholar
  37. Pearce N (2011) Epidemiology in a changing world: variation, causation and ubiquitous risk factors. Int J Epidemiol 40(2):503–512PubMedCrossRefGoogle Scholar
  38. Pearson ER, Liddell WG, Shepherd M, Corrall RJ, Hattersley AT (2000) Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1alpha gene mutations: evidence for pharmacogenetics in diabetes. Diabet Med 17(7):543–545PubMedCrossRefGoogle Scholar
  39. Qi N, Kazdova L, Zidek V, Landa V, Kren V, Pershadsingh HA et al (2002) Pharmacogenetic evidence that cd36 is a key determinant of the metabolic effects of pioglitazone. J Biol Chem 277(50):48501–48507PubMedCrossRefGoogle Scholar
  40. Quirk ME, Dobrowolski SF, Nelson BE, Coffee B, Singh RH (2012) Utility of phenylalanine hydroxylase genotype for tetrahydrobiopterin responsiveness classification in patients with phenylketonuria. Mol Genet Metab 107(1–2):31–36PubMedCrossRefGoogle Scholar
  41. Rees SD, Hydrie MZ, O’Hare JP, Kumar S, Shera AS, Basit A et al (2011) Effects of 16 genetic variants on fasting glucose and type 2 diabetes in South Asians: ADCY5 and GLIS3 variants may predispose to type 2 diabetes. PLoS One 6(9):e24710PubMedCentralPubMedCrossRefGoogle Scholar
  42. Schork NJ, Topol EJ (2010) Genotype-based risk and pharmacogenetic sampling in clinical trials. J Biopharm Stat 20(2):315–333PubMedCentralPubMedCrossRefGoogle Scholar
  43. Sheng FF, Dai XP, Qu J, Lei GH, Lu HB, Wu J et al (2011) NAMPT -3186C/T polymorphism affects repaglinide response in Chinese patients with Type 2 diabetes mellitus. Clin Exp Pharmacol Physiol 38(8):550–554PubMedCrossRefGoogle Scholar
  44. Shikata E, Yamamoto R, Takane H, Shigemasa C, Ikeda T, Otsubo K et al (2007) Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet 52(2):117–122PubMedGoogle Scholar
  45. Shu Y, Brown C, Castro RA, Shi RJ, Lin ET, Owen RP et al (2008) Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther 83(2):273–280PubMedCentralPubMedCrossRefGoogle Scholar
  46. Singh R, Thapa BR, Kaur G, Prasad R (2012) Biochemical and molecular characterization of GALT gene from Indian galactosemia patients: identification of 10 novel mutations and their structural and functional implications. Clin Chim Acta 12:10Google Scholar
  47. Song IS, Shin HJ, Shim EJ, Jung IS, Kim WY, Shon JH et al (2008) Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther 84(5):559–562PubMedCrossRefGoogle Scholar
  48. Surendran S, Campbell GA, Tyring SK, Matalon K, McDonald JD, Matalon R (2003) High levels of orexin A in the brain of the mouse model for phenylketonuria: possible role of orexin A in hyperactivity seen in children with PKU. Neurochem Res 28(12):1891–1894PubMedCrossRefGoogle Scholar
  49. Tam CH, Ho JS, Wang Y, Lee HM, Lam VK, Germer S et al (2010) Common polymorphisms in MTNR1B, G6PC2 and GCK are associated with increased fasting plasma glucose and impaired beta-cell function in Chinese subjects. PLoS One 5(7):e11428PubMedCentralPubMedCrossRefGoogle Scholar
  50. Tarasova L, Kalnina I, Geldnere K, Bumbure A, Ritenberga R, Nikitina-Zake L et al (2012) Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet Genomics 22(9):659–666PubMedCrossRefGoogle Scholar
  51. Tkac I, Klimcakova L, Javorsky M, Fabianova M, Schroner Z, Hermanova H et al (2013) Pharmacogenomic association between a variant in SLC47A1 gene and therapeutic response to metformin in type 2 diabetes. Diabetes Obes Metab 15(2):189–191PubMedCrossRefGoogle Scholar
  52. Tong Y, Lin Y, Zhang Y, Yang J, Zhang Y, Liu H et al (2009) Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med Genet 10:15PubMedCentralPubMedCrossRefGoogle Scholar
  53. Trefz FK, Scheible D, Frauendienst-Egger G, Korall H, Blau N (2005) Long-term treatment of patients with mild and classical phenylketonuria by tetrahydrobiopterin. Mol Genet Metab 86(Suppl 1):S75–S80, Epub 2005 Oct 20PubMedCrossRefGoogle Scholar
  54. Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D et al (2009) The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther 86(3):299–306PubMedCrossRefGoogle Scholar
  55. Umamaheswaran G, Praveen RG, Arunkumar AS, Das AK, Shewade DG, Adithan C (2011) Genetic analysis of OCT1 gene polymorphisms in an Indian population. Indian J Hum Genet 17(3):164–168PubMedCentralPubMedCrossRefGoogle Scholar
  56. Underwood PC, Chamarthi B, Williams JS, Sun B, Vaidya A, Raby BA et al (2012) Replication and meta-analysis of the gene-environment interaction between body mass index and the interleukin-6 promoter polymorphism with higher insulin resistance. Metabolism 61(5):667–671PubMedCentralPubMedCrossRefGoogle Scholar
  57. Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y (2002) Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 302(2):510–515PubMedCrossRefGoogle Scholar
  58. Wang IM, Stone DJ, Nickle D, Loboda A, Puig O, Roberts C (2013) Systems biology approach for new target and biomarker identification. Curr Top Microbiol Immunol 363:169–99PubMedGoogle Scholar
  59. Wang J, Zhan H, Li FY, Pursley AN, Schmitt ES, Wong LJ (2012) Targeted array CGH as a valuable molecular diagnostic approach: experience in the diagnosis of mitochondrial and metabolic disorders. Mol Genet Metab 106(2):221–230PubMedCrossRefGoogle Scholar
  60. Whiteley L, Padmanabhan S, Hole D, Isles C (2005) Should diabetes be considered a coronary heart disease risk equivalent?: results from 25 years of follow-up in the Renfrew and Paisley survey. Diabetes Care 28(7):1588–1593PubMedCrossRefGoogle Scholar
  61. Wu Y, Li H, Loos RJ, Yu Z, Ye X, Chen L et al (2008) Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes 57(10):2834–2842PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Sandhiya Selvarajan
    • 1
  • Melvin George
    • 2
  • Suresh Kumar Srinivasamurthy
    • 1
  1. 1.Division of Clinical PharmacologyJawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)PondicherryIndia
  2. 2.Department of CardiologySRM Medical College and Hospital Research CentreKattankulathur, Kancheepuram DistrictIndia

Personalised recommendations